linux/arch/powerpc/sysdev/fsl_soc.c

1441 lines
32 KiB
C
Raw Normal View History

/*
* FSL SoC setup code
*
* Maintained by Kumar Gala (see MAINTAINERS for contact information)
*
* 2006 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/spi/spi.h>
#include <linux/fsl_devices.h>
#include <linux/fs_enet_pd.h>
#include <linux/fs_uart_pd.h>
#include <asm/system.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/prom.h>
#include <sysdev/fsl_soc.h>
#include <mm/mmu_decl.h>
#include <asm/cpm2.h>
extern void init_fcc_ioports(struct fs_platform_info*);
extern void init_fec_ioports(struct fs_platform_info*);
extern void init_smc_ioports(struct fs_uart_platform_info*);
static phys_addr_t immrbase = -1;
phys_addr_t get_immrbase(void)
{
struct device_node *soc;
if (immrbase != -1)
return immrbase;
soc = of_find_node_by_type(NULL, "soc");
if (soc) {
int size;
u32 naddr;
const u32 *prop = of_get_property(soc, "#address-cells", &size);
if (prop && size == 4)
naddr = *prop;
else
naddr = 2;
prop = of_get_property(soc, "ranges", &size);
if (prop)
immrbase = of_translate_address(soc, prop + naddr);
of_node_put(soc);
}
return immrbase;
}
EXPORT_SYMBOL(get_immrbase);
#if defined(CONFIG_CPM2) || defined(CONFIG_QUICC_ENGINE) || defined(CONFIG_8xx)
static u32 brgfreq = -1;
u32 get_brgfreq(void)
{
struct device_node *node;
const unsigned int *prop;
int size;
if (brgfreq != -1)
return brgfreq;
node = of_find_compatible_node(NULL, NULL, "fsl,cpm-brg");
if (node) {
prop = of_get_property(node, "clock-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
of_node_put(node);
return brgfreq;
}
/* Legacy device binding -- will go away when no users are left. */
node = of_find_node_by_type(NULL, "cpm");
if (!node)
node = of_find_compatible_node(NULL, NULL, "fsl,qe");
if (!node)
node = of_find_node_by_type(NULL, "qe");
if (node) {
prop = of_get_property(node, "brg-frequency", &size);
if (prop && size == 4)
brgfreq = *prop;
if (brgfreq == -1 || brgfreq == 0) {
prop = of_get_property(node, "bus-frequency", &size);
if (prop && size == 4)
brgfreq = *prop / 2;
}
of_node_put(node);
}
return brgfreq;
}
EXPORT_SYMBOL(get_brgfreq);
static u32 fs_baudrate = -1;
u32 get_baudrate(void)
{
struct device_node *node;
if (fs_baudrate != -1)
return fs_baudrate;
node = of_find_node_by_type(NULL, "serial");
if (node) {
int size;
const unsigned int *prop = of_get_property(node,
"current-speed", &size);
if (prop)
fs_baudrate = *prop;
of_node_put(node);
}
return fs_baudrate;
}
EXPORT_SYMBOL(get_baudrate);
#endif /* CONFIG_CPM2 */
#ifdef CONFIG_FIXED_PHY
static int __init of_add_fixed_phys(void)
{
int ret;
struct device_node *np;
u32 *fixed_link;
struct fixed_phy_status status = {};
for_each_node_by_name(np, "ethernet") {
fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
if (!fixed_link)
continue;
status.link = 1;
status.duplex = fixed_link[1];
status.speed = fixed_link[2];
status.pause = fixed_link[3];
status.asym_pause = fixed_link[4];
ret = fixed_phy_add(PHY_POLL, fixed_link[0], &status);
if (ret) {
of_node_put(np);
return ret;
}
}
return 0;
}
arch_initcall(of_add_fixed_phys);
#endif /* CONFIG_FIXED_PHY */
static int __init gfar_mdio_of_init(void)
{
struct device_node *np = NULL;
struct platform_device *mdio_dev;
struct resource res;
int ret;
np = of_find_compatible_node(np, NULL, "fsl,gianfar-mdio");
/* try the deprecated version */
if (!np)
np = of_find_compatible_node(np, "mdio", "gianfar");
if (np) {
int k;
struct device_node *child = NULL;
struct gianfar_mdio_data mdio_data;
memset(&res, 0, sizeof(res));
