linux/drivers/clk/zte/clk.c

450 lines
10 KiB
C
Raw Normal View History

/*
* Copyright 2014 Linaro Ltd.
* Copyright (C) 2014 ZTE Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/div64.h>
#include "clk.h"
#define to_clk_zx_pll(_hw) container_of(_hw, struct clk_zx_pll, hw)
#define to_clk_zx_audio(_hw) container_of(_hw, struct clk_zx_audio, hw)
#define CFG0_CFG1_OFFSET 4
#define LOCK_FLAG 30
#define POWER_DOWN 31
static int rate_to_idx(struct clk_zx_pll *zx_pll, unsigned long rate)
{
const struct zx_pll_config *config = zx_pll->lookup_table;
int i;
for (i = 0; i < zx_pll->count; i++) {
if (config[i].rate > rate)
return i > 0 ? i - 1 : 0;
if (config[i].rate == rate)
return i;
}
return i - 1;
}
static int hw_to_idx(struct clk_zx_pll *zx_pll)
{
const struct zx_pll_config *config = zx_pll->lookup_table;
u32 hw_cfg0, hw_cfg1;
int i;
hw_cfg0 = readl_relaxed(zx_pll->reg_base);
hw_cfg1 = readl_relaxed(zx_pll->reg_base + CFG0_CFG1_OFFSET);
/* For matching the value in lookup table */
hw_cfg0 &= ~BIT(zx_pll->lock_bit);
/* Check availability of pd_bit */
if (zx_pll->pd_bit < 32)
hw_cfg0 |= BIT(zx_pll->pd_bit);
for (i = 0; i < zx_pll->count; i++) {
if (hw_cfg0 == config[i].cfg0 && hw_cfg1 == config[i].cfg1)
return i;
}
return -EINVAL;
}
static unsigned long zx_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
int idx;
idx = hw_to_idx(zx_pll);
if (unlikely(idx == -EINVAL))
return 0;
return zx_pll->lookup_table[idx].rate;
}
static long zx_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
int idx;
idx = rate_to_idx(zx_pll, rate);
return zx_pll->lookup_table[idx].rate;
}
static int zx_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
/* Assume current cpu is not running on current PLL */
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
const struct zx_pll_config *config;
int idx;
idx = rate_to_idx(zx_pll, rate);
config = &zx_pll->lookup_table[idx];
writel_relaxed(config->cfg0, zx_pll->reg_base);
writel_relaxed(config->cfg1, zx_pll->reg_base + CFG0_CFG1_OFFSET);
return 0;
}
static int zx_pll_enable(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
/* If pd_bit is not available, simply return success. */
if (zx_pll->pd_bit > 31)
return 0;
reg = readl_relaxed(zx_pll->reg_base);
writel_relaxed(reg & ~BIT(zx_pll->pd_bit), zx_pll->reg_base);
return readl_relaxed_poll_timeout(zx_pll->reg_base, reg,
reg & BIT(zx_pll->lock_bit), 0, 100);
}
static void zx_pll_disable(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
if (zx_pll->pd_bit > 31)
return;
reg = readl_relaxed(zx_pll->reg_base);
writel_relaxed(reg | BIT(zx_pll->pd_bit), zx_pll->reg_base);
}
static int zx_pll_is_enabled(struct clk_hw *hw)
{
struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
u32 reg;
reg = readl_relaxed(zx_pll->reg_base);
return !(reg & BIT(zx_pll->pd_bit));
}
const struct clk_ops zx_pll_ops = {
.recalc_rate = zx_pll_recalc_rate,
.round_rate = zx_pll_round_rate,
.set_rate = zx_pll_set_rate,
.enable = zx_pll_enable,
.disable = zx_pll_disable,
.is_enabled = zx_pll_is_enabled,
};
