linux/drivers/thunderbolt/switch.c

3578 lines
84 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - switch/port utility functions
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2018, Intel Corporation
*/
#include <linux/delay.h>
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
#include <linux/idr.h>
#include <linux/module.h>
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
#include <linux/nvmem-provider.h>
#include <linux/pm_runtime.h>
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
#include <linux/sched/signal.h>
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include "tb.h"
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/* Switch NVM support */
struct nvm_auth_status {
struct list_head list;
uuid_t uuid;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
u32 status;
};
/*
* Hold NVM authentication failure status per switch This information
* needs to stay around even when the switch gets power cycled so we
* keep it separately.
*/
static LIST_HEAD(nvm_auth_status_cache);
static DEFINE_MUTEX(nvm_auth_status_lock);
static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
list_for_each_entry(st, &nvm_auth_status_cache, list) {
if (uuid_equal(&st->uuid, sw->uuid))
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return st;
}
return NULL;
}
static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
mutex_unlock(&nvm_auth_status_lock);
*status = st ? st->status : 0;
}
static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
{
struct nvm_auth_status *st;
if (WARN_ON(!sw->uuid))
return;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (!st) {
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto unlock;
memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
INIT_LIST_HEAD(&st->list);
list_add_tail(&st->list, &nvm_auth_status_cache);
}
st->status = status;
unlock:
mutex_unlock(&nvm_auth_status_lock);
}
static void nvm_clear_auth_status(const struct tb_switch *sw)
{
struct nvm_auth_status *st;
mutex_lock(&nvm_auth_status_lock);
st = __nvm_get_auth_status(sw);
if (st) {
list_del(&st->list);
kfree(st);
}
mutex_unlock(&nvm_auth_status_lock);
}
static int nvm_validate_and_write(struct tb_switch *sw)
{
unsigned int image_size;
const u8 *buf;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
int ret;
ret = tb_nvm_validate(sw->nvm);
if (ret)
return ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
ret = tb_nvm_write_headers(sw->nvm);
if (ret)
return ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
buf = sw->nvm->buf_data_start;
image_size = sw->nvm->buf_data_size;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (tb_switch_is_usb4(sw))
ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
else
ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
if (ret)
return ret;
sw->nvm->flushed = true;
return 0;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
{
int ret = 0;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* Root switch NVM upgrade requires that we disconnect the
thunderbolt: Add support for XDomain discovery protocol When two hosts are connected over a Thunderbolt cable, there is a protocol they can use to communicate capabilities supported by the host. The discovery protocol uses automatically configured control channel (ring 0) and is build on top of request/response transactions using special XDomain primitives provided by the Thunderbolt base protocol. The capabilities consists of a root directory block of basic properties used for identification of the host, and then there can be zero or more directories each describing a Thunderbolt service and its capabilities. Once both sides have discovered what is supported the two hosts can setup high-speed DMA paths and transfer data to the other side using whatever protocol was agreed based on the properties. The software protocol used to communicate which DMA paths to enable is service specific. This patch adds support for the XDomain discovery protocol to the Thunderbolt bus. We model each remote host connection as a Linux XDomain device. For each Thunderbolt service found supported on the XDomain device, we create Linux Thunderbolt service device which Thunderbolt service drivers can then bind to based on the protocol identification information retrieved from the property directory describing the service. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-02 10:38:34 +00:00
* existing paths first (in case it is not in safe mode
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
* already).
*/
if (!sw->safe_mode) {
u32 status;
thunderbolt: Add support for XDomain discovery protocol When two hosts are connected over a Thunderbolt cable, there is a protocol they can use to communicate capabilities supported by the host. The discovery protocol uses automatically configured control channel (ring 0) and is build on top of request/response transactions using special XDomain primitives provided by the Thunderbolt base protocol. The capabilities consists of a root directory block of basic properties used for identification of the host, and then there can be zero or more directories each describing a Thunderbolt service and its capabilities. Once both sides have discovered what is supported the two hosts can setup high-speed DMA paths and transfer data to the other side using whatever protocol was agreed based on the properties. The software protocol used to communicate which DMA paths to enable is service specific. This patch adds support for the XDomain discovery protocol to the Thunderbolt bus. We model each remote host connection as a Linux XDomain device. For each Thunderbolt service found supported on the XDomain device, we create Linux Thunderbolt service device which Thunderbolt service drivers can then bind to based on the protocol identification information retrieved from the property directory describing the service. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-02 10:38:34 +00:00
ret = tb_domain_disconnect_all_paths(sw->tb);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (ret)
return ret;
/*
* The host controller goes away pretty soon after this if
* everything goes well so getting timeout is expected.
*/
ret = dma_port_flash_update_auth(sw->dma_port);
if (!ret || ret == -ETIMEDOUT)
return 0;
/*
* Any error from update auth operation requires power
* cycling of the host router.
*/
tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
nvm_set_auth_status(sw, status);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
/*
* From safe mode we can get out by just power cycling the
* switch.
*/
dma_port_power_cycle(sw->dma_port);
return ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
{
int ret, retries = 10;
ret = dma_port_flash_update_auth(sw->dma_port);
switch (ret) {
case 0:
case -ETIMEDOUT:
case -EACCES:
case -EINVAL:
/* Power cycle is required */
break;
default:
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* Poll here for the authentication status. It takes some time
* for the device to respond (we get timeout for a while). Once
* we get response the device needs to be power cycled in order
* to the new NVM to be taken into use.
*/
do {
u32 status;
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret < 0 && ret != -ETIMEDOUT)
return ret;
if (ret > 0) {
if (status) {
tb_sw_warn(sw, "failed to authenticate NVM\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
return 0;
}
msleep(500);
} while (--retries);
return -ETIMEDOUT;
}
static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
/*
* During host router NVM upgrade we should not allow root port to
* go into D3cold because some root ports cannot trigger PME
* itself. To be on the safe side keep the root port in D0 during
* the whole upgrade process.
*/
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_get_noresume(&root_port->dev);
}
static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
{
struct pci_dev *root_port;
root_port = pcie_find_root_port(sw->tb->nhi->pdev);
if (root_port)
pm_runtime_put(&root_port->dev);
}
static inline bool nvm_readable(struct tb_switch *sw)
{
if (tb_switch_is_usb4(sw)) {
/*
* USB4 devices must support NVM operations but it is
* optional for hosts. Therefore we query the NVM sector
* size here and if it is supported assume NVM
* operations are implemented.
*/
return usb4_switch_nvm_sector_size(sw) > 0;
}
/* Thunderbolt 2 and 3 devices support NVM through DMA port */
return !!sw->dma_port;
}
static inline bool nvm_upgradeable(struct tb_switch *sw)
{
if (sw->no_nvm_upgrade)
return false;
return nvm_readable(sw);
}
static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
{
int ret;
if (tb_switch_is_usb4(sw)) {
if (auth_only) {
ret = usb4_switch_nvm_set_offset(sw, 0);
if (ret)
return ret;
}
sw->nvm->authenticating = true;
return usb4_switch_nvm_authenticate(sw);
}
if (auth_only)
return -EOPNOTSUPP;
sw->nvm->authenticating = true;
if (!tb_route(sw)) {
nvm_authenticate_start_dma_port(sw);
ret = nvm_authenticate_host_dma_port(sw);
} else {
ret = nvm_authenticate_device_dma_port(sw);
}
return ret;
}
/**
* tb_switch_nvm_read() - Read router NVM
* @sw: Router whose NVM to read
* @address: Start address on the NVM
* @buf: Buffer where the read data is copied
* @size: Size of the buffer in bytes
*
* Reads from router NVM and returns the requested data in @buf. Locking
* is up to the caller. Returns %0 in success and negative errno in case
* of failure.
*/
int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_nvm_read(sw, address, buf, size);
return dma_port_flash_read(sw->dma_port, address, buf, size);
}
static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto out;
}
ret = tb_switch_nvm_read(sw, offset, val, bytes);
mutex_unlock(&sw->tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
{
struct tb_nvm *nvm = priv;
struct tb_switch *sw = tb_to_switch(nvm->dev);
int ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* Since writing the NVM image might require some special steps,
* for example when CSS headers are written, we cache the image
* locally here and handle the special cases when the user asks
* us to authenticate the image.
*/
ret = tb_nvm_write_buf(nvm, offset, val, bytes);
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
static int tb_switch_nvm_add(struct tb_switch *sw)
{
struct tb_nvm *nvm;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
int ret;
if (!nvm_readable(sw))
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return 0;
nvm = tb_nvm_alloc(&sw->dev);
if (IS_ERR(nvm)) {
ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
goto err_nvm;
}
ret = tb_nvm_read_version(nvm);
if (ret)
goto err_nvm;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* If the switch is in safe-mode the only accessible portion of
* the NVM is the non-active one where userspace is expected to
* write new functional NVM.
*/
if (!sw->safe_mode) {
ret = tb_nvm_add_active(nvm, nvm_read);
if (ret)
goto err_nvm;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
if (!sw->no_nvm_upgrade) {
ret = tb_nvm_add_non_active(nvm, nvm_write);
if (ret)
goto err_nvm;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
sw->nvm = nvm;
return 0;
err_nvm:
tb_sw_dbg(sw, "NVM upgrade disabled\n");
sw->no_nvm_upgrade = true;
if (!IS_ERR(nvm))
tb_nvm_free(nvm);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
static void tb_switch_nvm_remove(struct tb_switch *sw)
{
struct tb_nvm *nvm;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
nvm = sw->nvm;
sw->nvm = NULL;
if (!nvm)
return;
/* Remove authentication status in case the switch is unplugged */
if (!nvm->authenticating)
nvm_clear_auth_status(sw);
tb_nvm_free(nvm);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
/* port utility functions */
static const char *tb_port_type(const struct tb_regs_port_header *port)
{
switch (port->type >> 16) {
case 0:
switch ((u8) port->type) {
case 0:
return "Inactive";
case 1:
return "Port";
case 2:
return "NHI";
default:
return "unknown";
}
case 0x2:
return "Ethernet";
case 0x8:
return "SATA";
case 0xe:
return "DP/HDMI";
case 0x10:
return "PCIe";
case 0x20:
return "USB";
default:
return "unknown";
}
}
static void tb_dump_port(struct tb *tb, const struct tb_port *port)
{
const struct tb_regs_port_header *regs = &port->config;
tb_dbg(tb,
" Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
regs->port_number, regs->vendor_id, regs->device_id,
regs->revision, regs->thunderbolt_version, tb_port_type(regs),
regs->type);
tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
regs->max_in_hop_id, regs->max_out_hop_id);
tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
port->ctl_credits);
}
/**
* tb_port_state() - get connectedness state of a port
* @port: the port to check
*
* The port must have a TB_CAP_PHY (i.e. it should be a real port).