memset(&mdio_data, 0, sizeof(mdio_data));
ret = of_address_to_resource(np, 0, &res);
if (ret)
goto err;
mdio_dev =
platform_device_register_simple("fsl-gianfar_mdio",
res.start, &res, 1);
if (IS_ERR(mdio_dev)) {
ret = PTR_ERR(mdio_dev);
goto err;
}
for (k = 0; k < 32; k++)
mdio_data.irq[k] = PHY_POLL;
while ((child = of_get_next_child(np, child)) != NULL) {
int irq = irq_of_parse_and_map(child, 0);
if (irq != NO_IRQ) {
const u32 *id = of_get_property(child,
"reg", NULL);
mdio_data.irq[*id] = irq;
}
}
ret =
platform_device_add_data(mdio_dev, &mdio_data,
sizeof(struct gianfar_mdio_data));
if (ret)
goto unreg;
}
of_node_put(np);
return 0;
unreg:
platform_device_unregister(mdio_dev);
err:
of_node_put(np);
return ret;
}
arch_initcall(gfar_mdio_of_init);
static const char *gfar_tx_intr = "tx";
static const char *gfar_rx_intr = "rx";
static const char *gfar_err_intr = "error";
static int __init gfar_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *gfar_dev;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "network", "gianfar")) != NULL;
i++) {
struct resource r[4];
struct device_node *phy, *mdio;
struct gianfar_platform_data gfar_data;
const unsigned int *id;
const char *model;
const char *ctype;
const void *mac_addr;
const phandle *ph;
int n_res = 2;
memset(r, 0, sizeof(r));
memset(&gfar_data, 0, sizeof(gfar_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
model = of_get_property(np, "model", NULL);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
r[1].name = gfar_tx_intr;
r[2].name = gfar_rx_intr;
of_irq_to_resource(np, 1, &r[2]);
r[3].name = gfar_err_intr;
of_irq_to_resource(np, 2, &r[3]);
n_res += 2;
}
gfar_dev =
platform_device_register_simple("fsl-gianfar", i, &r[0],
n_res);
if (IS_ERR(gfar_dev)) {
ret = PTR_ERR(gfar_dev);
goto err;
}
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(gfar_data.mac_addr, mac_addr, 6);
if (model && !strcasecmp(model, "TSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
gfar_data.device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
gfar_data.interface = PHY_INTERFACE_MODE_RGMII_ID;
else
gfar_data.interface = PHY_INTERFACE_MODE_MII;
ph = of_get_property(np, "phy-handle", NULL);
if (ph == NULL) {
u32 *fixed_link;
fixed_link = (u32 *)of_get_property(np, "fixed-link",
NULL);
if (!fixed_link) {
ret = -ENODEV;
goto unreg;
}
gfar_data.bus_id = 0;
gfar_data.phy_id = fixed_link[0];
} else {
phy = of_find_node_by_phandle(*ph);
if (phy == NULL) {
ret = -ENODEV;
goto unreg;
}
mdio = of_get_parent(phy);
id = of_get_property(phy, "reg", NULL);
ret = of_address_to_resource(mdio, 0, &res);
if (ret) {
of_node_put(phy);
of_node_put(mdio);
goto unreg;
}
gfar_data.phy_id = *id;
gfar_data.bus_id = res.start;
of_node_put(phy);
of_node_put(mdio);
}
ret =
platform_device_add_data(gfar_dev, &gfar_data,
sizeof(struct
gianfar_platform_data));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(gfar_dev);
err:
return ret;
}
arch_initcall(gfar_of_init);
#ifdef CONFIG_I2C_BOARDINFO
#include <linux/i2c.h>
struct i2c_driver_device {
char *of_device;
char *i2c_driver;
char *i2c_type;
};
static struct i2c_driver_device i2c_devices[] __initdata = {
{"ricoh,rs5c372a", "rtc-rs5c372", "rs5c372a",},
{"ricoh,rs5c372b", "rtc-rs5c372", "rs5c372b",},
{"ricoh,rv5c386", "rtc-rs5c372", "rv5c386",},
{"ricoh,rv5c387a", "rtc-rs5c372", "rv5c387a",},
{"dallas,ds1307", "rtc-ds1307", "ds1307",},
{"dallas,ds1337", "rtc-ds1307", "ds1337",},
{"dallas,ds1338", "rtc-ds1307", "ds1338",},
{"dallas,ds1339", "rtc-ds1307", "ds1339",},
