License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2017-01-09 15:55:19 +00:00
|
|
|
/*
|
|
|
|
* Shared Memory Communications over RDMA (SMC-R) and RoCE
|
|
|
|
*
|
|
|
|
* Work Requests exploiting Infiniband API
|
|
|
|
*
|
|
|
|
* Work requests (WR) of type ib_post_send or ib_post_recv respectively
|
|
|
|
* are submitted to either RC SQ or RC RQ respectively
|
|
|
|
* (reliably connected send/receive queue)
|
|
|
|
* and become work queue entries (WQEs).
|
|
|
|
* While an SQ WR/WQE is pending, we track it until transmission completion.
|
|
|
|
* Through a send or receive completion queue (CQ) respectively,
|
|
|
|
* we get completion queue entries (CQEs) [aka work completions (WCs)].
|
|
|
|
* Since the CQ callback is called from IRQ context, we split work by using
|
|
|
|
* bottom halves implemented by tasklets.
|
|
|
|
*
|
|
|
|
* SMC uses this to exchange LLC (link layer control)
|
|
|
|
* and CDC (connection data control) messages.
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2016
|
|
|
|
*
|
|
|
|
* Author(s): Steffen Maier <maier@linux.vnet.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <linux/hashtable.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <rdma/ib_verbs.h>
|
|
|
|
#include <asm/div64.h>
|
|
|
|
|
|
|
|
#include "smc.h"
|
|
|
|
#include "smc_wr.h"
|
|
|
|
|
|
|
|
#define SMC_WR_MAX_POLL_CQE 10 /* max. # of compl. queue elements in 1 poll */
|
|
|
|
|
|
|
|
#define SMC_WR_RX_HASH_BITS 4
|
|
|
|
static DEFINE_HASHTABLE(smc_wr_rx_hash, SMC_WR_RX_HASH_BITS);
|
|
|
|
static DEFINE_SPINLOCK(smc_wr_rx_hash_lock);
|
|
|
|
|
|
|
|
struct smc_wr_tx_pend { /* control data for a pending send request */
|
|
|
|
u64 wr_id; /* work request id sent */
|
|
|
|
smc_wr_tx_handler handler;
|
|
|
|
enum ib_wc_status wc_status; /* CQE status */
|
|
|
|
struct smc_link *link;
|
|
|
|
u32 idx;
|
|
|
|
struct smc_wr_tx_pend_priv priv;
|
|
|
|
};
|
|
|
|
|
|
|
|
/******************************** send queue *********************************/
|
|
|
|
|
|
|
|
/*------------------------------- completion --------------------------------*/
|
|
|
|
|
|
|
|
static inline int smc_wr_tx_find_pending_index(struct smc_link *link, u64 wr_id)
|
|
|
|
{
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
for (i = 0; i < link->wr_tx_cnt; i++) {
|
|
|
|
if (link->wr_tx_pends[i].wr_id == wr_id)
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
return link->wr_tx_cnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void smc_wr_tx_process_cqe(struct ib_wc *wc)
|
|
|
|
{
|
|
|
|
struct smc_wr_tx_pend pnd_snd;
|
|
|
|
struct smc_link *link;
|
|
|
|
u32 pnd_snd_idx;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
link = wc->qp->qp_context;
|
2017-07-28 11:56:17 +00:00
|
|
|
|
|
|
|
if (wc->opcode == IB_WC_REG_MR) {
|
|
|
|
if (wc->status)
|
|
|
|
link->wr_reg_state = FAILED;
|
|
|
|
else
|
|
|
|
link->wr_reg_state = CONFIRMED;
|
|
|
|
wake_up(&link->wr_reg_wait);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-01-09 15:55:19 +00:00
|
|
|
pnd_snd_idx = smc_wr_tx_find_pending_index(link, wc->wr_id);
|
|
|
|
if (pnd_snd_idx == link->wr_tx_cnt)
|
|
|
|
return;
|
|
|
|
link->wr_tx_pends[pnd_snd_idx].wc_status = wc->status;
|
|
|
|