*
* Return: Returns an enum tb_port_state on success or an error code on failure.
*/
int tb_port_state(struct tb_port *port)
{
struct tb_cap_phy phy;
int res;
if (port->cap_phy == 0) {
tb_port_WARN(port, "does not have a PHY\n");
return -EINVAL;
}
res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
if (res)
return res;
return phy.state;
}
/**
* tb_wait_for_port() - wait for a port to become ready
* @port: Port to wait
* @wait_if_unplugged: Wait also when port is unplugged
*
* Wait up to 1 second for a port to reach state TB_PORT_UP. If
* wait_if_unplugged is set then we also wait if the port is in state
* TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
* switch resume). Otherwise we only wait if a device is registered but the link
* has not yet been established.
*
* Return: Returns an error code on failure. Returns 0 if the port is not
* connected or failed to reach state TB_PORT_UP within one second. Returns 1
* if the port is connected and in state TB_PORT_UP.
*/
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
{
int retries = 10;
int state;
if (!port->cap_phy) {
tb_port_WARN(port, "does not have PHY\n");
return -EINVAL;
}
if (tb_is_upstream_port(port)) {
tb_port_WARN(port, "is the upstream port\n");
return -EINVAL;
}
while (retries--) {
state = tb_port_state(port);
switch (state) {
case TB_PORT_DISABLED:
tb_port_dbg(port, "is disabled (state: 0)\n");
return 0;
case TB_PORT_UNPLUGGED:
if (wait_if_unplugged) {
/* used during resume */
tb_port_dbg(port,
"is unplugged (state: 7), retrying...\n");
msleep(100);
break;
}
tb_port_dbg(port, "is unplugged (state: 7)\n");
return 0;
case TB_PORT_UP:
case TB_PORT_TX_CL0S:
case TB_PORT_RX_CL0S:
case TB_PORT_CL1:
case TB_PORT_CL2:
tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
return 1;
default:
if (state < 0)
return state;
/*
* After plug-in the state is TB_PORT_CONNECTING. Give it some
* time.
*/
tb_port_dbg(port,
"is connected, link is not up (state: %d), retrying...\n",
state);
msleep(100);
}
}
tb_port_warn(port,
"failed to reach state TB_PORT_UP. Ignoring port...\n");
return 0;
}
/**
* tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
* @port: Port to add/remove NFC credits
* @credits: Credits to add/remove
*
* Change the number of NFC credits allocated to @port by @credits. To remove
* NFC credits pass a negative amount of credits.
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_add_nfc_credits(struct tb_port *port, int credits)
{
u32 nfc_credits;
if (credits == 0 || port->sw->is_unplugged)
return 0;
/*
* USB4 restricts programming NFC buffers to lane adapters only
* so skip other ports.
*/
if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
return 0;
nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
if (credits < 0)
credits = max_t(int, -nfc_credits, credits);
nfc_credits += credits;
tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
port->config.nfc_credits |= nfc_credits;
return tb_port_write(port, &port->config.nfc_credits,
TB_CFG_PORT, ADP_CS_4, 1);
}
/**
* tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
* @port: Port whose counters to clear
* @counter: Counter index to clear
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_port_clear_counter(struct tb_port *port, int counter)
{
u32 zero[3] = { 0, 0, 0 };
tb_port_dbg(port, "clearing counter %d\n", counter);
return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
}
/**
* tb_port_unlock() - Unlock downstream port
* @port: Port to unlock
*
* Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
* downstream router accessible for CM.
*/
int tb_port_unlock(struct tb_port *port)
{
if (tb_switch_is_icm(port->sw))
return 0;
if (!tb_port_is_null(port))
return -EINVAL;
if (tb_switch_is_usb4(port->sw))
return usb4_port_unlock(port);
return 0;
}
static int __tb_port_enable(struct tb_port *port, bool enable)
{
int ret;
u32 phy;
if (!tb_port_is_null(port))
return -EINVAL;
ret = tb_port_read(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
if (enable)
phy &= ~LANE_ADP_CS_1_LD;
else
phy |= LANE_ADP_CS_1_LD;
ret = tb_port_write(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
return 0;
}
/**
* tb_port_enable() - Enable lane adapter
* @port: Port to enable (can be %NULL)
*
* This is used for lane 0 and 1 adapters to enable it.
*/
int tb_port_enable(struct tb_port *port)
{
return __tb_port_enable(port, true);
}
/**
* tb_port_disable() - Disable lane adapter
* @port: Port to disable (can be %NULL)
*
* This is used for lane 0 and 1 adapters to disable it.
*/
int tb_port_disable(struct tb_port *port)
{
return __tb_port_enable(port, false);
}
/*
* tb_init_port() - initialize a port
*
* This is a helper method for tb_switch_alloc. Does not check or initialize
* any downstream switches.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_init_port(struct tb_port *port)
{
int res;
int cap;
INIT_LIST_HEAD(&port->list);
/* Control adapter does not have configuration space */
if (!port->port)
return 0;
res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
if (res) {
if (res == -ENODEV) {
tb_dbg(port->sw->tb, " Port %d: not implemented\n",
port->port);
port->disabled = true;
return 0;
}
return res;
}
/* Port 0 is the switch itself and has no PHY. */
if (port->config.type == TB_TYPE_PORT) {
cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
if (cap > 0)
port->cap_phy = cap;
else
tb_port_WARN(port, "non switch port without a PHY\n");
cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
if (cap > 0)
port->cap_usb4 = cap;
/*
* USB4 ports the buffers allocated for the control path
* can be read from the path config space. Legacy
* devices we use hard-coded value.
*/
if (port->cap_usb4) {
struct tb_regs_hop hop;
if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
port->ctl_credits = hop.initial_credits;
}
if (!port->ctl_credits)
port->ctl_credits = 2;
} else {
cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
if (cap > 0)
port->cap_adap = cap;
}
port->total_credits =
(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
ADP_CS_4_TOTAL_BUFFERS_SHIFT;
tb_dump_port(port->sw->tb, port);
return 0;
}
static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
int max_hopid)
{
int port_max_hopid;
struct ida *ida;
if (in) {
port_max_hopid = port->config.max_in_hop_id;
ida = &port->in_hopids;
} else {
port_max_hopid = port->config.max_out_hop_id;
ida = &port->out_hopids;
}
/*
* NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
* reserved.
*/
if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
min_hopid = TB_PATH_MIN_HOPID;
if (max_hopid < 0 || max_hopid > port_max_hopid)
max_hopid = port_max_hopid;
return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
}
/**
* tb_port_alloc_in_hopid() - Allocate input HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable input HopID
* @max_hopid: Maximum acceptable input HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
}
/**
* tb_port_alloc_out_hopid() - Allocate output HopID from port
* @port: Port to allocate HopID for
* @min_hopid: Minimum acceptable output HopID
* @max_hopid: Maximum acceptable output HopID
*
* Return: HopID between @min_hopid and @max_hopid or negative errno in
* case of error.
*/
int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
{
return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
}
/**
* tb_port_release_in_hopid() - Release allocated input HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_in_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->in_hopids, hopid);
}
/**
* tb_port_release_out_hopid() - Release allocated output HopID from port
* @port: Port whose HopID to release
* @hopid: HopID to release
*/
void tb_port_release_out_hopid(struct tb_port *port, int hopid)
{
ida_simple_remove(&port->out_hopids, hopid);
}
static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
const struct tb_switch *sw)
{
u64 mask = (1ULL << parent->config.depth * 8) - 1;
return (tb_route(parent) & mask) == (tb_route(sw) & mask);
}
/**
* tb_next_port_on_path() - Return next port for given port on a path
* @start: Start port of the walk
* @end: End port of the walk
* @prev: Previous port (%NULL if this is the first)
*
* This function can be used to walk from one port to another if they
* are connected through zero or more switches. If the @prev is dual
* link port, the function follows that link and returns another end on
* that same link.
*
* If the @end port has been reached, return %NULL.
*
* Domain tb->lock must be held when this function is called.
*/
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
struct tb_port *prev)
{
struct tb_port *next;
if (!prev)
return start;
if (prev->sw == end->sw) {
if (prev == end)
return NULL;
return end;
}
if (tb_switch_is_reachable(prev->sw, end->sw)) {
next = tb_port_at(tb_route(end->sw), prev->sw);
/* Walk down the topology if next == prev */
if (prev->remote &&
(next == prev || next->dual_link_port == prev))
next = prev->remote;
} else {
if (tb_is_upstream_port(prev)) {
next = prev->remote;
} else {
next = tb_upstream_port(prev->sw);
/*
* Keep the same link if prev and next are both
* dual link ports.
*/
if (next->dual_link_port &&
next->link_nr != prev->link_nr) {
next = next->dual_link_port;
}
}
}
return next != prev ? next : NULL;
}
/**
* tb_port_get_link_speed() - Get current link speed
* @port: Port to check (USB4 or CIO)
*
* Returns link speed in Gb/s or negative errno in case of failure.
*/
int tb_port_get_link_speed(struct tb_port *port)
{
u32 val, speed;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
switch (speed) {
case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
return 40;
case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
return 20;
default:
return 10;
}
}
/**
* tb_port_get_link_width() - Get current link width
* @port: Port to check (USB4 or CIO)
*
* Returns link width. Return the link width as encoded in &enum
* tb_link_width or negative errno in case of failure.
*/
int tb_port_get_link_width(struct tb_port *port)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
/* Matches the values in enum tb_link_width */
return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
}
static bool tb_port_is_width_supported(struct tb_port *port,
unsigned int width_mask)
{
u32 phy, widths;
int ret;
if (!port->cap_phy)
return false;
ret = tb_port_read(port, &phy, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_0, 1);
if (ret)
return false;
widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
return widths & width_mask;
}
static bool is_gen4_link(struct tb_port *port)
{
return tb_port_get_link_speed(port) > 20;
}
/**
* tb_port_set_link_width() - Set target link width of the lane adapter
* @port: Lane adapter
* @width: Target link width
*
* Sets the target link width of the lane adapter to @width. Does not
* enable/disable lane bonding. For that call tb_port_set_lane_bonding().