{"dallas,ds1340", "rtc-ds1307", "ds1340",},
{"stm,m41t00", "rtc-ds1307", "m41t00"},
{"dallas,ds1374", "rtc-ds1374", "rtc-ds1374",},
};
static int __init of_find_i2c_driver(struct device_node *node,
struct i2c_board_info *info)
{
int i;
for (i = 0; i < ARRAY_SIZE(i2c_devices); i++) {
if (!of_device_is_compatible(node, i2c_devices[i].of_device))
continue;
if (strlcpy(info->driver_name, i2c_devices[i].i2c_driver,
KOBJ_NAME_LEN) >= KOBJ_NAME_LEN ||
strlcpy(info->type, i2c_devices[i].i2c_type,
I2C_NAME_SIZE) >= I2C_NAME_SIZE)
return -ENOMEM;
return 0;
}
return -ENODEV;
}
static void __init of_register_i2c_devices(struct device_node *adap_node,
int bus_num)
{
struct device_node *node = NULL;
while ((node = of_get_next_child(adap_node, node))) {
struct i2c_board_info info = {};
const u32 *addr;
int len;
addr = of_get_property(node, "reg", &len);
if (!addr || len < sizeof(int) || *addr > (1 << 10) - 1) {
printk(KERN_WARNING "fsl_soc.c: invalid i2c device entry\n");
continue;
}
info.irq = irq_of_parse_and_map(node, 0);
if (info.irq == NO_IRQ)
info.irq = -1;
if (of_find_i2c_driver(node, &info) < 0)
continue;
info.addr = *addr;
i2c_register_board_info(bus_num, &info, 1);
}
}
static int __init fsl_i2c_of_init(void)
{
struct device_node *np;
unsigned int i = 0;
struct platform_device *i2c_dev;
int ret;
for_each_compatible_node(np, NULL, "fsl-i2c") {
struct resource r[2];
struct fsl_i2c_platform_data i2c_data;
const unsigned char *flags = NULL;
memset(&r, 0, sizeof(r));
memset(&i2c_data, 0, sizeof(i2c_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
i2c_dev = platform_device_register_simple("fsl-i2c", i, r, 2);
if (IS_ERR(i2c_dev)) {
ret = PTR_ERR(i2c_dev);
goto err;
}
i2c_data.device_flags = 0;
flags = of_get_property(np, "dfsrr", NULL);
if (flags)
i2c_data.device_flags |= FSL_I2C_DEV_SEPARATE_DFSRR;
flags = of_get_property(np, "fsl5200-clocking", NULL);
if (flags)
i2c_data.device_flags |= FSL_I2C_DEV_CLOCK_5200;
ret =
platform_device_add_data(i2c_dev, &i2c_data,
sizeof(struct
fsl_i2c_platform_data));
if (ret)
goto unreg;
of_register_i2c_devices(np, i++);
}
return 0;
unreg:
platform_device_unregister(i2c_dev);
err:
return ret;
}
arch_initcall(fsl_i2c_of_init);
#endif
#ifdef CONFIG_PPC_83xx
static int __init mpc83xx_wdt_init(void)
{
struct resource r;
struct device_node *soc, *np;
struct platform_device *dev;
const unsigned int *freq;
int ret;
np = of_find_compatible_node(NULL, "watchdog", "mpc83xx_wdt");
if (!np) {
ret = -ENODEV;
goto nodev;
}
soc = of_find_node_by_type(NULL, "soc");
if (!soc) {
ret = -ENODEV;
goto nosoc;
}
freq = of_get_property(soc, "bus-frequency", NULL);
if (!freq) {
ret = -ENODEV;
goto err;
}
memset(&r, 0, sizeof(r));
ret = of_address_to_resource(np, 0, &r);
if (ret)
goto err;
dev = platform_device_register_simple("mpc83xx_wdt", 0, &r, 1);
if (IS_ERR(dev)) {
ret = PTR_ERR(dev);
goto err;
}
ret = platform_device_add_data(dev, freq, sizeof(int));
if (ret)
goto unreg;
of_node_put(soc);
of_node_put(np);
return 0;
unreg:
platform_device_unregister(dev);
err:
of_node_put(soc);
nosoc:
of_node_put(np);
nodev:
return ret;
}
arch_initcall(mpc83xx_wdt_init);
#endif
static enum fsl_usb2_phy_modes determine_usb_phy(const char *phy_type)
{
if (!phy_type)
return FSL_USB2_PHY_NONE;
if (!strcasecmp(phy_type, "ulpi"))
return FSL_USB2_PHY_ULPI;
if (!strcasecmp(phy_type, "utmi"))
return FSL_USB2_PHY_UTMI;
if (!strcasecmp(phy_type, "utmi_wide"))
return FSL_USB2_PHY_UTMI_WIDE;
if (!strcasecmp(phy_type, "serial"))
return FSL_USB2_PHY_SERIAL;
return FSL_USB2_PHY_NONE;