memcpy(&pnd_snd, &link->wr_tx_pends[pnd_snd_idx], sizeof(pnd_snd));
|
|
|
|
/* clear the full struct smc_wr_tx_pend including .priv */
|
|
|
|
memset(&link->wr_tx_pends[pnd_snd_idx], 0,
|
|
|
|
sizeof(link->wr_tx_pends[pnd_snd_idx]));
|
|
|
|
memset(&link->wr_tx_bufs[pnd_snd_idx], 0,
|
|
|
|
sizeof(link->wr_tx_bufs[pnd_snd_idx]));
|
|
|
|
if (!test_and_clear_bit(pnd_snd_idx, link->wr_tx_mask))
|
|
|
|
return;
|
|
|
|
if (wc->status) {
|
|
|
|
for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
|
|
|
|
/* clear full struct smc_wr_tx_pend including .priv */
|
|
|
|
memset(&link->wr_tx_pends[i], 0,
|
|
|
|
sizeof(link->wr_tx_pends[i]));
|
|
|
|
memset(&link->wr_tx_bufs[i], 0,
|
|
|
|
sizeof(link->wr_tx_bufs[i]));
|
|
|
|
clear_bit(i, link->wr_tx_mask);
|
|
|
|
}
|
2017-01-09 15:55:25 +00:00
|
|
|
/* terminate connections of this link group abnormally */
|
2018-07-23 11:53:10 +00:00
|
|
|
smc_lgr_terminate(smc_get_lgr(link));
|
2017-01-09 15:55:19 +00:00
|
|
|
}
|
|
|
|
if (pnd_snd.handler)
|
|
|
|
pnd_snd.handler(&pnd_snd.priv, link, wc->status);
|
|
|
|
wake_up(&link->wr_tx_wait);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void smc_wr_tx_tasklet_fn(unsigned long data)
|
|
|
|
{
|
|
|
|
struct smc_ib_device *dev = (struct smc_ib_device *)data;
|
|
|
|
struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
|
|
|
|
int i = 0, rc;
|
|
|
|
int polled = 0;
|
|
|
|
|
|
|
|
again:
|
|
|
|
polled++;
|
|
|
|
do {
|
2018-01-24 09:28:15 +00:00
|
|
|
memset(&wc, 0, sizeof(wc));
|
2017-01-09 15:55:19 +00:00
|
|
|
rc = ib_poll_cq(dev->roce_cq_send, SMC_WR_MAX_POLL_CQE, wc);
|
|
|
|
if (polled == 1) {
|
|
|
|
ib_req_notify_cq(dev->roce_cq_send,
|
|
|
|
IB_CQ_NEXT_COMP |
|
|
|
|
IB_CQ_REPORT_MISSED_EVENTS);
|
|
|
|
}
|
|
|
|
if (!rc)
|
|
|
|
break;
|
|
|
|
for (i = 0; i < rc; i++)
|
|
|
|
smc_wr_tx_process_cqe(&wc[i]);
|
|
|
|
} while (rc > 0);
|
|
|
|
if (polled == 1)
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_tx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
|
|
|
|
{
|
|
|
|
struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
|
|
|
|
|
|
|
|
tasklet_schedule(&dev->send_tasklet);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*---------------------------- request submission ---------------------------*/
|
|
|
|
|
|
|
|
static inline int smc_wr_tx_get_free_slot_index(struct smc_link *link, u32 *idx)
|
|
|
|
{
|
|
|
|
*idx = link->wr_tx_cnt;
|
|
|
|
for_each_clear_bit(*idx, link->wr_tx_mask, link->wr_tx_cnt) {
|
|
|
|
if (!test_and_set_bit(*idx, link->wr_tx_mask))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
*idx = link->wr_tx_cnt;
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* smc_wr_tx_get_free_slot() - returns buffer for message assembly,
|
|
|
|
* and sets info for pending transmit tracking
|
|
|
|
* @link: Pointer to smc_link used to later send the message.
|
|
|
|
* @handler: Send completion handler function pointer.
|
|
|
|
* @wr_buf: Out value returns pointer to message buffer.
|
2019-02-04 12:44:44 +00:00
|
|
|
* @wr_rdma_buf: Out value returns pointer to rdma work request.
|
2017-01-09 15:55:19 +00:00
|
|
|
* @wr_pend_priv: Out value returns pointer serving as handler context.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, or -errno on error.