*
* Return: %0 in case of success and negative errno in case of error
*/
int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
switch (width) {
case TB_LINK_WIDTH_SINGLE:
/* Gen 4 link cannot be single */
if (is_gen4_link(port))
return -EOPNOTSUPP;
val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
case TB_LINK_WIDTH_DUAL:
val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
break;
default:
return -EINVAL;
}
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
/**
* tb_port_set_lane_bonding() - Enable/disable lane bonding
* @port: Lane adapter
* @bonding: enable/disable bonding
*
* Enables or disables lane bonding. This should be called after target
* link width has been set (tb_port_set_link_width()). Note in most
* cases one should use tb_port_lane_bonding_enable() instead to enable
* lane bonding.
*
* Return: %0 in case of success and negative errno in case of error
*/
static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
if (bonding)
val |= LANE_ADP_CS_1_LB;
else
val &= ~LANE_ADP_CS_1_LB;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
/**
* tb_port_lane_bonding_enable() - Enable bonding on port
* @port: port to enable
*
* Enable bonding by setting the link width of the port and the other
* port in case of dual link port. Does not wait for the link to
* actually reach the bonded state so caller needs to call
* tb_port_wait_for_link_width() before enabling any paths through the
* link to make sure the link is in expected state.
*
* Return: %0 in case of success and negative errno in case of error
*/
int tb_port_lane_bonding_enable(struct tb_port *port)
{
enum tb_link_width width;
int ret;
/*
* Enable lane bonding for both links if not already enabled by
* for example the boot firmware.
*/
width = tb_port_get_link_width(port);
if (width == TB_LINK_WIDTH_SINGLE) {
ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
if (ret)
goto err_lane0;
}
width = tb_port_get_link_width(port->dual_link_port);
if (width == TB_LINK_WIDTH_SINGLE) {
ret = tb_port_set_link_width(port->dual_link_port,
TB_LINK_WIDTH_DUAL);
if (ret)
goto err_lane0;
}
/*
* Only set bonding if the link was not already bonded. This
* avoids the lane adapter to re-enter bonding state.
*/
if (width == TB_LINK_WIDTH_SINGLE) {
ret = tb_port_set_lane_bonding(port, true);
if (ret)
goto err_lane1;
}
/*
* When lane 0 bonding is set it will affect lane 1 too so
* update both.
*/
port->bonded = true;
port->dual_link_port->bonded = true;
return 0;
err_lane1:
tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
err_lane0:
tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
return ret;
}
/**
* tb_port_lane_bonding_disable() - Disable bonding on port
* @port: port to disable
*
* Disable bonding by setting the link width of the port and the
* other port in case of dual link port.
*/
void tb_port_lane_bonding_disable(struct tb_port *port)
{
tb_port_set_lane_bonding(port, false);
tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
port->dual_link_port->bonded = false;
port->bonded = false;
}
/**
* tb_port_wait_for_link_width() - Wait until link reaches specific width
* @port: Port to wait for
* @width_mask: Expected link width mask
* @timeout_msec: Timeout in ms how long to wait
*
* Should be used after both ends of the link have been bonded (or
* bonding has been disabled) to wait until the link actually reaches
* the expected state. Returns %-ETIMEDOUT if the width was not reached
* within the given timeout, %0 if it did. Can be passed a mask of
* expected widths and succeeds if any of the widths is reached.
*/
int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask,
int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
int ret;
/* Gen 4 link does not support single lane */
if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port))
return -EOPNOTSUPP;
do {
ret = tb_port_get_link_width(port);
if (ret < 0) {
/*
* Sometimes we get port locked error when
* polling the lanes so we can ignore it and
* retry.
*/
if (ret != -EACCES)
return ret;
} else if (ret & width_mask) {
return 0;
}
usleep_range(1000, 2000);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int tb_port_do_update_credits(struct tb_port *port)
{
u32 nfc_credits;
int ret;
ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
if (ret)
return ret;
if (nfc_credits != port->config.nfc_credits) {
u32 total;
total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
ADP_CS_4_TOTAL_BUFFERS_SHIFT;
tb_port_dbg(port, "total credits changed %u -> %u\n",
port->total_credits, total);
port->config.nfc_credits = nfc_credits;
port->total_credits = total;
}
return 0;
}
/**
* tb_port_update_credits() - Re-read port total credits
* @port: Port to update
*
* After the link is bonded (or bonding was disabled) the port total
* credits may change, so this function needs to be called to re-read
* the credits. Updates also the second lane adapter.
*/
int tb_port_update_credits(struct tb_port *port)
{
int ret;
ret = tb_port_do_update_credits(port);
if (ret)
return ret;
return tb_port_do_update_credits(port->dual_link_port);
}
static int tb_port_start_lane_initialization(struct tb_port *port)
{
int ret;
if (tb_switch_is_usb4(port->sw))
return 0;
ret = tb_lc_start_lane_initialization(port);
return ret == -EINVAL ? 0 : ret;
}
/*
* Returns true if the port had something (router, XDomain) connected
* before suspend.
*/
static bool tb_port_resume(struct tb_port *port)
{
bool has_remote = tb_port_has_remote(port);
if (port->usb4) {
usb4_port_device_resume(port->usb4);
} else if (!has_remote) {
/*
* For disconnected downstream lane adapters start lane
* initialization now so we detect future connects.
*
* For XDomain start the lane initialzation now so the
* link gets re-established.
*
* This is only needed for non-USB4 ports.
*/
if (!tb_is_upstream_port(port) || port->xdomain)
tb_port_start_lane_initialization(port);
}
return has_remote || port->xdomain;
}
/**
* tb_port_is_enabled() - Is the adapter port enabled
* @port: Port to check
*/
bool tb_port_is_enabled(struct tb_port *port)
{
switch (port->config.type) {
case TB_TYPE_PCIE_UP:
case TB_TYPE_PCIE_DOWN:
return tb_pci_port_is_enabled(port);
case TB_TYPE_DP_HDMI_IN:
case TB_TYPE_DP_HDMI_OUT:
return tb_dp_port_is_enabled(port);
case TB_TYPE_USB3_UP:
case TB_TYPE_USB3_DOWN:
return tb_usb3_port_is_enabled(port);
default:
return false;
}
}
/**
* tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
* @port: USB3 adapter port to check
*/
bool tb_usb3_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1))
return false;
return !!(data & ADP_USB3_CS_0_PE);
}
/**
* tb_usb3_port_enable() - Enable USB3 adapter port
* @port: USB3 adapter port to enable
* @enable: Enable/disable the USB3 adapter
*/
int tb_usb3_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
: ADP_USB3_CS_0_V;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_0, 1);
}
/**
* tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
* @port: PCIe port to check
*/
bool tb_pci_port_is_enabled(struct tb_port *port)
{
u32 data;
if (tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1))
return false;
return !!(data & ADP_PCIE_CS_0_PE);
}
/**
* tb_pci_port_enable() - Enable PCIe adapter port
* @port: PCIe port to enable
* @enable: Enable/disable the PCIe adapter
*/
int tb_pci_port_enable(struct tb_port *port, bool enable)
{
u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
if (!port->cap_adap)
return -ENXIO;
return tb_port_write(port, &word, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_0, 1);
}
/**
* tb_dp_port_hpd_is_active() - Is HPD already active
* @port: DP out port to check
*
* Checks if the DP OUT adapter port has HDP bit already set.
*/
int tb_dp_port_hpd_is_active(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
return !!(data & ADP_DP_CS_2_HDP);
}
/**
* tb_dp_port_hpd_clear() - Clear HPD from DP IN port
* @port: Port to clear HPD
*
* If the DP IN port has HDP set, this function can be used to clear it.
*/
int tb_dp_port_hpd_clear(struct tb_port *port)
{
u32 data;
int ret;
ret = tb_port_read(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
if (ret)
return ret;
data |= ADP_DP_CS_3_HDPC;
return tb_port_write(port, &data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_3, 1);
}
/**
* tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
* @port: DP IN/OUT port to set hops
* @video: Video Hop ID
* @aux_tx: AUX TX Hop ID
* @aux_rx: AUX RX Hop ID
*
* Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
* router DP adapters too but does not program the values as the fields
* are read-only.
*/
int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
unsigned int aux_tx, unsigned int aux_rx)
{
u32 data[2];
int ret;
if (tb_switch_is_usb4(port->sw))
return 0;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
ADP_DP_CS_0_VIDEO_HOPID_MASK;
data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
ADP_DP_CS_1_AUX_RX_HOPID_MASK;
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/**
* tb_dp_port_is_enabled() - Is DP adapter port enabled
* @port: DP adapter port to check
*/
bool tb_dp_port_is_enabled(struct tb_port *port)
{
u32 data[2];
if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
ARRAY_SIZE(data)))
return false;
return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
}
/**
* tb_dp_port_enable() - Enables/disables DP paths of a port
* @port: DP IN/OUT port
* @enable: Enable/disable DP path
*
* Once Hop IDs are programmed DP paths can be enabled or disabled by
* calling this function.
*/
int tb_dp_port_enable(struct tb_port *port, bool enable)
{
u32 data[2];
int ret;
ret = tb_port_read(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
if (ret)
return ret;
if (enable)
data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
else
data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
return tb_port_write(port, data, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
}
/* switch utility functions */
static const char *tb_switch_generation_name(const struct tb_switch *sw)
{
switch (sw->generation) {
case 1:
return "Thunderbolt 1";
case 2:
return "Thunderbolt 2";
case 3:
return "Thunderbolt 3";
case 4:
return "USB4";
default:
return "Unknown";
}
}
static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
{
const struct tb_regs_switch_header *regs = &sw->config;
tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
regs->revision, regs->thunderbolt_version);
tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
tb_dbg(tb, " Config:\n");
tb_dbg(tb,
" Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
regs->upstream_port_number, regs->depth,
(((u64) regs->route_hi) << 32) | regs->route_lo,
regs->enabled, regs->plug_events_delay);
tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
regs->__unknown1, regs->__unknown4);
}
/**
* tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
* @sw: Switch to reset
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_switch_reset(struct tb_switch *sw)
{
struct tb_cfg_result res;
if (sw->generation > 1)
return 0;
tb_sw_dbg(sw, "resetting switch\n");
res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
TB_CFG_SWITCH, 2, 2);
if (res.err)
return res.err;
res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
if (res.err > 0)
return -EIO;
return res.err;
}
/**
* tb_switch_wait_for_bit() - Wait for specified value of bits in offset
* @sw: Router to read the offset value from
* @offset: Offset in the router config space to read from
* @bit: Bit mask in the offset to wait for
* @value: Value of the bits to wait for
* @timeout_msec: Timeout in ms how long to wait
*
* Wait till the specified bits in specified offset reach specified value.
* Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
* within the given timeout or a negative errno in case of failure.
*/
int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
/*
* tb_plug_events_active() - enable/disable plug events on a switch
*
* Also configures a sane plug_events_delay of 255ms.
*
* Return: Returns 0 on success or an error code on failure.
*/
static int tb_plug_events_active(struct tb_switch *sw, bool active)
{
u32 data;
int res;
if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
return 0;
sw->config.plug_events_delay = 0xff;
res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
if (res)
return res;
res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
if (res)
return res;
if (active) {
data = data & 0xFFFFFF83;
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
break;
default:
/*
* Skip Alpine Ridge, it needs to have vendor
* specific USB hotplug event enabled for the
* internal xHCI to work.
*/
if (!tb_switch_is_alpine_ridge(sw))
data |= TB_PLUG_EVENTS_USB_DISABLE;
}
} else {
data = data | 0x7c;
}
return tb_sw_write(sw, &data, TB_CFG_SWITCH,
sw->cap_plug_events + 1, 1);
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
static ssize_t authorized_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%u\n", sw->authorized);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
}
static int disapprove_switch(struct device *dev, void *not_used)
{
char *envp[] = { "AUTHORIZED=0", NULL };
struct tb_switch *sw;
sw = tb_to_switch(dev);
if (sw && sw->authorized) {
int ret;
/* First children */
ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
if (ret)
return ret;
ret = tb_domain_disapprove_switch(sw->tb, sw);
if (ret)
return ret;
sw->authorized = 0;
kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
}
return 0;
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
{
char envp_string[13];
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
int ret = -EINVAL;
char *envp[] = { envp_string, NULL };
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (!!sw->authorized == !!val)
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
goto unlock;
switch (val) {
/* Disapprove switch */
case 0:
if (tb_route(sw)) {
ret = disapprove_switch(&sw->dev, NULL);
goto unlock;
}
break;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
/* Approve switch */
case 1:
if (sw->key)
ret = tb_domain_approve_switch_key(sw->tb, sw);
else
ret = tb_domain_approve_switch(sw->tb, sw);
break;
/* Challenge switch */
case 2:
if (sw->key)
ret = tb_domain_challenge_switch_key(sw->tb, sw);
break;
default:
break;
}
if (!ret) {
sw->authorized = val;
/*
* Notify status change to the userspace, informing the new
* value of /sys/bus/thunderbolt/devices/.../authorized.
*/
sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
}
unlock:
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
return ret;
}
static ssize_t authorized_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int val;
ssize_t ret;
ret = kstrtouint(buf, 0, &val);
if (ret)
return ret;
if (val > 2)
return -EINVAL;
pm_runtime_get_sync(&sw->dev);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
ret = tb_switch_set_authorized(sw, val);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
return ret ? ret : count;
}
static DEVICE_ATTR_RW(authorized);
static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%u\n", sw->boot);
}
static DEVICE_ATTR_RO(boot);
static ssize_t device_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%#x\n", sw->device);
}
static DEVICE_ATTR_RO(device);
static ssize_t
device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
}
static DEVICE_ATTR_RO(device_name);
static ssize_t
generation_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%u\n", sw->generation);
}
static DEVICE_ATTR_RO(generation);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
static ssize_t key_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
ssize_t ret;
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (sw->key)
ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
else
ret = sysfs_emit(buf, "\n");
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
return ret;
}
static ssize_t key_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct tb_switch *sw = tb_to_switch(dev);
u8 key[TB_SWITCH_KEY_SIZE];
ssize_t ret = count;
bool clear = false;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (!strcmp(buf, "\n"))
clear = true;
else if (hex2bin(key, buf, sizeof(key)))
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
return -EINVAL;
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (sw->authorized) {
ret = -EBUSY;
} else {
kfree(sw->key);
if (clear) {
sw->key = NULL;
} else {
sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
if (!sw->key)
ret = -ENOMEM;
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
}
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
return ret;
}
static DEVICE_ATTR(key, 0600, key_show, key_store);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
}
/*
* Currently all lanes must run at the same speed but we expose here
* both directions to allow possible asymmetric links in the future.
*/
static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int width;
switch (sw->link_width) {
case TB_LINK_WIDTH_SINGLE:
case TB_LINK_WIDTH_ASYM_TX:
width = 1;
break;
case TB_LINK_WIDTH_DUAL:
width = 2;
break;
case TB_LINK_WIDTH_ASYM_RX:
width = 3;
break;
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", width);
}
static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
unsigned int width;
switch (sw->link_width) {
case TB_LINK_WIDTH_SINGLE:
case TB_LINK_WIDTH_ASYM_RX:
width = 1;
break;
case TB_LINK_WIDTH_DUAL:
width = 2;
break;
case TB_LINK_WIDTH_ASYM_TX:
width = 3;
break;
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
return sysfs_emit(buf, "%u\n", width);
}
static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
static ssize_t nvm_authenticate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
u32 status;
nvm_get_auth_status(sw, &status);
return sysfs_emit(buf, "%#x\n", status);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
bool disconnect)
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
{
struct tb_switch *sw = tb_to_switch(dev);
int val, ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
pm_runtime_get_sync(&sw->dev);
if (!mutex_trylock(&sw->tb->lock)) {
ret = restart_syscall();
goto exit_rpm;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (sw->no_nvm_upgrade) {
ret = -EOPNOTSUPP;
goto exit_unlock;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/* If NVMem devices are not yet added */
if (!sw->nvm) {
ret = -EAGAIN;
goto exit_unlock;
}
ret = kstrtoint(buf, 10, &val);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (ret)
goto exit_unlock;
/* Always clear the authentication status */
nvm_clear_auth_status(sw);
if (val > 0) {
if (val == AUTHENTICATE_ONLY) {
if (disconnect)
ret = -EINVAL;
else
ret = nvm_authenticate(sw, true);
} else {
if (!sw->nvm->flushed) {
if (!sw->nvm->buf) {
ret = -EINVAL;
goto exit_unlock;
}
ret = nvm_validate_and_write(sw);
if (ret || val == WRITE_ONLY)
goto exit_unlock;
}
if (val == WRITE_AND_AUTHENTICATE) {
if (disconnect)
ret = tb_lc_force_power(sw);
else
ret = nvm_authenticate(sw, false);
}
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
}
exit_unlock:
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
exit_rpm:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
static ssize_t nvm_authenticate_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret = nvm_authenticate_sysfs(dev, buf, false);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (ret)
return ret;
return count;
}
static DEVICE_ATTR_RW(nvm_authenticate);
static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return nvm_authenticate_show(dev, attr, buf);
}
static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret;
ret = nvm_authenticate_sysfs(dev, buf, true);
return ret ? ret : count;
}
static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
static ssize_t nvm_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
int ret;
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
if (!mutex_trylock(&sw->tb->lock))
return restart_syscall();
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (sw->safe_mode)
ret = -ENODATA;
else if (!sw->nvm)
ret = -EAGAIN;
else
ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
thunderbolt: Take domain lock in switch sysfs attribute callbacks switch_lock was introduced because it allowed serialization of device authorization requests from userspace without need to take the big domain lock (tb->lock). This was fine because device authorization with ICM is just one command that is sent to the firmware. Now that we start to handle all tunneling in the driver switch_lock is not enough because we need to walk over the topology to establish paths. For this reason drop switch_lock from the driver completely in favour of big domain lock. There is one complication, though. If userspace is waiting for the lock in tb_switch_set_authorized(), it keeps the device_del() from removing the sysfs attribute because it waits for active users to release the attribute first which leads into following splat: INFO: task kworker/u8:3:73 blocked for more than 61 seconds. Tainted: G W 5.1.0-rc1+ #244 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kworker/u8:3 D12976 73 2 0x80000000 Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: ? __schedule+0x2e5/0x740 ? _raw_spin_lock_irqsave+0x12/0x40 ? prepare_to_wait_event+0xc5/0x160 schedule+0x2d/0x80 __kernfs_remove.part.17+0x183/0x1f0 ? finish_wait+0x80/0x80 kernfs_remove_by_name_ns+0x4a/0x90 remove_files.isra.1+0x2b/0x60 sysfs_remove_group+0x38/0x80 sysfs_remove_groups+0x24/0x40 device_remove_attrs+0x3d/0x70 device_del+0x14c/0x360 device_unregister+0x15/0x50 tb_switch_remove+0x9e/0x1d0 [thunderbolt] tb_handle_hotplug+0x119/0x5a0 [thunderbolt] ? process_one_work+0x1b7/0x420 process_one_work+0x1b7/0x420 worker_thread+0x37/0x380 ? _raw_spin_unlock_irqrestore+0xf/0x30 ? process_one_work+0x420/0x420 kthread+0x118/0x130 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x35/0x40 We deal this by following what network stack did for some of their attributes and use mutex_trylock() with restart_syscall(). This makes userspace release the attribute allowing sysfs attribute removal to progress before the write is restarted and eventually fail when the attribute is removed. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-03-19 14:48:41 +00:00
mutex_unlock(&sw->tb->lock);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
static DEVICE_ATTR_RO(nvm_version);
static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%#x\n", sw->vendor);
}
static DEVICE_ATTR_RO(vendor);
static ssize_t
vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
}
static DEVICE_ATTR_RO(vendor_name);
static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tb_switch *sw = tb_to_switch(dev);
return sysfs_emit(buf, "%pUb\n", sw->uuid);
}
static DEVICE_ATTR_RO(unique_id);
static struct attribute *switch_attrs[] = {
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
&dev_attr_authorized.attr,
&dev_attr_boot.attr,
&dev_attr_device.attr,
&dev_attr_device_name.attr,
&dev_attr_generation.attr,
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
&dev_attr_key.attr,
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
&dev_attr_nvm_authenticate.attr,
&dev_attr_nvm_authenticate_on_disconnect.attr,
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
&dev_attr_nvm_version.attr,
&dev_attr_rx_speed.attr,
&dev_attr_rx_lanes.attr,
&dev_attr_tx_speed.attr,