}
static int __init fsl_usb_of_init(void)
{
struct device_node *np;
unsigned int i = 0;
struct platform_device *usb_dev_mph = NULL, *usb_dev_dr_host = NULL,
*usb_dev_dr_client = NULL;
int ret;
for_each_compatible_node(np, NULL, "fsl-usb2-mph") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
of_irq_to_resource(np, 0, &r[1]);
usb_dev_mph =
platform_device_register_simple("fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_mph)) {
ret = PTR_ERR(usb_dev_mph);
goto err;
}
usb_dev_mph->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_mph->dev.dma_mask = &usb_dev_mph->dev.coherent_dma_mask;
usb_data.operating_mode = FSL_USB2_MPH_HOST;
prop = of_get_property(np, "port0", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT0_ENABLED;
prop = of_get_property(np, "port1", NULL);
if (prop)
usb_data.port_enables |= FSL_USB2_PORT1_ENABLED;
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
ret =
platform_device_add_data(usb_dev_mph, &usb_data,
sizeof(struct
fsl_usb2_platform_data));
if (ret)
goto unreg_mph;
i++;
}
for_each_compatible_node(np, NULL, "fsl-usb2-dr") {
struct resource r[2];
struct fsl_usb2_platform_data usb_data;
const unsigned char *prop = NULL;
memset(&r, 0, sizeof(r));
memset(&usb_data, 0, sizeof(usb_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto unreg_mph;
of_irq_to_resource(np, 0, &r[1]);
prop = of_get_property(np, "dr_mode", NULL);
if (!prop || !strcmp(prop, "host")) {
usb_data.operating_mode = FSL_USB2_DR_HOST;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
} else if (prop && !strcmp(prop, "peripheral")) {
usb_data.operating_mode = FSL_USB2_DR_DEVICE;
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else if (prop && !strcmp(prop, "otg")) {
usb_data.operating_mode = FSL_USB2_DR_OTG;
usb_dev_dr_host = platform_device_register_simple(
"fsl-ehci", i, r, 2);
if (IS_ERR(usb_dev_dr_host)) {
ret = PTR_ERR(usb_dev_dr_host);
goto err;
}
usb_dev_dr_client = platform_device_register_simple(
"fsl-usb2-udc", i, r, 2);
if (IS_ERR(usb_dev_dr_client)) {
ret = PTR_ERR(usb_dev_dr_client);
goto err;
}
} else {
ret = -EINVAL;
goto err;
}
prop = of_get_property(np, "phy_type", NULL);
usb_data.phy_mode = determine_usb_phy(prop);
if (usb_dev_dr_host) {
usb_dev_dr_host->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_host->dev.dma_mask = &usb_dev_dr_host->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_host,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
if (usb_dev_dr_client) {
usb_dev_dr_client->dev.coherent_dma_mask = 0xffffffffUL;
usb_dev_dr_client->dev.dma_mask = &usb_dev_dr_client->
dev.coherent_dma_mask;
if ((ret = platform_device_add_data(usb_dev_dr_client,
&usb_data, sizeof(struct
fsl_usb2_platform_data))))
goto unreg_dr;
}
i++;
}
return 0;
unreg_dr:
if (usb_dev_dr_host)
platform_device_unregister(usb_dev_dr_host);
if (usb_dev_dr_client)
platform_device_unregister(usb_dev_dr_client);
unreg_mph:
if (usb_dev_mph)
platform_device_unregister(usb_dev_mph);
err:
return ret;
}
arch_initcall(fsl_usb_of_init);
#ifndef CONFIG_PPC_CPM_NEW_BINDING
#ifdef CONFIG_CPM2
extern void init_scc_ioports(struct fs_uart_platform_info*);
static const char fcc_regs[] = "fcc_regs";
static const char fcc_regs_c[] = "fcc_regs_c";
static const char fcc_pram[] = "fcc_pram";
static char bus_id[9][BUS_ID_SIZE];
static int __init fs_enet_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *fs_enet_dev;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "network", "fs_enet")) != NULL;
i++) {
struct resource r[4];
struct device_node *phy, *mdio;