|
|
|
|
*/
|
|
|
|
int smc_wr_tx_get_free_slot(struct smc_link *link,
|
|
|
|
smc_wr_tx_handler handler,
|
|
|
|
struct smc_wr_buf **wr_buf,
|
2019-02-04 12:44:44 +00:00
|
|
|
struct smc_rdma_wr **wr_rdma_buf,
|
2017-01-09 15:55:19 +00:00
|
|
|
struct smc_wr_tx_pend_priv **wr_pend_priv)
|
|
|
|
{
|
|
|
|
struct smc_wr_tx_pend *wr_pend;
|
2018-01-25 10:15:36 +00:00
|
|
|
u32 idx = link->wr_tx_cnt;
|
2017-01-09 15:55:19 +00:00
|
|
|
struct ib_send_wr *wr_ib;
|
|
|
|
u64 wr_id;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
*wr_buf = NULL;
|
|
|
|
*wr_pend_priv = NULL;
|
|
|
|
if (in_softirq()) {
|
|
|
|
rc = smc_wr_tx_get_free_slot_index(link, &idx);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
} else {
|
2018-01-24 09:28:15 +00:00
|
|
|
rc = wait_event_timeout(
|
2017-01-09 15:55:19 +00:00
|
|
|
link->wr_tx_wait,
|
2018-07-25 14:35:33 +00:00
|
|
|
link->state == SMC_LNK_INACTIVE ||
|
2017-01-09 15:55:19 +00:00
|
|
|
(smc_wr_tx_get_free_slot_index(link, &idx) != -EBUSY),
|
|
|
|
SMC_WR_TX_WAIT_FREE_SLOT_TIME);
|
|
|
|
if (!rc) {
|
2017-01-09 15:55:25 +00:00
|
|
|
/* timeout - terminate connections */
|
2018-07-25 14:35:33 +00:00
|
|
|
smc_lgr_terminate(smc_get_lgr(link));
|
2017-01-09 15:55:19 +00:00
|
|
|
return -EPIPE;
|
|
|
|
}
|
|
|
|
if (idx == link->wr_tx_cnt)
|
|
|
|
return -EPIPE;
|
|
|
|
}
|
|
|
|
wr_id = smc_wr_tx_get_next_wr_id(link);
|
|
|
|
wr_pend = &link->wr_tx_pends[idx];
|
|
|
|
wr_pend->wr_id = wr_id;
|
|
|
|
wr_pend->handler = handler;
|
|
|
|
wr_pend->link = link;
|
|
|
|
wr_pend->idx = idx;
|
|
|
|
wr_ib = &link->wr_tx_ibs[idx];
|
|
|
|
wr_ib->wr_id = wr_id;
|
|
|
|
*wr_buf = &link->wr_tx_bufs[idx];
|
2019-02-04 12:44:44 +00:00
|
|
|
if (wr_rdma_buf)
|
|
|
|
*wr_rdma_buf = &link->wr_tx_rdmas[idx];
|
2017-01-09 15:55:19 +00:00
|
|
|
*wr_pend_priv = &wr_pend->priv;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int smc_wr_tx_put_slot(struct smc_link *link,
|
|
|
|
struct smc_wr_tx_pend_priv *wr_pend_priv)
|
|
|
|
{
|
|
|
|
struct smc_wr_tx_pend *pend;
|
|
|
|
|
|
|
|
pend = container_of(wr_pend_priv, struct smc_wr_tx_pend, priv);
|
|
|
|
if (pend->idx < link->wr_tx_cnt) {
|
2018-11-20 15:46:43 +00:00
|
|
|
u32 idx = pend->idx;
|
|
|
|
|
2017-01-09 15:55:19 +00:00
|
|
|
/* clear the full struct smc_wr_tx_pend including .priv */
|
2019-01-30 17:51:08 +00:00
|
|
|
memset(&link->wr_tx_pends[idx], 0,
|
|
|
|
sizeof(link->wr_tx_pends[idx]));
|
|
|
|
memset(&link->wr_tx_bufs[idx], 0,
|
|
|
|
sizeof(link->wr_tx_bufs[idx]));
|
2018-11-20 15:46:43 +00:00
|
|
|
test_and_clear_bit(idx, link->wr_tx_mask);
|
2017-01-09 15:55:19 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Send prepared WR slot via ib_post_send.