&dev_attr_tx_lanes.attr,
&dev_attr_vendor.attr,
&dev_attr_vendor_name.attr,
&dev_attr_unique_id.attr,
NULL,
};
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
static umode_t switch_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = kobj_to_dev(kobj);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
struct tb_switch *sw = tb_to_switch(dev);
if (attr == &dev_attr_authorized.attr) {
if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
sw->tb->security_level == TB_SECURITY_DPONLY)
return 0;
} else if (attr == &dev_attr_device.attr) {
if (!sw->device)
return 0;
} else if (attr == &dev_attr_device_name.attr) {
if (!sw->device_name)
return 0;
} else if (attr == &dev_attr_vendor.attr) {
if (!sw->vendor)
return 0;
} else if (attr == &dev_attr_vendor_name.attr) {
if (!sw->vendor_name)
return 0;
} else if (attr == &dev_attr_key.attr) {
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (tb_route(sw) &&
sw->tb->security_level == TB_SECURITY_SECURE &&
sw->security_level == TB_SECURITY_SECURE)
return attr->mode;
return 0;
} else if (attr == &dev_attr_rx_speed.attr ||
attr == &dev_attr_rx_lanes.attr ||
attr == &dev_attr_tx_speed.attr ||
attr == &dev_attr_tx_lanes.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate.attr) {
if (nvm_upgradeable(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_version.attr) {
if (nvm_readable(sw))
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return attr->mode;
return 0;
} else if (attr == &dev_attr_boot.attr) {
if (tb_route(sw))
return attr->mode;
return 0;
} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
return attr->mode;
return 0;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return sw->safe_mode ? 0 : attr->mode;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
}
static const struct attribute_group switch_group = {
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
.is_visible = switch_attr_is_visible,
.attrs = switch_attrs,
};
static const struct attribute_group *switch_groups[] = {
&switch_group,
NULL,
};
static void tb_switch_release(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
struct tb_port *port;
dma_port_free(sw->dma_port);
tb_switch_for_each_port(sw, port) {
ida_destroy(&port->in_hopids);
ida_destroy(&port->out_hopids);
}
kfree(sw->uuid);
kfree(sw->device_name);
kfree(sw->vendor_name);
kfree(sw->ports);
kfree(sw->drom);
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
kfree(sw->key);
kfree(sw);
}
driver core: make struct device_type.uevent() take a const * The uevent() callback in struct device_type should not be modifying the device that is passed into it, so mark it as a const * and propagate the function signature changes out into all relevant subsystems that use this callback. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Bard Liao <yung-chuan.liao@linux.intel.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jilin Yuan <yuanjilin@cdjrlc.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Len Brown <lenb@kernel.org> Cc: Mark Gross <markgross@kernel.org> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Maximilian Luz <luzmaximilian@gmail.com> Cc: Michael Jamet <michael.jamet@intel.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Sakari Ailus <sakari.ailus@linux.intel.com> Cc: Sanyog Kale <sanyog.r.kale@intel.com> Cc: Sean Young <sean@mess.org> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Won Chung <wonchung@google.com> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for Thunderbolt Acked-by: Mauro Carvalho Chehab <mchehab@kernel.org> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Wolfram Sang <wsa@kernel.org> Acked-by: Vinod Koul <vkoul@kernel.org> Acked-by: Hans de Goede <hdegoede@redhat.com> Link: https://lore.kernel.org/r/20230111113018.459199-6-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-11 11:30:07 +00:00
static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
driver core: make struct device_type.uevent() take a const * The uevent() callback in struct device_type should not be modifying the device that is passed into it, so mark it as a const * and propagate the function signature changes out into all relevant subsystems that use this callback. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Bard Liao <yung-chuan.liao@linux.intel.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jilin Yuan <yuanjilin@cdjrlc.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Len Brown <lenb@kernel.org> Cc: Mark Gross <markgross@kernel.org> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Maximilian Luz <luzmaximilian@gmail.com> Cc: Michael Jamet <michael.jamet@intel.com> Cc: Ming Lei <ming.lei@redhat.com> Cc: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com> Cc: Rob Herring <robh+dt@kernel.org> Cc: Sakari Ailus <sakari.ailus@linux.intel.com> Cc: Sanyog Kale <sanyog.r.kale@intel.com> Cc: Sean Young <sean@mess.org> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Won Chung <wonchung@google.com> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for Thunderbolt Acked-by: Mauro Carvalho Chehab <mchehab@kernel.org> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Acked-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Acked-by: Wolfram Sang <wsa@kernel.org> Acked-by: Vinod Koul <vkoul@kernel.org> Acked-by: Hans de Goede <hdegoede@redhat.com> Link: https://lore.kernel.org/r/20230111113018.459199-6-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-11 11:30:07 +00:00
const struct tb_switch *sw = tb_to_switch(dev);
const char *type;
if (tb_switch_is_usb4(sw)) {
if (add_uevent_var(env, "USB4_VERSION=%u.0",
usb4_switch_version(sw)))
return -ENOMEM;
}
if (!tb_route(sw)) {
type = "host";
} else {
const struct tb_port *port;
bool hub = false;
/* Device is hub if it has any downstream ports */
tb_switch_for_each_port(sw, port) {
if (!port->disabled && !tb_is_upstream_port(port) &&
tb_port_is_null(port)) {
hub = true;
break;
}
}
type = hub ? "hub" : "device";
}
if (add_uevent_var(env, "USB4_TYPE=%s", type))
return -ENOMEM;
return 0;
}
/*
* Currently only need to provide the callbacks. Everything else is handled
* in the connection manager.
*/
static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_suspend_switch)
return cm_ops->runtime_suspend_switch(sw);
return 0;
}
static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
{
struct tb_switch *sw = tb_to_switch(dev);
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (cm_ops->runtime_resume_switch)
return cm_ops->runtime_resume_switch(sw);
return 0;
}
static const struct dev_pm_ops tb_switch_pm_ops = {
SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
NULL)
};
struct device_type tb_switch_type = {
.name = "thunderbolt_device",
.release = tb_switch_release,
.uevent = tb_switch_uevent,
.pm = &tb_switch_pm_ops,
};
static int tb_switch_get_generation(struct tb_switch *sw)
{
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
return 1;
case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
return 2;
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
case PCI_DEVICE_ID_INTEL_ICL_NHI0:
case PCI_DEVICE_ID_INTEL_ICL_NHI1:
return 3;
default:
if (tb_switch_is_usb4(sw))
return 4;
/*
* For unknown switches assume generation to be 1 to be
* on the safe side.
*/
tb_sw_warn(sw, "unsupported switch device id %#x\n",
sw->config.device_id);
return 1;
}
}
static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
{
int max_depth;
if (tb_switch_is_usb4(sw) ||
(sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
max_depth = USB4_SWITCH_MAX_DEPTH;
else
max_depth = TB_SWITCH_MAX_DEPTH;
return depth > max_depth;
}
/**
* tb_switch_alloc() - allocate a switch
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* Allocates and initializes a switch. Will not upload configuration to
* the switch. For that you need to call tb_switch_configure()
* separately. The returned switch should be released by calling
* tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of
* failure.
*/
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
u64 route)
{
struct tb_switch *sw;
int upstream_port;
int i, ret, depth;
/* Unlock the downstream port so we can access the switch below */
if (route) {
struct tb_switch *parent_sw = tb_to_switch(parent);
struct tb_port *down;
down = tb_port_at(route, parent_sw);
tb_port_unlock(down);
}
depth = tb_route_length(route);
upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
if (upstream_port < 0)
return ERR_PTR(upstream_port);
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
sw->tb = tb;
ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
if (ret)
goto err_free_sw_ports;
sw->generation = tb_switch_get_generation(sw);
tb_dbg(tb, "current switch config:\n");
tb_dump_switch(tb, sw);
/* configure switch */
sw->config.upstream_port_number = upstream_port;
sw->config.depth = depth;
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->config.enabled = 0;
/* Make sure we do not exceed maximum topology limit */
if (tb_switch_exceeds_max_depth(sw, depth)) {
ret = -EADDRNOTAVAIL;
goto err_free_sw_ports;
}
/* initialize ports */
sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
GFP_KERNEL);
if (!sw->ports) {
ret = -ENOMEM;
goto err_free_sw_ports;
}
for (i = 0; i <= sw->config.max_port_number; i++) {
/* minimum setup for tb_find_cap and tb_drom_read to work */
sw->ports[i].sw = sw;
sw->ports[i].port = i;
/* Control port does not need HopID allocation */
if (i) {
ida_init(&sw->ports[i].in_hopids);
ida_init(&sw->ports[i].out_hopids);
}
}
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
if (ret > 0)
sw->cap_plug_events = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
if (ret > 0)
sw->cap_vsec_tmu = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
if (ret > 0)
sw->cap_lc = ret;
ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
if (ret > 0)
sw->cap_lp = ret;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
/* Root switch is always authorized */
if (!route)
sw->authorized = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
err_free_sw_ports:
kfree(sw->ports);
kfree(sw);
return ERR_PTR(ret);
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/**
* tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
* @tb: Pointer to the owning domain
* @parent: Parent device for this switch
* @route: Route string for this switch
*
* This creates a switch in safe mode. This means the switch pretty much
* lacks all capabilities except DMA configuration port before it is
* flashed with a valid NVM firmware.
*
* The returned switch must be released by calling tb_switch_put().
*
* Return: Pointer to the allocated switch or ERR_PTR() in case of failure
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
*/
struct tb_switch *
tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
{
struct tb_switch *sw;
sw = kzalloc(sizeof(*sw), GFP_KERNEL);
if (!sw)
return ERR_PTR(-ENOMEM);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
sw->tb = tb;
sw->config.depth = tb_route_length(route);
sw->config.route_hi = upper_32_bits(route);
sw->config.route_lo = lower_32_bits(route);
sw->safe_mode = true;
device_initialize(&sw->dev);
sw->dev.parent = parent;
sw->dev.bus = &tb_bus_type;
sw->dev.type = &tb_switch_type;
sw->dev.groups = switch_groups;
dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
return sw;
}
/**
* tb_switch_configure() - Uploads configuration to the switch
* @sw: Switch to configure
*
* Call this function before the switch is added to the system. It will
* upload configuration to the switch and makes it available for the
* connection manager to use. Can be called to the switch again after
* resume from low power states to re-initialize it.