struct fs_platform_info fs_enet_data;
const unsigned int *id, *phy_addr, *phy_irq;
const void *mac_addr;
const phandle *ph;
const char *model;
memset(r, 0, sizeof(r));
memset(&fs_enet_data, 0, sizeof(fs_enet_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
r[0].name = fcc_regs;
ret = of_address_to_resource(np, 1, &r[1]);
if (ret)
goto err;
r[1].name = fcc_pram;
ret = of_address_to_resource(np, 2, &r[2]);
if (ret)
goto err;
r[2].name = fcc_regs_c;
fs_enet_data.fcc_regs_c = r[2].start;
of_irq_to_resource(np, 0, &r[3]);
fs_enet_dev =
platform_device_register_simple("fsl-cpm-fcc", i, &r[0], 4);
if (IS_ERR(fs_enet_dev)) {
ret = PTR_ERR(fs_enet_dev);
goto err;
}
model = of_get_property(np, "model", NULL);
if (model == NULL) {
ret = -ENODEV;
goto unreg;
}
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(fs_enet_data.macaddr, mac_addr, 6);
ph = of_get_property(np, "phy-handle", NULL);
phy = of_find_node_by_phandle(*ph);
if (phy == NULL) {
ret = -ENODEV;
goto unreg;
}
phy_addr = of_get_property(phy, "reg", NULL);
fs_enet_data.phy_addr = *phy_addr;
phy_irq = of_get_property(phy, "interrupts", NULL);
id = of_get_property(np, "device-id", NULL);
fs_enet_data.fs_no = *id;
strcpy(fs_enet_data.fs_type, model);
mdio = of_get_parent(phy);
ret = of_address_to_resource(mdio, 0, &res);
if (ret) {
of_node_put(phy);
of_node_put(mdio);
goto unreg;
}
fs_enet_data.clk_rx = *((u32 *)of_get_property(np,
"rx-clock", NULL));
fs_enet_data.clk_tx = *((u32 *)of_get_property(np,
"tx-clock", NULL));
if (strstr(model, "FCC")) {
int fcc_index = *id - 1;
const unsigned char *mdio_bb_prop;
fs_enet_data.dpram_offset = (u32)cpm_dpram_addr(0);
fs_enet_data.rx_ring = 32;
fs_enet_data.tx_ring = 32;
fs_enet_data.rx_copybreak = 240;
fs_enet_data.use_napi = 0;
fs_enet_data.napi_weight = 17;
fs_enet_data.mem_offset = FCC_MEM_OFFSET(fcc_index);
fs_enet_data.cp_page = CPM_CR_FCC_PAGE(fcc_index);
fs_enet_data.cp_block = CPM_CR_FCC_SBLOCK(fcc_index);
snprintf((char*)&bus_id[(*id)], BUS_ID_SIZE, "%x:%02x",
(u32)res.start, fs_enet_data.phy_addr);
fs_enet_data.bus_id = (char*)&bus_id[(*id)];
fs_enet_data.init_ioports = init_fcc_ioports;
mdio_bb_prop = of_get_property(phy, "bitbang", NULL);
if (mdio_bb_prop) {
struct platform_device *fs_enet_mdio_bb_dev;
struct fs_mii_bb_platform_info fs_enet_mdio_bb_data;
fs_enet_mdio_bb_dev =
platform_device_register_simple("fsl-bb-mdio",
i, NULL, 0);
memset(&fs_enet_mdio_bb_data, 0,
sizeof(struct fs_mii_bb_platform_info));
fs_enet_mdio_bb_data.mdio_dat.bit =
mdio_bb_prop[0];
fs_enet_mdio_bb_data.mdio_dir.bit =
mdio_bb_prop[1];
fs_enet_mdio_bb_data.mdc_dat.bit =
mdio_bb_prop[2];
fs_enet_mdio_bb_data.mdio_port =
mdio_bb_prop[3];
fs_enet_mdio_bb_data.mdc_port =
mdio_bb_prop[4];
fs_enet_mdio_bb_data.delay =
mdio_bb_prop[5];
fs_enet_mdio_bb_data.irq[0] = phy_irq[0];
fs_enet_mdio_bb_data.irq[1] = -1;
fs_enet_mdio_bb_data.irq[2] = -1;
fs_enet_mdio_bb_data.irq[3] = phy_irq[0];
fs_enet_mdio_bb_data.irq[31] = -1;
fs_enet_mdio_bb_data.mdio_dat.offset =
(u32)&cpm2_immr->im_ioport.iop_pdatc;
fs_enet_mdio_bb_data.mdio_dir.offset =
(u32)&cpm2_immr->im_ioport.iop_pdirc;
fs_enet_mdio_bb_data.mdc_dat.offset =
(u32)&cpm2_immr->im_ioport.iop_pdatc;
ret = platform_device_add_data(
fs_enet_mdio_bb_dev,
&fs_enet_mdio_bb_data,
sizeof(struct fs_mii_bb_platform_info));
if (ret)
goto unreg;
}
of_node_put(phy);
of_node_put(mdio);
ret = platform_device_add_data(fs_enet_dev, &fs_enet_data,
sizeof(struct
fs_platform_info));
if (ret)
goto unreg;
}
}
return 0;
unreg:
platform_device_unregister(fs_enet_dev);