|
|
|
|
* @priv: pointer to smc_wr_tx_pend_priv identifying prepared message buffer
|
|
|
|
*/
|
|
|
|
int smc_wr_tx_send(struct smc_link *link, struct smc_wr_tx_pend_priv *priv)
|
|
|
|
{
|
|
|
|
struct smc_wr_tx_pend *pend;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
ib_req_notify_cq(link->smcibdev->roce_cq_send,
|
2017-09-21 07:16:30 +00:00
|
|
|
IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
|
2017-01-09 15:55:19 +00:00
|
|
|
pend = container_of(priv, struct smc_wr_tx_pend, priv);
|
2018-07-18 16:25:30 +00:00
|
|
|
rc = ib_post_send(link->roce_qp, &link->wr_tx_ibs[pend->idx], NULL);
|
2018-01-25 10:15:33 +00:00
|
|
|
if (rc) {
|
2017-01-09 15:55:19 +00:00
|
|
|
smc_wr_tx_put_slot(link, priv);
|
2018-07-23 11:53:10 +00:00
|
|
|
smc_lgr_terminate(smc_get_lgr(link));
|
2018-01-25 10:15:33 +00:00
|
|
|
}
|
2017-01-09 15:55:19 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2017-07-28 11:56:17 +00:00
|
|
|
/* Register a memory region and wait for result. */
|
|
|
|
int smc_wr_reg_send(struct smc_link *link, struct ib_mr *mr)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
ib_req_notify_cq(link->smcibdev->roce_cq_send,
|
|
|
|
IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
|
|
|
|
link->wr_reg_state = POSTED;
|
|
|
|
link->wr_reg.wr.wr_id = (u64)(uintptr_t)mr;
|
|
|
|
link->wr_reg.mr = mr;
|
|
|
|
link->wr_reg.key = mr->rkey;
|
2018-07-18 16:25:30 +00:00
|
|
|
rc = ib_post_send(link->roce_qp, &link->wr_reg.wr, NULL);
|
2017-07-28 11:56:17 +00:00
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
rc = wait_event_interruptible_timeout(link->wr_reg_wait,
|
|
|
|
(link->wr_reg_state != POSTED),
|
|
|
|
SMC_WR_REG_MR_WAIT_TIME);
|
|
|
|
if (!rc) {
|
|
|
|
/* timeout - terminate connections */
|
2018-07-23 11:53:10 +00:00
|
|
|
smc_lgr_terminate(smc_get_lgr(link));
|
2017-07-28 11:56:17 +00:00
|
|
|
return -EPIPE;
|
|
|
|
}
|
|
|
|
if (rc == -ERESTARTSYS)
|
|
|
|
return -EINTR;
|
|
|
|
switch (link->wr_reg_state) {
|
|
|
|
case CONFIRMED:
|
|
|
|
rc = 0;
|
|
|
|
break;
|
|
|
|
case FAILED:
|
|
|
|
rc = -EIO;
|
|
|
|
break;
|
|
|
|
case POSTED:
|
|
|
|
rc = -EPIPE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2018-01-24 09:28:15 +00:00
|
|
|
void smc_wr_tx_dismiss_slots(struct smc_link *link, u8 wr_tx_hdr_type,
|
2017-01-09 15:55:22 +00:00
|
|
|
smc_wr_tx_filter filter,
|
|
|
|
smc_wr_tx_dismisser dismisser,
|
|
|
|
unsigned long data)
|
|
|
|
{
|
|
|
|
struct smc_wr_tx_pend_priv *tx_pend;
|
2018-01-24 09:28:15 +00:00
|
|
|
struct smc_wr_rx_hdr *wr_tx;
|
2017-01-09 15:55:22 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
for_each_set_bit(i, link->wr_tx_mask, link->wr_tx_cnt) {
|
2018-01-24 09:28:15 +00:00
|
|
|
wr_tx = (struct smc_wr_rx_hdr *)&link->wr_tx_bufs[i];
|
|
|
|
if (wr_tx->type != wr_tx_hdr_type)
|
2017-01-09 15:55:22 +00:00
|
|
|
continue;
|
|
|
|
tx_pend = &link->wr_tx_pends[i].priv;
|
|
|
|
if (filter(tx_pend, data))
|
|
|
|
dismisser(tx_pend);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-01-09 15:55:19 +00:00
|
|
|
/****************************** receive queue ********************************/
|
|
|
|
|
|
|
|
int smc_wr_rx_register_handler(struct smc_wr_rx_handler *handler)
|
|
|
|
{
|
|
|
|
struct smc_wr_rx_handler *h_iter;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
spin_lock(&smc_wr_rx_hash_lock);
|
|
|
|
hash_for_each_possible(smc_wr_rx_hash, h_iter, list, handler->type) {
|
|
|
|
if (h_iter->type == handler->type) {
|
|
|
|
rc = -EEXIST;
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
hash_add(smc_wr_rx_hash, &handler->list, handler->type);
|
|
|
|
out_unlock:
|
|
|
|
spin_unlock(&smc_wr_rx_hash_lock);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Demultiplex a received work request based on the message type to its handler.
|
|
|
|
* Relies on smc_wr_rx_hash having been completely filled before any IB WRs,
|
|
|
|
* and not being modified any more afterwards so we don't need to lock it.