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_configure(struct tb_switch *sw)
{
struct tb *tb = sw->tb;
u64 route;
int ret;
route = tb_route(sw);
tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
sw->config.enabled ? "restoring" : "initializing", route,
tb_route_length(route), sw->config.upstream_port_number);
sw->config.enabled = 1;
if (tb_switch_is_usb4(sw)) {
/*
* For USB4 devices, we need to program the CM version
* accordingly so that it knows to expose all the
* additional capabilities. Program it according to USB4
* version to avoid changing existing (v1) routers behaviour.
*/
if (usb4_switch_version(sw) < 2)
sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
else
sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
sw->config.plug_events_delay = 0xa;
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 4);
if (ret)
return ret;
ret = usb4_switch_setup(sw);
} else {
if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
tb_sw_warn(sw, "unknown switch vendor id %#x\n",
sw->config.vendor_id);
if (!sw->cap_plug_events) {
tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
return -ENODEV;
}
/* Enumerate the switch */
ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
ROUTER_CS_1, 3);
}
if (ret)
return ret;
return tb_plug_events_active(sw, true);
}
/**
* tb_switch_configuration_valid() - Set the tunneling configuration to be valid
* @sw: Router to configure
*
* Needs to be called before any tunnels can be setup through the
* router. Can be called to any router.
*
* Returns %0 in success and negative errno otherwise.
*/
int tb_switch_configuration_valid(struct tb_switch *sw)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_configuration_valid(sw);
return 0;
}
static int tb_switch_set_uuid(struct tb_switch *sw)
{
bool uid = false;
u32 uuid[4];
int ret;
if (sw->uuid)
return 0;
if (tb_switch_is_usb4(sw)) {
ret = usb4_switch_read_uid(sw, &sw->uid);
if (ret)
return ret;
uid = true;
} else {
/*
* The newer controllers include fused UUID as part of
* link controller specific registers
*/
ret = tb_lc_read_uuid(sw, uuid);
if (ret) {
if (ret != -EINVAL)
return ret;
uid = true;
}
}
if (uid) {
/*
* ICM generates UUID based on UID and fills the upper
* two words with ones. This is not strictly following
* UUID format but we want to be compatible with it so
* we do the same here.
*/
uuid[0] = sw->uid & 0xffffffff;
uuid[1] = (sw->uid >> 32) & 0xffffffff;
uuid[2] = 0xffffffff;
uuid[3] = 0xffffffff;
}
sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
if (!sw->uuid)
return -ENOMEM;
return 0;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
static int tb_switch_add_dma_port(struct tb_switch *sw)
{
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
u32 status;
int ret;
switch (sw->generation) {
case 2:
/* Only root switch can be upgraded */
if (tb_route(sw))
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return 0;
fallthrough;
case 3:
case 4:
ret = tb_switch_set_uuid(sw);
if (ret)
return ret;
break;
default:
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* DMA port is the only thing available when the switch
* is in safe mode.
*/
if (!sw->safe_mode)
return 0;
break;
}
if (sw->no_nvm_upgrade)
return 0;
if (tb_switch_is_usb4(sw)) {
ret = usb4_switch_nvm_authenticate_status(sw, &status);
if (ret)
return ret;
if (status) {
tb_sw_info(sw, "switch flash authentication failed\n");
nvm_set_auth_status(sw, status);
}
return 0;
}
/* Root switch DMA port requires running firmware */
if (!tb_route(sw) && !tb_switch_is_icm(sw))
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return 0;
sw->dma_port = dma_port_alloc(sw);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (!sw->dma_port)
return 0;
/*
* If there is status already set then authentication failed
* when the dma_port_flash_update_auth() returned. Power cycling
* is not needed (it was done already) so only thing we do here
* is to unblock runtime PM of the root port.
*/
nvm_get_auth_status(sw, &status);
if (status) {
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
return 0;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* Check status of the previous flash authentication. If there
* is one we need to power cycle the switch in any case to make
* it functional again.
*/
ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
if (ret <= 0)
return ret;
/* Now we can allow root port to suspend again */
if (!tb_route(sw))
nvm_authenticate_complete_dma_port(sw);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (status) {
tb_sw_info(sw, "switch flash authentication failed\n");
nvm_set_auth_status(sw, status);
}
tb_sw_info(sw, "power cycling the switch now\n");
dma_port_power_cycle(sw->dma_port);
/*
* We return error here which causes the switch adding failure.
* It should appear back after power cycle is complete.
*/
return -ESHUTDOWN;
}
static void tb_switch_default_link_ports(struct tb_switch *sw)
{
int i;
for (i = 1; i <= sw->config.max_port_number; i++) {
struct tb_port *port = &sw->ports[i];
struct tb_port *subordinate;
if (!tb_port_is_null(port))
continue;
/* Check for the subordinate port */
if (i == sw->config.max_port_number ||
!tb_port_is_null(&sw->ports[i + 1]))
continue;
/* Link them if not already done so (by DROM) */
subordinate = &sw->ports[i + 1];
if (!port->dual_link_port && !subordinate->dual_link_port) {
port->link_nr = 0;
port->dual_link_port = subordinate;
subordinate->link_nr = 1;
subordinate->dual_link_port = port;
tb_sw_dbg(sw, "linked ports %d <-> %d\n",
port->port, subordinate->port);
}
}
}
static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
{
const struct tb_port *up = tb_upstream_port(sw);
if (!up->dual_link_port || !up->dual_link_port->remote)
return false;
if (tb_switch_is_usb4(sw))
return usb4_switch_lane_bonding_possible(sw);
return tb_lc_lane_bonding_possible(sw);
}
static int tb_switch_update_link_attributes(struct tb_switch *sw)
{
struct tb_port *up;
bool change = false;
int ret;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return 0;
up = tb_upstream_port(sw);
ret = tb_port_get_link_speed(up);
if (ret < 0)
return ret;
if (sw->link_speed != ret)
change = true;
sw->link_speed = ret;
ret = tb_port_get_link_width(up);
if (ret < 0)
return ret;
if (sw->link_width != ret)
change = true;
sw->link_width = ret;
/* Notify userspace that there is possible link attribute change */
if (device_is_registered(&sw->dev) && change)
kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
return 0;
}
/**
* tb_switch_lane_bonding_enable() - Enable lane bonding
* @sw: Switch to enable lane bonding
*
* Connection manager can call this function to enable lane bonding of a
* switch. If conditions are correct and both switches support the feature,
* lanes are bonded. It is safe to call this to any switch.
*/
int tb_switch_lane_bonding_enable(struct tb_switch *sw)
{
struct tb_port *up, *down;
u64 route = tb_route(sw);
unsigned int width_mask;
int ret;
if (!route)
return 0;
if (!tb_switch_lane_bonding_possible(sw))
return 0;
up = tb_upstream_port(sw);
down = tb_switch_downstream_port(sw);
if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) ||
!tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL))
return 0;
ret = tb_port_lane_bonding_enable(up);
if (ret) {
tb_port_warn(up, "failed to enable lane bonding\n");
return ret;
}
ret = tb_port_lane_bonding_enable(down);
if (ret) {
tb_port_warn(down, "failed to enable lane bonding\n");
tb_port_lane_bonding_disable(up);
return ret;
}
/* Any of the widths are all bonded */
width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
TB_LINK_WIDTH_ASYM_RX;
ret = tb_port_wait_for_link_width(down, width_mask, 100);
if (ret) {
tb_port_warn(down, "timeout enabling lane bonding\n");
return ret;
}
tb_port_update_credits(down);
tb_port_update_credits(up);
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding enabled\n");
return ret;
}
/**
* tb_switch_lane_bonding_disable() - Disable lane bonding
* @sw: Switch whose lane bonding to disable
*
* Disables lane bonding between @sw and parent. This can be called even
* if lanes were not bonded originally.
*/
void tb_switch_lane_bonding_disable(struct tb_switch *sw)
{
struct tb_port *up, *down;
int ret;
if (!tb_route(sw))
return;
up = tb_upstream_port(sw);
if (!up->bonded)
return;
down = tb_switch_downstream_port(sw);
tb_port_lane_bonding_disable(up);
tb_port_lane_bonding_disable(down);
/*
* It is fine if we get other errors as the router might have
* been unplugged.
*/
ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
if (ret == -ETIMEDOUT)
tb_sw_warn(sw, "timeout disabling lane bonding\n");
tb_port_update_credits(down);
tb_port_update_credits(up);
tb_switch_update_link_attributes(sw);
tb_sw_dbg(sw, "lane bonding disabled\n");
}
/**
* tb_switch_configure_link() - Set link configured
* @sw: Switch whose link is configured
*
* Sets the link upstream from @sw configured (from both ends) so that
* it will not be disconnected when the domain exits sleep. Can be
* called for any switch.
*
* It is recommended that this is called after lane bonding is enabled.
*
* Returns %0 on success and negative errno in case of error.
*/
int tb_switch_configure_link(struct tb_switch *sw)
{
struct tb_port *up, *down;
int ret;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return 0;
up = tb_upstream_port(sw);
if (tb_switch_is_usb4(up->sw))
ret = usb4_port_configure(up);
else
ret = tb_lc_configure_port(up);
if (ret)
return ret;
down = up->remote;
if (tb_switch_is_usb4(down->sw))
return usb4_port_configure(down);
return tb_lc_configure_port(down);
}
/**
* tb_switch_unconfigure_link() - Unconfigure link
* @sw: Switch whose link is unconfigured
*
* Sets the link unconfigured so the @sw will be disconnected if the
* domain exists sleep.