err:
return ret;
}
arch_initcall(fs_enet_of_init);
static const char scc_regs[] = "regs";
static const char scc_pram[] = "pram";
static int __init cpm_uart_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *cpm_uart_dev;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "serial", "cpm_uart")) != NULL;
i++) {
struct resource r[3];
struct fs_uart_platform_info cpm_uart_data;
const int *id;
const char *model;
memset(r, 0, sizeof(r));
memset(&cpm_uart_data, 0, sizeof(cpm_uart_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
r[0].name = scc_regs;
ret = of_address_to_resource(np, 1, &r[1]);
if (ret)
goto err;
r[1].name = scc_pram;
of_irq_to_resource(np, 0, &r[2]);
cpm_uart_dev =
platform_device_register_simple("fsl-cpm-scc:uart", i, &r[0], 3);
if (IS_ERR(cpm_uart_dev)) {
ret = PTR_ERR(cpm_uart_dev);
goto err;
}
id = of_get_property(np, "device-id", NULL);
cpm_uart_data.fs_no = *id;
model = of_get_property(np, "model", NULL);
strcpy(cpm_uart_data.fs_type, model);
cpm_uart_data.uart_clk = ppc_proc_freq;
cpm_uart_data.tx_num_fifo = 4;
cpm_uart_data.tx_buf_size = 32;
cpm_uart_data.rx_num_fifo = 4;
cpm_uart_data.rx_buf_size = 32;
cpm_uart_data.clk_rx = *((u32 *)of_get_property(np,
"rx-clock", NULL));
cpm_uart_data.clk_tx = *((u32 *)of_get_property(np,
"tx-clock", NULL));
ret =
platform_device_add_data(cpm_uart_dev, &cpm_uart_data,
sizeof(struct
fs_uart_platform_info));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(cpm_uart_dev);
err:
return ret;
}
arch_initcall(cpm_uart_of_init);
#endif /* CONFIG_CPM2 */
#ifdef CONFIG_8xx
extern void init_scc_ioports(struct fs_platform_info*);
extern int platform_device_skip(const char *model, int id);
static int __init fs_enet_mdio_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *mdio_dev;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "mdio", "fs_enet")) != NULL;
i++) {
struct fs_mii_fec_platform_info mdio_data;
memset(&res, 0, sizeof(res));
memset(&mdio_data, 0, sizeof(mdio_data));
ret = of_address_to_resource(np, 0, &res);
if (ret)
goto err;
mdio_dev =
platform_device_register_simple("fsl-cpm-fec-mdio",
res.start, &res, 1);
if (IS_ERR(mdio_dev)) {
ret = PTR_ERR(mdio_dev);
goto err;
}
mdio_data.mii_speed = ((((ppc_proc_freq + 4999999) / 2500000) / 2) & 0x3F) << 1;
ret =
platform_device_add_data(mdio_dev, &mdio_data,
sizeof(struct fs_mii_fec_platform_info));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(mdio_dev);
err:
return ret;
}
arch_initcall(fs_enet_mdio_of_init);
static const char *enet_regs = "regs";
static const char *enet_pram = "pram";
static const char *enet_irq = "interrupt";
static char bus_id[9][BUS_ID_SIZE];
static int __init fs_enet_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *fs_enet_dev = NULL;
struct resource res;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "network", "fs_enet")) != NULL;
i++) {
struct resource r[4];
struct device_node *phy = NULL, *mdio = NULL;
struct fs_platform_info fs_enet_data;
const unsigned int *id;
const unsigned int *phy_addr;
const void *mac_addr;
const phandle *ph;
const char *model;
memset(r, 0, sizeof(r));
memset(&fs_enet_data, 0, sizeof(fs_enet_data));
model = of_get_property(np, "model", NULL);
if (model == NULL) {
ret = -ENODEV;
goto unreg;
}
id = of_get_property(np, "device-id", NULL);
fs_enet_data.fs_no = *id;
if (platform_device_skip(model, *id))
continue;
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
r[0].name = enet_regs;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(fs_enet_data.macaddr, mac_addr, 6);