|
|
|
|
*/
|
|
|
|
static inline void smc_wr_rx_demultiplex(struct ib_wc *wc)
|
|
|
|
{
|
|
|
|
struct smc_link *link = (struct smc_link *)wc->qp->qp_context;
|
|
|
|
struct smc_wr_rx_handler *handler;
|
|
|
|
struct smc_wr_rx_hdr *wr_rx;
|
|
|
|
u64 temp_wr_id;
|
|
|
|
u32 index;
|
|
|
|
|
|
|
|
if (wc->byte_len < sizeof(*wr_rx))
|
|
|
|
return; /* short message */
|
|
|
|
temp_wr_id = wc->wr_id;
|
|
|
|
index = do_div(temp_wr_id, link->wr_rx_cnt);
|
|
|
|
wr_rx = (struct smc_wr_rx_hdr *)&link->wr_rx_bufs[index];
|
|
|
|
hash_for_each_possible(smc_wr_rx_hash, handler, list, wr_rx->type) {
|
|
|
|
if (handler->type == wr_rx->type)
|
|
|
|
handler->handler(wc, wr_rx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void smc_wr_rx_process_cqes(struct ib_wc wc[], int num)
|
|
|
|
{
|
|
|
|
struct smc_link *link;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < num; i++) {
|
|
|
|
link = wc[i].qp->qp_context;
|
|
|
|
if (wc[i].status == IB_WC_SUCCESS) {
|
2018-05-02 14:56:44 +00:00
|
|
|
link->wr_rx_tstamp = jiffies;
|
2017-01-09 15:55:19 +00:00
|
|
|
smc_wr_rx_demultiplex(&wc[i]);
|
|
|
|
smc_wr_rx_post(link); /* refill WR RX */
|
|
|
|
} else {
|
|
|
|
/* handle status errors */
|
|
|
|
switch (wc[i].status) {
|
|
|
|
case IB_WC_RETRY_EXC_ERR:
|
|
|
|
case IB_WC_RNR_RETRY_EXC_ERR:
|
|
|
|
case IB_WC_WR_FLUSH_ERR:
|
2017-01-09 15:55:25 +00:00
|
|
|
/* terminate connections of this link group
|
|
|
|
* abnormally
|
|
|
|
*/
|
2018-07-23 11:53:10 +00:00
|
|
|
smc_lgr_terminate(smc_get_lgr(link));
|
2017-01-09 15:55:19 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
smc_wr_rx_post(link); /* refill WR RX */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void smc_wr_rx_tasklet_fn(unsigned long data)
|
|
|
|
{
|
|
|
|
struct smc_ib_device *dev = (struct smc_ib_device *)data;
|
|
|
|
struct ib_wc wc[SMC_WR_MAX_POLL_CQE];
|
|
|
|
int polled = 0;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
again:
|
|
|
|
polled++;
|
|
|
|
do {
|
|
|
|
memset(&wc, 0, sizeof(wc));
|
|
|
|
rc = ib_poll_cq(dev->roce_cq_recv, SMC_WR_MAX_POLL_CQE, wc);
|
|
|
|
if (polled == 1) {
|
|
|
|
ib_req_notify_cq(dev->roce_cq_recv,
|
|
|
|
IB_CQ_SOLICITED_MASK
|
|
|
|
| IB_CQ_REPORT_MISSED_EVENTS);
|
|
|
|
}
|
|
|
|
if (!rc)
|
|
|
|
break;
|
|
|
|
smc_wr_rx_process_cqes(&wc[0], rc);
|
|
|
|
} while (rc > 0);
|
|
|
|
if (polled == 1)
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_rx_cq_handler(struct ib_cq *ib_cq, void *cq_context)
|
|
|
|
{
|
|
|
|
struct smc_ib_device *dev = (struct smc_ib_device *)cq_context;
|
|
|
|
|
|
|
|
tasklet_schedule(&dev->recv_tasklet);
|
|
|
|
}
|
|
|
|
|
|
|
|
int smc_wr_rx_post_init(struct smc_link *link)
|
|
|
|
{
|
|
|
|
u32 i;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < link->wr_rx_cnt; i++)
|
|
|
|
rc = smc_wr_rx_post(link);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************** init, exit, misc ******************************/
|
|
|
|
|
|
|
|
void smc_wr_remember_qp_attr(struct smc_link *lnk)
|
|
|
|
{
|
|
|
|
struct ib_qp_attr *attr = &lnk->qp_attr;
|
|
|
|
struct ib_qp_init_attr init_attr;
|
|
|
|
|
|
|
|
memset(attr, 0, sizeof(*attr));
|
|
|