*/
void tb_switch_unconfigure_link(struct tb_switch *sw)
{
struct tb_port *up, *down;
if (sw->is_unplugged)
return;
if (!tb_route(sw) || tb_switch_is_icm(sw))
return;
up = tb_upstream_port(sw);
if (tb_switch_is_usb4(up->sw))
usb4_port_unconfigure(up);
else
tb_lc_unconfigure_port(up);
down = up->remote;
if (tb_switch_is_usb4(down->sw))
usb4_port_unconfigure(down);
else
tb_lc_unconfigure_port(down);
}
static void tb_switch_credits_init(struct tb_switch *sw)
{
if (tb_switch_is_icm(sw))
return;
if (!tb_switch_is_usb4(sw))
return;
if (usb4_switch_credits_init(sw))
tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
}
static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
{
struct tb_port *port;
if (tb_switch_is_icm(sw))
return 0;
tb_switch_for_each_port(sw, port) {
int res;
if (!port->cap_usb4)
continue;
res = usb4_port_hotplug_enable(port);
if (res)
return res;
}
return 0;
}
/**
* tb_switch_add() - Add a switch to the domain
* @sw: Switch to add
*
* This is the last step in adding switch to the domain. It will read
* identification information from DROM and initializes ports so that
* they can be used to connect other switches. The switch will be
* exposed to the userspace when this function successfully returns. To
* remove and release the switch, call tb_switch_remove().
*
* Return: %0 in case of success and negative errno in case of failure
*/
int tb_switch_add(struct tb_switch *sw)
{
int i, ret;
/*
* Initialize DMA control port now before we read DROM. Recent
* host controllers have more complete DROM on NVM that includes
* vendor and model identification strings which we then expose
* to the userspace. NVM can be accessed through DMA
* configuration based mailbox.
*/
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
ret = tb_switch_add_dma_port(sw);
if (ret) {
dev_err(&sw->dev, "failed to add DMA port\n");
return ret;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (!sw->safe_mode) {
tb_switch_credits_init(sw);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/* read drom */
ret = tb_drom_read(sw);
if (ret)
dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
ret = tb_switch_set_uuid(sw);
if (ret) {
dev_err(&sw->dev, "failed to set UUID\n");
return ret;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
for (i = 0; i <= sw->config.max_port_number; i++) {
if (sw->ports[i].disabled) {
tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
continue;
}
ret = tb_init_port(&sw->ports[i]);
if (ret) {
dev_err(&sw->dev, "failed to initialize port %d\n", i);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
}
tb_check_quirks(sw);
tb_switch_default_link_ports(sw);
ret = tb_switch_update_link_attributes(sw);
if (ret)
return ret;
ret = tb_switch_clx_init(sw);
if (ret)
return ret;
ret = tb_switch_tmu_init(sw);
if (ret)
return ret;
}
ret = tb_switch_port_hotplug_enable(sw);
if (ret)
return ret;
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
ret = device_add(&sw->dev);
if (ret) {
dev_err(&sw->dev, "failed to add device: %d\n", ret);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
return ret;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
if (tb_route(sw)) {
dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
sw->vendor, sw->device);
if (sw->vendor_name && sw->device_name)
dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
sw->device_name);
}
ret = usb4_switch_add_ports(sw);
if (ret) {
dev_err(&sw->dev, "failed to add USB4 ports\n");
goto err_del;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
ret = tb_switch_nvm_add(sw);
if (ret) {
dev_err(&sw->dev, "failed to add NVM devices\n");
goto err_ports;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/*
* Thunderbolt routers do not generate wakeups themselves but
* they forward wakeups from tunneled protocols, so enable it
* here.
*/
device_init_wakeup(&sw->dev, true);
pm_runtime_set_active(&sw->dev);
if (sw->rpm) {
pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&sw->dev);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_enable(&sw->dev);
pm_request_autosuspend(&sw->dev);
}
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-29 17:30:52 +00:00
tb_switch_debugfs_init(sw);
return 0;
err_ports:
usb4_switch_remove_ports(sw);
err_del:
device_del(&sw->dev);
return ret;
}
/**
* tb_switch_remove() - Remove and release a switch
* @sw: Switch to remove
*
* This will remove the switch from the domain and release it after last
* reference count drops to zero. If there are switches connected below
* this switch, they will be removed as well.
*/
void tb_switch_remove(struct tb_switch *sw)
{
struct tb_port *port;
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-29 17:30:52 +00:00
tb_switch_debugfs_remove(sw);
if (sw->rpm) {
pm_runtime_get_sync(&sw->dev);
pm_runtime_disable(&sw->dev);
}
/* port 0 is the switch itself and never has a remote */
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port)) {
tb_switch_remove(port->remote->sw);
port->remote = NULL;
} else if (port->xdomain) {
tb_xdomain_remove(port->xdomain);
port->xdomain = NULL;
}
/* Remove any downstream retimers */
tb_retimer_remove_all(port);
}
if (!sw->is_unplugged)
tb_plug_events_active(sw, false);
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
tb_switch_nvm_remove(sw);
usb4_switch_remove_ports(sw);
if (tb_route(sw))
dev_info(&sw->dev, "device disconnected\n");
device_unregister(&sw->dev);
}
/**
* tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
* @sw: Router to mark unplugged
*/
void tb_sw_set_unplugged(struct tb_switch *sw)
{
struct tb_port *port;
if (sw == sw->tb->root_switch) {
tb_sw_WARN(sw, "cannot unplug root switch\n");
return;
}
if (sw->is_unplugged) {
tb_sw_WARN(sw, "is_unplugged already set\n");
return;
}
sw->is_unplugged = true;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
}
}
static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
{
if (flags)
tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
else
tb_sw_dbg(sw, "disabling wakeup\n");
if (tb_switch_is_usb4(sw))
return usb4_switch_set_wake(sw, flags);
return tb_lc_set_wake(sw, flags);
}
int tb_switch_resume(struct tb_switch *sw)
{
struct tb_port *port;
int err;
tb_sw_dbg(sw, "resuming switch\n");
/*
* Check for UID of the connected switches except for root
* switch which we assume cannot be removed.
*/
if (tb_route(sw)) {
u64 uid;
/*
* Check first that we can still read the switch config
* space. It may be that there is now another domain
* connected.
*/
err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
if (err < 0) {
tb_sw_info(sw, "switch not present anymore\n");
return err;
}
/* We don't have any way to confirm this was the same device */
if (!sw->uid)
return -ENODEV;
if (tb_switch_is_usb4(sw))
err = usb4_switch_read_uid(sw, &uid);
else
err = tb_drom_read_uid_only(sw, &uid);
if (err) {
tb_sw_warn(sw, "uid read failed\n");
return err;
}
if (sw->uid != uid) {
tb_sw_info(sw,
"changed while suspended (uid %#llx -> %#llx)\n",
sw->uid, uid);
return -ENODEV;
}
}
err = tb_switch_configure(sw);
if (err)
return err;
/* Disable wakes */
tb_switch_set_wake(sw, 0);
err = tb_switch_tmu_init(sw);
if (err)
return err;
/* check for surviving downstream switches */
tb_switch_for_each_port(sw, port) {
if (!tb_port_is_null(port))
continue;
if (!tb_port_resume(port))
continue;
if (tb_wait_for_port(port, true) <= 0) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
if (tb_port_has_remote(port))
tb_sw_set_unplugged(port->remote->sw);
else if (port->xdomain)
port->xdomain->is_unplugged = true;
} else {
/*
* Always unlock the port so the downstream
* switch/domain is accessible.
*/
if (tb_port_unlock(port))
tb_port_warn(port, "failed to unlock port\n");
if (port->remote && tb_switch_resume(port->remote->sw)) {
tb_port_warn(port,
"lost during suspend, disconnecting\n");
tb_sw_set_unplugged(port->remote->sw);
}
}
}
return 0;
}
/**
* tb_switch_suspend() - Put a switch to sleep
* @sw: Switch to suspend
* @runtime: Is this runtime suspend or system sleep
*
* Suspends router and all its children. Enables wakes according to
* value of @runtime and then sets sleep bit for the router. If @sw is
* host router the domain is ready to go to sleep once this function
* returns.
*/
void tb_switch_suspend(struct tb_switch *sw, bool runtime)
{
unsigned int flags = 0;
struct tb_port *port;
int err;
tb_sw_dbg(sw, "suspending switch\n");
/*
* Actually only needed for Titan Ridge but for simplicity can be
* done for USB4 device too as CLx is re-enabled at resume.
*/
tb_switch_clx_disable(sw);
err = tb_plug_events_active(sw, false);
if (err)
return;
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_switch_suspend(port->remote->sw, runtime);
}
if (runtime) {
/* Trigger wake when something is plugged in/out */
flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
flags |= TB_WAKE_ON_USB4;
flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
} else if (device_may_wakeup(&sw->dev)) {
flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
}
tb_switch_set_wake(sw, flags);
if (tb_switch_is_usb4(sw))
usb4_switch_set_sleep(sw);
else
tb_lc_set_sleep(sw);
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
/**
* tb_switch_query_dp_resource() - Query availability of DP resource
* @sw: Switch whose DP resource is queried
* @in: DP IN port
*
* Queries availability of DP resource for DP tunneling using switch
* specific means. Returns %true if resource is available.
*/
bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
if (tb_switch_is_usb4(sw))
return usb4_switch_query_dp_resource(sw, in);
return tb_lc_dp_sink_query(sw, in);
}
/**
* tb_switch_alloc_dp_resource() - Allocate available DP resource
* @sw: Switch whose DP resource is allocated
* @in: DP IN port
*
* Allocates DP resource for DP tunneling. The resource must be
* available for this to succeed (see tb_switch_query_dp_resource()).
* Returns %0 in success and negative errno otherwise.
*/
int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
int ret;
if (tb_switch_is_usb4(sw))
ret = usb4_switch_alloc_dp_resource(sw, in);
else
ret = tb_lc_dp_sink_alloc(sw, in);
if (ret)
tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
in->port);
else
tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
return ret;
}
/**
* tb_switch_dealloc_dp_resource() - De-allocate DP resource
* @sw: Switch whose DP resource is de-allocated
* @in: DP IN port
*
* De-allocates DP resource that was previously allocated for DP
* tunneling.