ph = of_get_property(np, "phy-handle", NULL);
if (ph != NULL)
phy = of_find_node_by_phandle(*ph);
if (phy != NULL) {
phy_addr = of_get_property(phy, "reg", NULL);
fs_enet_data.phy_addr = *phy_addr;
fs_enet_data.has_phy = 1;
mdio = of_get_parent(phy);
ret = of_address_to_resource(mdio, 0, &res);
if (ret) {
of_node_put(phy);
of_node_put(mdio);
goto unreg;
}
}
model = of_get_property(np, "model", NULL);
strcpy(fs_enet_data.fs_type, model);
if (strstr(model, "FEC")) {
r[1].start = r[1].end = irq_of_parse_and_map(np, 0);
r[1].flags = IORESOURCE_IRQ;
r[1].name = enet_irq;
fs_enet_dev =
platform_device_register_simple("fsl-cpm-fec", i, &r[0], 2);
if (IS_ERR(fs_enet_dev)) {
ret = PTR_ERR(fs_enet_dev);
goto err;
}
fs_enet_data.rx_ring = 128;
fs_enet_data.tx_ring = 16;
fs_enet_data.rx_copybreak = 240;
fs_enet_data.use_napi = 1;
fs_enet_data.napi_weight = 17;
snprintf((char*)&bus_id[i], BUS_ID_SIZE, "%x:%02x",
(u32)res.start, fs_enet_data.phy_addr);
fs_enet_data.bus_id = (char*)&bus_id[i];
fs_enet_data.init_ioports = init_fec_ioports;
}
if (strstr(model, "SCC")) {
ret = of_address_to_resource(np, 1, &r[1]);
if (ret)
goto err;
r[1].name = enet_pram;
r[2].start = r[2].end = irq_of_parse_and_map(np, 0);
r[2].flags = IORESOURCE_IRQ;
r[2].name = enet_irq;
fs_enet_dev =
platform_device_register_simple("fsl-cpm-scc", i, &r[0], 3);
if (IS_ERR(fs_enet_dev)) {
ret = PTR_ERR(fs_enet_dev);
goto err;
}
fs_enet_data.rx_ring = 64;
fs_enet_data.tx_ring = 8;
fs_enet_data.rx_copybreak = 240;
fs_enet_data.use_napi = 1;
fs_enet_data.napi_weight = 17;
snprintf((char*)&bus_id[i], BUS_ID_SIZE, "%s", "fixed@10:1");
fs_enet_data.bus_id = (char*)&bus_id[i];
fs_enet_data.init_ioports = init_scc_ioports;
}
of_node_put(phy);
of_node_put(mdio);
ret = platform_device_add_data(fs_enet_dev, &fs_enet_data,
sizeof(struct
fs_platform_info));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(fs_enet_dev);
err:
return ret;
}
arch_initcall(fs_enet_of_init);
static int __init fsl_pcmcia_of_init(void)
{
struct device_node *np;
/*
* Register all the devices which type is "pcmcia"
*/
for_each_compatible_node(np, "pcmcia", "fsl,pq-pcmcia")
of_platform_device_create(np, "m8xx-pcmcia", NULL);
return 0;
}
arch_initcall(fsl_pcmcia_of_init);
static const char *smc_regs = "regs";
static const char *smc_pram = "pram";
static int __init cpm_smc_uart_of_init(void)
{
struct device_node *np;
unsigned int i;
struct platform_device *cpm_uart_dev;
int ret;
for (np = NULL, i = 0;
(np = of_find_compatible_node(np, "serial", "cpm_uart")) != NULL;
i++) {
struct resource r[3];
struct fs_uart_platform_info cpm_uart_data;
const int *id;
const char *model;
memset(r, 0, sizeof(r));
memset(&cpm_uart_data, 0, sizeof(cpm_uart_data));
ret = of_address_to_resource(np, 0, &r[0]);
if (ret)
goto err;
r[0].name = smc_regs;
ret = of_address_to_resource(np, 1, &r[1]);
if (ret)
goto err;
r[1].name = smc_pram;
r[2].start = r[2].end = irq_of_parse_and_map(np, 0);
r[2].flags = IORESOURCE_IRQ;
cpm_uart_dev =
platform_device_register_simple("fsl-cpm-smc:uart", i, &r[0], 3);
if (IS_ERR(cpm_uart_dev)) {
ret = PTR_ERR(cpm_uart_dev);
goto err;
}
model = of_get_property(np, "model", NULL);
strcpy(cpm_uart_data.fs_type, model);
id = of_get_property(np, "device-id", NULL);
cpm_uart_data.fs_no = *id;
cpm_uart_data.uart_clk = ppc_proc_freq;
cpm_uart_data.tx_num_fifo = 4;
cpm_uart_data.tx_buf_size = 32;
cpm_uart_data.rx_num_fifo = 4;
cpm_uart_data.rx_buf_size = 32;
ret =
platform_device_add_data(cpm_uart_dev, &cpm_uart_data,
sizeof(struct