|
memset(&init_attr, 0, sizeof(init_attr));
|
|
|
|
ib_query_qp(lnk->roce_qp, attr,
|
|
|
|
IB_QP_STATE |
|
|
|
|
IB_QP_CUR_STATE |
|
|
|
|
IB_QP_PKEY_INDEX |
|
|
|
|
IB_QP_PORT |
|
|
|
|
IB_QP_QKEY |
|
|
|
|
IB_QP_AV |
|
|
|
|
IB_QP_PATH_MTU |
|
|
|
|
IB_QP_TIMEOUT |
|
|
|
|
IB_QP_RETRY_CNT |
|
|
|
|
IB_QP_RNR_RETRY |
|
|
|
|
IB_QP_RQ_PSN |
|
|
|
|
IB_QP_ALT_PATH |
|
|
|
|
IB_QP_MIN_RNR_TIMER |
|
|
|
|
IB_QP_SQ_PSN |
|
|
|
|
IB_QP_PATH_MIG_STATE |
|
|
|
|
IB_QP_CAP |
|
|
|
|
IB_QP_DEST_QPN,
|
|
|
|
&init_attr);
|
|
|
|
|
|
|
|
lnk->wr_tx_cnt = min_t(size_t, SMC_WR_BUF_CNT,
|
|
|
|
lnk->qp_attr.cap.max_send_wr);
|
|
|
|
lnk->wr_rx_cnt = min_t(size_t, SMC_WR_BUF_CNT * 3,
|
|
|
|
lnk->qp_attr.cap.max_recv_wr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void smc_wr_init_sge(struct smc_link *lnk)
|
|
|
|
{
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
for (i = 0; i < lnk->wr_tx_cnt; i++) {
|
|
|
|
lnk->wr_tx_sges[i].addr =
|
|
|
|
lnk->wr_tx_dma_addr + i * SMC_WR_BUF_SIZE;
|
|
|
|
lnk->wr_tx_sges[i].length = SMC_WR_TX_SIZE;
|
2017-01-09 15:55:20 +00:00
|
|
|
lnk->wr_tx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
|
2019-02-04 12:44:44 +00:00
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[0].lkey =
|
|
|
|
lnk->roce_pd->local_dma_lkey;
|
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge[1].lkey =
|
|
|
|
lnk->roce_pd->local_dma_lkey;
|
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[0].lkey =
|
|
|
|
lnk->roce_pd->local_dma_lkey;
|
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge[1].lkey =
|
|
|
|
lnk->roce_pd->local_dma_lkey;
|
2017-01-09 15:55:19 +00:00
|
|
|
lnk->wr_tx_ibs[i].next = NULL;
|
|
|
|
lnk->wr_tx_ibs[i].sg_list = &lnk->wr_tx_sges[i];
|
|
|
|
lnk->wr_tx_ibs[i].num_sge = 1;
|
|
|
|
lnk->wr_tx_ibs[i].opcode = IB_WR_SEND;
|
|
|
|
lnk->wr_tx_ibs[i].send_flags =
|
2017-04-10 12:58:05 +00:00
|
|
|
IB_SEND_SIGNALED | IB_SEND_SOLICITED;
|
2019-02-04 12:44:44 +00:00
|
|
|
lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.opcode = IB_WR_RDMA_WRITE;
|
|
|
|
lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.opcode = IB_WR_RDMA_WRITE;
|
|
|
|
lnk->wr_tx_rdmas[i].wr_tx_rdma[0].wr.sg_list =
|
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[0].wr_tx_rdma_sge;
|
|
|
|
lnk->wr_tx_rdmas[i].wr_tx_rdma[1].wr.sg_list =
|
|
|
|
lnk->wr_tx_rdma_sges[i].tx_rdma_sge[1].wr_tx_rdma_sge;
|
2017-01-09 15:55:19 +00:00
|
|
|
}
|
|
|
|
for (i = 0; i < lnk->wr_rx_cnt; i++) {
|
|
|
|
lnk->wr_rx_sges[i].addr =
|
|
|
|
lnk->wr_rx_dma_addr + i * SMC_WR_BUF_SIZE;
|
|
|
|
lnk->wr_rx_sges[i].length = SMC_WR_BUF_SIZE;
|
2017-01-09 15:55:20 +00:00
|
|
|
lnk->wr_rx_sges[i].lkey = lnk->roce_pd->local_dma_lkey;
|
2017-01-09 15:55:19 +00:00
|
|
|
lnk->wr_rx_ibs[i].next = NULL;
|
|
|
|
lnk->wr_rx_ibs[i].sg_list = &lnk->wr_rx_sges[i];
|
|
|
|
lnk->wr_rx_ibs[i].num_sge = 1;
|
|
|
|
}
|
2017-07-28 11:56:17 +00:00
|
|
|
lnk->wr_reg.wr.next = NULL;
|
|
|
|
lnk->wr_reg.wr.num_sge = 0;
|
|
|
|
lnk->wr_reg.wr.send_flags = IB_SEND_SIGNALED;
|
|
|
|
lnk->wr_reg.wr.opcode = IB_WR_REG_MR;
|
|
|
|
lnk->wr_reg.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE;
|