*/
void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
int ret;
if (tb_switch_is_usb4(sw))
ret = usb4_switch_dealloc_dp_resource(sw, in);
else
ret = tb_lc_dp_sink_dealloc(sw, in);
if (ret)
tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
in->port);
else
tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
struct tb_sw_lookup {
struct tb *tb;
u8 link;
u8 depth;
const uuid_t *uuid;
u64 route;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
};
bus_find_device: Unify the match callback with class_find_device There is an arbitrary difference between the prototypes of bus_find_device() and class_find_device() preventing their callers from passing the same pair of data and match() arguments to both of them, which is the const qualifier used in the prototype of class_find_device(). If that qualifier is also used in the bus_find_device() prototype, it will be possible to pass the same match() callback function to both bus_find_device() and class_find_device(), which will allow some optimizations to be made in order to avoid code duplication going forward. Also with that, constify the "data" parameter as it is passed as a const to the match function. For this reason, change the prototype of bus_find_device() to match the prototype of class_find_device() and adjust its callers to use the const qualifier in accordance with the new prototype of it. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Corey Minyard <minyard@acm.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Kershner <david.kershner@unisys.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Airlie <airlied@linux.ie> Cc: Felipe Balbi <balbi@kernel.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Harald Freudenberger <freude@linux.ibm.com> Cc: Hartmut Knaack <knaack.h@gmx.de> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Cameron <jic23@kernel.org> Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Len Brown <lenb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Jamet <michael.jamet@intel.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: Sebastian Ott <sebott@linux.ibm.com> Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Cc: rafael@kernel.org Acked-by: Corey Minyard <minyard@acm.org> Acked-by: David Kershner <david.kershner@unisys.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-14 17:53:59 +00:00
static int tb_switch_match(struct device *dev, const void *data)
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
{
struct tb_switch *sw = tb_to_switch(dev);
bus_find_device: Unify the match callback with class_find_device There is an arbitrary difference between the prototypes of bus_find_device() and class_find_device() preventing their callers from passing the same pair of data and match() arguments to both of them, which is the const qualifier used in the prototype of class_find_device(). If that qualifier is also used in the bus_find_device() prototype, it will be possible to pass the same match() callback function to both bus_find_device() and class_find_device(), which will allow some optimizations to be made in order to avoid code duplication going forward. Also with that, constify the "data" parameter as it is passed as a const to the match function. For this reason, change the prototype of bus_find_device() to match the prototype of class_find_device() and adjust its callers to use the const qualifier in accordance with the new prototype of it. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Andreas Noever <andreas.noever@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Corey Minyard <minyard@acm.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David Kershner <david.kershner@unisys.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Airlie <airlied@linux.ie> Cc: Felipe Balbi <balbi@kernel.org> Cc: Frank Rowand <frowand.list@gmail.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Cc: Harald Freudenberger <freude@linux.ibm.com> Cc: Hartmut Knaack <knaack.h@gmx.de> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Cameron <jic23@kernel.org> Cc: "James E.J. Bottomley" <jejb@linux.ibm.com> Cc: Len Brown <lenb@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michael Jamet <michael.jamet@intel.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Peter Oberparleiter <oberpar@linux.ibm.com> Cc: Sebastian Ott <sebott@linux.ibm.com> Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Cc: Yehezkel Bernat <YehezkelShB@gmail.com> Cc: rafael@kernel.org Acked-by: Corey Minyard <minyard@acm.org> Acked-by: David Kershner <david.kershner@unisys.com> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-14 17:53:59 +00:00
const struct tb_sw_lookup *lookup = data;
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
if (!sw)
return 0;
if (sw->tb != lookup->tb)
return 0;
if (lookup->uuid)
return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
if (lookup->route) {
return sw->config.route_lo == lower_32_bits(lookup->route) &&
sw->config.route_hi == upper_32_bits(lookup->route);
}
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
/* Root switch is matched only by depth */
if (!lookup->depth)
return !sw->depth;
return sw->link == lookup->link && sw->depth == lookup->depth;
}
/**
* tb_switch_find_by_link_depth() - Find switch by link and depth
* @tb: Domain the switch belongs
* @link: Link number the switch is connected
* @depth: Depth of the switch in link
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.link = link;
lookup.depth = depth;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_by_uuid() - Find switch by UUID
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
* @tb: Domain the switch belongs
* @uuid: UUID to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
thunderbolt: Add support for Internal Connection Manager (ICM) Starting from Intel Falcon Ridge the internal connection manager running on the Thunderbolt host controller has been supporting 4 security levels. One reason for this is to prevent DMA attacks and only allow connecting devices the user trusts. The internal connection manager (ICM) is the preferred way of connecting Thunderbolt devices over software only implementation typically used on Macs. The driver communicates with ICM using special Thunderbolt ring 0 (control channel) messages. In order to handle these messages we add support for the ICM messages to the control channel. The security levels are as follows: none - No security, all tunnels are created automatically user - User needs to approve the device before tunnels are created secure - User need to approve the device before tunnels are created. The device is sent a challenge on future connects to be able to verify it is actually the approved device. dponly - Only Display Port and USB tunnels can be created and those are created automatically. The security levels are typically configurable from the system BIOS and by default it is set to "user" on many systems. In this patch each Thunderbolt device will have either one or two new sysfs attributes: authorized and key. The latter appears for devices that support secure connect. In order to identify the device the user can read identication information, including UUID and name of the device from sysfs and based on that make a decision to authorize the device. The device is authorized by simply writing 1 to the "authorized" sysfs attribute. This is following the USB bus device authorization mechanism. The secure connect requires an additional challenge step (writing 2 to the "authorized" attribute) in future connects when the key has already been stored to the NVM of the device. Non-ICM systems (before Alpine Ridge) continue to use the existing functionality and the security level is set to none. For systems with Alpine Ridge, even on Apple hardware, we will use ICM. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:16 +00:00
{
struct tb_sw_lookup lookup;
struct device *dev;
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.uuid = uuid;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
thunderbolt: Add support for host and device NVM firmware upgrade Starting from Intel Falcon Ridge the NVM firmware can be upgraded by using DMA configuration based mailbox commands. If we detect that the host or device (device support starts from Intel Alpine Ridge) has the DMA configuration based mailbox we expose NVM information to the userspace as two separate Linux NVMem devices: nvm_active and nvm_non_active. The former is read-only portion of the active NVM which firmware upgrade tools can be use to find out suitable NVM image if the device identification strings are not enough. The latter is write-only portion where the new NVM image is to be written by the userspace. It is up to the userspace to find out right NVM image (the kernel does very minimal validation). The ICM firmware itself authenticates the new NVM firmware and fails the operation if it is not what is expected. We also expose two new sysfs files per each switch: nvm_version and nvm_authenticate which can be used to read the active NVM version and start the upgrade process. We also introduce safe mode which is the mode a switch goes when it does not have properly authenticated firmware. In this mode the switch only accepts a couple of commands including flashing a new NVM firmware image and triggering power cycle. This code is based on the work done by Amir Levy and Michael Jamet. Signed-off-by: Michael Jamet <michael.jamet@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andreas Noever <andreas.noever@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-06 12:25:17 +00:00
/**
* tb_switch_find_by_route() - Find switch by route string
* @tb: Domain the switch belongs
* @route: Route string to look for
*
* Returned switch has reference count increased so the caller needs to
* call tb_switch_put() when done with the switch.
*/
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
{
struct tb_sw_lookup lookup;
struct device *dev;
if (!route)
return tb_switch_get(tb->root_switch);
memset(&lookup, 0, sizeof(lookup));
lookup.tb = tb;
lookup.route = route;
dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
if (dev)
return tb_to_switch(dev);
return NULL;
}
/**
* tb_switch_find_port() - return the first port of @type on @sw or NULL
* @sw: Switch to find the port from
* @type: Port type to look for
*/
struct tb_port *tb_switch_find_port(struct tb_switch *sw,
enum tb_port_type type)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (port->config.type == type)
return port;
}
return NULL;
}
/*
* Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
* device. For now used only for Titan Ridge.
*/
static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
unsigned int pcie_offset, u32 value)
{
u32 offset, command, val;
int ret;
if (sw->generation != 3)
return -EOPNOTSUPP;
offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
ret = tb_switch_wait_for_bit(sw, offset,
TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
return -ETIMEDOUT;
return 0;
}
/**
* tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
* @sw: Router to enable PCIe L1
*
* For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
* entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
* was configured. Due to Intel platforms limitation, shall be called only
* for first hop switch.
*/
int tb_switch_pcie_l1_enable(struct tb_switch *sw)
{
struct tb_switch *parent = tb_switch_parent(sw);
int ret;
if (!tb_route(sw))
return 0;
if (!tb_switch_is_titan_ridge(sw))
return 0;
/* Enable PCIe L1 enable only for first hop router (depth = 1) */
if (tb_route(parent))
return 0;
/* Write to downstream PCIe bridge #5 aka Dn4 */
ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
if (ret)
return ret;
/* Write to Upstream PCIe bridge #0 aka Up0 */
return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
}
/**
* tb_switch_xhci_connect() - Connect internal xHCI
* @sw: Router whose xHCI to connect
*
* Can be called to any router. For Alpine Ridge and Titan Ridge
* performs special flows that bring the xHCI functional for any device
* connected to the type-C port. Call only after PCIe tunnel has been
* established. The function only does the connect if not done already
* so can be called several times for the same router.
*/
int tb_switch_xhci_connect(struct tb_switch *sw)
{
struct tb_port *port1, *port3;
int ret;
if (sw->generation != 3)
return 0;
port1 = &sw->ports[1];
port3 = &sw->ports[3];
if (tb_switch_is_alpine_ridge(sw)) {
bool usb_port1, usb_port3, xhci_port1, xhci_port3;
usb_port1 = tb_lc_is_usb_plugged(port1);
usb_port3 = tb_lc_is_usb_plugged(port3);
xhci_port1 = tb_lc_is_xhci_connected(port1);
xhci_port3 = tb_lc_is_xhci_connected(port3);
/* Figure out correct USB port to connect */
if (usb_port1 && !xhci_port1) {
ret = tb_lc_xhci_connect(port1);
if (ret)
return ret;
}
if (usb_port3 && !xhci_port3)
return tb_lc_xhci_connect(port3);
} else if (tb_switch_is_titan_ridge(sw)) {
ret = tb_lc_xhci_connect(port1);
if (ret)
return ret;
return tb_lc_xhci_connect(port3);
}
return 0;
}
/**
* tb_switch_xhci_disconnect() - Disconnect internal xHCI
* @sw: Router whose xHCI to disconnect
*
* The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
* ports.
*/
void tb_switch_xhci_disconnect(struct tb_switch *sw)
{
if (sw->generation == 3) {
struct tb_port *port1 = &sw->ports[1];
struct tb_port *port3 = &sw->ports[3];
tb_lc_xhci_disconnect(port1);
tb_port_dbg(port1, "disconnected xHCI\n");
tb_lc_xhci_disconnect(port3);
tb_port_dbg(port3, "disconnected xHCI\n");
}
}