EXPORT_SYMBOL(zx_pll_ops);
struct clk *clk_register_zx_pll(const char *name, const char *parent_name,
unsigned long flags, void __iomem *reg_base,
const struct zx_pll_config *lookup_table,
int count, spinlock_t *lock)
{
struct clk_zx_pll *zx_pll;
struct clk *clk;
struct clk_init_data init;
zx_pll = kzalloc(sizeof(*zx_pll), GFP_KERNEL);
if (!zx_pll)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &zx_pll_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
zx_pll->reg_base = reg_base;
zx_pll->lookup_table = lookup_table;
zx_pll->count = count;
zx_pll->lock_bit = LOCK_FLAG;
zx_pll->pd_bit = POWER_DOWN;
zx_pll->lock = lock;
zx_pll->hw.init = &init;
clk = clk_register(NULL, &zx_pll->hw);
if (IS_ERR(clk))
kfree(zx_pll);
return clk;
}
#define BPAR 1000000
static u32 calc_reg(u32 parent_rate, u32 rate)
{
u32 sel, integ, fra_div, tmp;
u64 tmp64 = (u64)parent_rate * BPAR;
do_div(tmp64, rate);
integ = (u32)tmp64 / BPAR;
integ = integ >> 1;
tmp = (u32)tmp64 % BPAR;
sel = tmp / BPAR;
tmp = tmp % BPAR;
fra_div = tmp * 0xff / BPAR;
tmp = (sel << 24) | (integ << 16) | (0xff << 8) | fra_div;
/* Set I2S integer divider as 1. This bit is reserved for SPDIF
* and do no harm.
*/
tmp |= BIT(28);
return tmp;
}
static u32 calc_rate(u32 reg, u32 parent_rate)
{
u32 sel, integ, fra_div, tmp;
u64 tmp64 = (u64)parent_rate * BPAR;
tmp = reg;
sel = (tmp >> 24) & BIT(0);
integ = (tmp >> 16) & 0xff;
fra_div = tmp & 0xff;
tmp = fra_div * BPAR;
tmp = tmp / 0xff;
tmp += sel * BPAR;
tmp += 2 * integ * BPAR;
do_div(tmp64, tmp);
return (u32)tmp64;
}
static unsigned long zx_audio_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
return calc_rate(reg, parent_rate);
}
static long zx_audio_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u32 reg;
if (rate * 2 > *prate)
return -EINVAL;
reg = calc_reg(*prate, rate);
return calc_rate(reg, *prate);
}
static int zx_audio_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = calc_reg(parent_rate, rate);
writel_relaxed(reg, zx_audio->reg_base);
return 0;
}
#define ZX_AUDIO_EN BIT(25)
static int zx_audio_enable(struct clk_hw *hw)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
writel_relaxed(reg & ~ZX_AUDIO_EN, zx_audio->reg_base);
return 0;
}
static void zx_audio_disable(struct clk_hw *hw)
{
struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
u32 reg;
reg = readl_relaxed(zx_audio->reg_base);
writel_relaxed(reg | ZX_AUDIO_EN, zx_audio->reg_base);
}
static const struct clk_ops zx_audio_ops = {
.recalc_rate = zx_audio_recalc_rate,
.round_rate = zx_audio_round_rate,
.set_rate = zx_audio_set_rate,
.enable = zx_audio_enable,
.disable = zx_audio_disable,
};
struct clk *clk_register_zx_audio(const char *name,
const char * const parent_name,
unsigned long flags,
void __iomem *reg_base)
{
struct clk_zx_audio *zx_audio;
struct clk *clk;
struct clk_init_data init;
zx_audio = kzalloc(sizeof(*zx_audio), GFP_KERNEL);
if (!zx_audio)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &zx_audio_ops;
init.flags = flags;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