2017-01-09 15:55:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_free_link(struct smc_link *lnk)
|
|
|
|
{
|
|
|
|
struct ib_device *ibdev;
|
|
|
|
|
|
|
|
memset(lnk->wr_tx_mask, 0,
|
|
|
|
BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
|
|
|
|
|
|
|
|
if (!lnk->smcibdev)
|
|
|
|
return;
|
|
|
|
ibdev = lnk->smcibdev->ibdev;
|
|
|
|
|
|
|
|
if (lnk->wr_rx_dma_addr) {
|
|
|
|
ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
|
|
|
|
SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
|
|
|
|
DMA_FROM_DEVICE);
|
|
|
|
lnk->wr_rx_dma_addr = 0;
|
|
|
|
}
|
|
|
|
if (lnk->wr_tx_dma_addr) {
|
|
|
|
ib_dma_unmap_single(ibdev, lnk->wr_tx_dma_addr,
|
|
|
|
SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
lnk->wr_tx_dma_addr = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_free_link_mem(struct smc_link *lnk)
|
|
|
|
{
|
|
|
|
kfree(lnk->wr_tx_pends);
|
|
|
|
lnk->wr_tx_pends = NULL;
|
|
|
|
kfree(lnk->wr_tx_mask);
|
|
|
|
lnk->wr_tx_mask = NULL;
|
|
|
|
kfree(lnk->wr_tx_sges);
|
|
|
|
lnk->wr_tx_sges = NULL;
|
2019-02-04 12:44:44 +00:00
|
|
|
kfree(lnk->wr_tx_rdma_sges);
|
|
|
|
lnk->wr_tx_rdma_sges = NULL;
|
2017-01-09 15:55:19 +00:00
|
|
|
kfree(lnk->wr_rx_sges);
|
|
|
|
lnk->wr_rx_sges = NULL;
|
2019-02-04 12:44:44 +00:00
|
|
|
kfree(lnk->wr_tx_rdmas);
|
|
|
|
lnk->wr_tx_rdmas = NULL;
|
2017-01-09 15:55:19 +00:00
|
|
|
kfree(lnk->wr_rx_ibs);
|
|
|
|
lnk->wr_rx_ibs = NULL;
|
|
|
|
kfree(lnk->wr_tx_ibs);
|
|
|
|
lnk->wr_tx_ibs = NULL;
|
|
|
|
kfree(lnk->wr_tx_bufs);
|
|
|
|
lnk->wr_tx_bufs = NULL;
|
|
|
|
kfree(lnk->wr_rx_bufs);
|
|
|
|
lnk->wr_rx_bufs = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int smc_wr_alloc_link_mem(struct smc_link *link)
|
|
|
|
{
|
|
|
|
/* allocate link related memory */
|
|
|
|
link->wr_tx_bufs = kcalloc(SMC_WR_BUF_CNT, SMC_WR_BUF_SIZE, GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_bufs)
|
|
|
|
goto no_mem;
|
|
|
|
link->wr_rx_bufs = kcalloc(SMC_WR_BUF_CNT * 3, SMC_WR_BUF_SIZE,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_rx_bufs)
|
|
|
|
goto no_mem_wr_tx_bufs;
|
|
|
|
link->wr_tx_ibs = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_ibs[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_ibs)
|
|
|
|
goto no_mem_wr_rx_bufs;
|
|
|
|
link->wr_rx_ibs = kcalloc(SMC_WR_BUF_CNT * 3,
|
|
|
|
sizeof(link->wr_rx_ibs[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_rx_ibs)
|
|
|
|
goto no_mem_wr_tx_ibs;
|
2019-02-04 12:44:44 +00:00
|
|
|
link->wr_tx_rdmas = kcalloc(SMC_WR_BUF_CNT,
|
|
|
|
sizeof(link->wr_tx_rdmas[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_rdmas)
|
|
|
|
goto no_mem_wr_rx_ibs;
|
|
|
|
link->wr_tx_rdma_sges = kcalloc(SMC_WR_BUF_CNT,
|
|
|
|
sizeof(link->wr_tx_rdma_sges[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_rdma_sges)
|
|
|
|
goto no_mem_wr_tx_rdmas;
|
2017-01-09 15:55:19 +00:00
|
|
|
link->wr_tx_sges = kcalloc(SMC_WR_BUF_CNT, sizeof(link->wr_tx_sges[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_sges)
|
2019-02-04 12:44:44 +00:00
|
|
|
goto no_mem_wr_tx_rdma_sges;
|
2017-01-09 15:55:19 +00:00
|
|
|
link->wr_rx_sges = kcalloc(SMC_WR_BUF_CNT * 3,
|
|
|
|