fs_uart_platform_info));
if (ret)
goto unreg;
}
return 0;
unreg:
platform_device_unregister(cpm_uart_dev);
err:
return ret;
}
arch_initcall(cpm_smc_uart_of_init);
#endif /* CONFIG_8xx */
#endif /* CONFIG_PPC_CPM_NEW_BINDING */
static int __init of_fsl_spi_probe(char *type, char *compatible, u32 sysclk,
struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
struct device_node *np;
unsigned int i = 0;
for_each_compatible_node(np, type, compatible) {
int ret;
unsigned int j;
const void *prop;
struct resource res[2];
struct platform_device *pdev;
struct fsl_spi_platform_data pdata = {
.activate_cs = activate_cs,
.deactivate_cs = deactivate_cs,
};
memset(res, 0, sizeof(res));
pdata.sysclk = sysclk;
prop = of_get_property(np, "reg", NULL);
if (!prop)
goto err;
pdata.bus_num = *(u32 *)prop;
prop = of_get_property(np, "cell-index", NULL);
if (prop)
i = *(u32 *)prop;
prop = of_get_property(np, "mode", NULL);
if (prop && !strcmp(prop, "cpu-qe"))
pdata.qe_mode = 1;
for (j = 0; j < num_board_infos; j++) {
if (board_infos[j].bus_num == pdata.bus_num)
pdata.max_chipselect++;
}
if (!pdata.max_chipselect)
continue;
ret = of_address_to_resource(np, 0, &res[0]);
if (ret)
goto err;
ret = of_irq_to_resource(np, 0, &res[1]);
if (ret == NO_IRQ)
goto err;
pdev = platform_device_alloc("mpc83xx_spi", i);
if (!pdev)
goto err;
ret = platform_device_add_data(pdev, &pdata, sizeof(pdata));
if (ret)
goto unreg;
ret = platform_device_add_resources(pdev, res,
ARRAY_SIZE(res));
if (ret)
goto unreg;
ret = platform_device_add(pdev);
if (ret)
goto unreg;
goto next;
unreg:
platform_device_del(pdev);
err:
pr_err("%s: registration failed\n", np->full_name);
next:
i++;
}
return i;
}
int __init fsl_spi_init(struct spi_board_info *board_infos,
unsigned int num_board_infos,
void (*activate_cs)(u8 cs, u8 polarity),
void (*deactivate_cs)(u8 cs, u8 polarity))
{
u32 sysclk = -1;
int ret;
#ifdef CONFIG_QUICC_ENGINE
/* SPI controller is either clocked from QE or SoC clock */
sysclk = get_brgfreq();
#endif
if (sysclk == -1) {
struct device_node *np;
const u32 *freq;
int size;
np = of_find_node_by_type(NULL, "soc");
if (!np)
return -ENODEV;
freq = of_get_property(np, "clock-frequency", &size);
if (!freq || size != sizeof(*freq) || *freq == 0) {
freq = of_get_property(np, "bus-frequency", &size);
if (!freq || size != sizeof(*freq) || *freq == 0) {
of_node_put(np);
return -ENODEV;
}
}
sysclk = *freq;
of_node_put(np);
}
ret = of_fsl_spi_probe(NULL, "fsl,spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
if (!ret)
of_fsl_spi_probe("spi", "fsl_spi", sysclk, board_infos,
num_board_infos, activate_cs, deactivate_cs);
return spi_register_board_info(board_infos, num_board_infos);
}
#if defined(CONFIG_PPC_85xx) || defined(CONFIG_PPC_86xx)
static __be32 __iomem *rstcr;
static int __init setup_rstcr(void)
{
struct device_node *np;
np = of_find_node_by_name(NULL, "global-utilities");
if ((np && of_get_property(np, "fsl,has-rstcr", NULL))) {
const u32 *prop = of_get_property(np, "reg", NULL);
if (prop) {
/* map reset control register
* 0xE00B0 is offset of reset control register
*/
rstcr = ioremap(get_immrbase() + *prop + 0xB0, 0xff);
if (!rstcr)
printk (KERN_EMERG "Error: reset control "
"register not mapped!\n");
}
} else
printk (KERN_INFO "rstcr compatible register does not exist!\n");
if (np)
of_node_put(np);
return 0;
}
arch_initcall(setup_rstcr);
void fsl_rstcr_restart(char *cmd)
{
local_irq_disable();
if (rstcr)
/* set reset control register */
out_be32(rstcr, 0x2); /* HRESET_REQ */
while (1) ;
}
#endif