zx_audio->reg_base = reg_base;
zx_audio->hw.init = &init;
clk = clk_register(NULL, &zx_audio->hw);
if (IS_ERR(clk))
kfree(zx_audio);
return clk;
}
#define CLK_AUDIO_DIV_FRAC BIT(0)
#define CLK_AUDIO_DIV_INT BIT(1)
#define CLK_AUDIO_DIV_UNCOMMON BIT(1)
#define CLK_AUDIO_DIV_FRAC_NSHIFT 16
#define CLK_AUDIO_DIV_INT_FRAC_RE BIT(16)
#define CLK_AUDIO_DIV_INT_FRAC_MAX (0xffff)
#define CLK_AUDIO_DIV_INT_FRAC_MIN (0x2)
#define CLK_AUDIO_DIV_INT_INT_SHIFT 24
#define CLK_AUDIO_DIV_INT_INT_WIDTH 4
struct zx_clk_audio_div_table {
unsigned long rate;
unsigned int int_reg;
unsigned int frac_reg;
};
#define to_clk_zx_audio_div(_hw) container_of(_hw, struct clk_zx_audio_divider, hw)
static unsigned long audio_calc_rate(struct clk_zx_audio_divider *audio_div,
u32 reg_frac, u32 reg_int,
unsigned long parent_rate)
{
unsigned long rate, m, n;
m = reg_frac & 0xffff;
n = (reg_frac >> 16) & 0xffff;
m = (reg_int & 0xffff) * n + m;
rate = (parent_rate * n) / m;
return rate;
}
static void audio_calc_reg(struct clk_zx_audio_divider *audio_div,
struct zx_clk_audio_div_table *div_table,
unsigned long rate, unsigned long parent_rate)
{
unsigned int reg_int, reg_frac;
unsigned long m, n, div;
reg_int = parent_rate / rate;
if (reg_int > CLK_AUDIO_DIV_INT_FRAC_MAX)
reg_int = CLK_AUDIO_DIV_INT_FRAC_MAX;
else if (reg_int < CLK_AUDIO_DIV_INT_FRAC_MIN)
reg_int = 0;
m = parent_rate - rate * reg_int;
n = rate;
div = gcd(m, n);
m = m / div;
n = n / div;
if ((m >> 16) || (n >> 16)) {
if (m > n) {
n = n * 0xffff / m;
m = 0xffff;
} else {
m = m * 0xffff / n;
n = 0xffff;
}
}
reg_frac = m | (n << 16);
div_table->rate = parent_rate * n / (reg_int * n + m);
div_table->int_reg = reg_int;
div_table->frac_reg = reg_frac;
}
static unsigned long zx_audio_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
u32 reg_frac, reg_int;
reg_frac = readl_relaxed(zx_audio_div->reg_base);
reg_int = readl_relaxed(zx_audio_div->reg_base + 0x4);
return audio_calc_rate(zx_audio_div, reg_frac, reg_int, parent_rate);
}
static long zx_audio_div_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
struct zx_clk_audio_div_table divt;
audio_calc_reg(zx_audio_div, &divt, rate, *prate);
return audio_calc_rate(zx_audio_div, divt.frac_reg, divt.int_reg, *prate);
}
static int zx_audio_div_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
struct zx_clk_audio_div_table divt;
unsigned int val;
audio_calc_reg(zx_audio_div, &divt, rate, parent_rate);
if (divt.rate != rate)
pr_debug("the real rate is:%ld", divt.rate);
writel_relaxed(divt.frac_reg, zx_audio_div->reg_base);
val = readl_relaxed(zx_audio_div->reg_base + 0x4);
val &= ~0xffff;
val |= divt.int_reg | CLK_AUDIO_DIV_INT_FRAC_RE;
writel_relaxed(val, zx_audio_div->reg_base + 0x4);
mdelay(1);
val = readl_relaxed(zx_audio_div->reg_base + 0x4);
val &= ~CLK_AUDIO_DIV_INT_FRAC_RE;
writel_relaxed(val, zx_audio_div->reg_base + 0x4);
return 0;
}
const struct clk_ops zx_audio_div_ops = {
.recalc_rate = zx_audio_div_recalc_rate,
.round_rate = zx_audio_div_round_rate,
.set_rate = zx_audio_div_set_rate,
};