sizeof(link->wr_rx_sges[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_rx_sges)
|
|
|
|
goto no_mem_wr_tx_sges;
|
treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
|
|
|
link->wr_tx_mask = kcalloc(BITS_TO_LONGS(SMC_WR_BUF_CNT),
|
|
|
|
sizeof(*link->wr_tx_mask),
|
|
|
|
GFP_KERNEL);
|
2017-01-09 15:55:19 +00:00
|
|
|
if (!link->wr_tx_mask)
|
|
|
|
goto no_mem_wr_rx_sges;
|
|
|
|
link->wr_tx_pends = kcalloc(SMC_WR_BUF_CNT,
|
|
|
|
sizeof(link->wr_tx_pends[0]),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!link->wr_tx_pends)
|
|
|
|
goto no_mem_wr_tx_mask;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
no_mem_wr_tx_mask:
|
|
|
|
kfree(link->wr_tx_mask);
|
|
|
|
no_mem_wr_rx_sges:
|
|
|
|
kfree(link->wr_rx_sges);
|
|
|
|
no_mem_wr_tx_sges:
|
|
|
|
kfree(link->wr_tx_sges);
|
2019-02-04 12:44:44 +00:00
|
|
|
no_mem_wr_tx_rdma_sges:
|
|
|
|
kfree(link->wr_tx_rdma_sges);
|
|
|
|
no_mem_wr_tx_rdmas:
|
|
|
|
kfree(link->wr_tx_rdmas);
|
2017-01-09 15:55:19 +00:00
|
|
|
no_mem_wr_rx_ibs:
|
|
|
|
kfree(link->wr_rx_ibs);
|
|
|
|
no_mem_wr_tx_ibs:
|
|
|
|
kfree(link->wr_tx_ibs);
|
|
|
|
no_mem_wr_rx_bufs:
|
|
|
|
kfree(link->wr_rx_bufs);
|
|
|
|
no_mem_wr_tx_bufs:
|
|
|
|
kfree(link->wr_tx_bufs);
|
|
|
|
no_mem:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_remove_dev(struct smc_ib_device *smcibdev)
|
|
|
|
{
|
|
|
|
tasklet_kill(&smcibdev->recv_tasklet);
|
|
|
|
tasklet_kill(&smcibdev->send_tasklet);
|
|
|
|
}
|
|
|
|
|
|
|
|
void smc_wr_add_dev(struct smc_ib_device *smcibdev)
|
|
|
|
{
|
|
|
|
tasklet_init(&smcibdev->recv_tasklet, smc_wr_rx_tasklet_fn,
|
|
|
|
(unsigned long)smcibdev);
|
|
|
|
tasklet_init(&smcibdev->send_tasklet, smc_wr_tx_tasklet_fn,
|
|
|
|
(unsigned long)smcibdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
int smc_wr_create_link(struct smc_link *lnk)
|
|
|
|
{
|
|
|
|
struct ib_device *ibdev = lnk->smcibdev->ibdev;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
smc_wr_tx_set_wr_id(&lnk->wr_tx_id, 0);
|
|
|
|
lnk->wr_rx_id = 0;
|
|
|
|
lnk->wr_rx_dma_addr = ib_dma_map_single(
|
|
|
|
ibdev, lnk->wr_rx_bufs, SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
|
|
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (ib_dma_mapping_error(ibdev, lnk->wr_rx_dma_addr)) {
|
|
|
|
lnk->wr_rx_dma_addr = 0;
|
|
|
|
rc = -EIO;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
lnk->wr_tx_dma_addr = ib_dma_map_single(
|
|
|
|
ibdev, lnk->wr_tx_bufs, SMC_WR_BUF_SIZE * lnk->wr_tx_cnt,
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
if (ib_dma_mapping_error(ibdev, lnk->wr_tx_dma_addr)) {
|
|
|
|
rc = -EIO;
|
|
|
|
goto dma_unmap;
|
|
|
|
}
|
|
|
|
smc_wr_init_sge(lnk);
|
|
|
|
memset(lnk->wr_tx_mask, 0,
|
|
|
|
BITS_TO_LONGS(SMC_WR_BUF_CNT) * sizeof(*lnk->wr_tx_mask));
|
2017-07-28 11:56:17 +00:00
|
|
|
init_waitqueue_head(&lnk->wr_tx_wait);
|
|
|
|
init_waitqueue_head(&lnk->wr_reg_wait);
|
2017-01-09 15:55:19 +00:00
|
|
|
return rc;
|
|
|
|
|
|
|
|
dma_unmap:
|
|
|
|
ib_dma_unmap_single(ibdev, lnk->wr_rx_dma_addr,
|
|
|
|
SMC_WR_BUF_SIZE * lnk->wr_rx_cnt,
|
|
|
|
DMA_FROM_DEVICE);
|
|
|
|
lnk->wr_rx_dma_addr = 0;
|
|
|
|
out:
|
|
|
|
return rc;
|
|
|
|
}
|