linux/arch/powerpc/xmon/xmon.c

2899 lines
60 KiB
C
Raw Normal View History

/*
* Routines providing a simple monitor for use on the PowerMac.
*
* Copyright (C) 1996-2005 Paul Mackerras.
* Copyright (C) 2001 PPC64 Team, IBM Corp
* Copyrignt (C) 2006 Michael Ellerman, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/kallsyms.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/sysrq.h>
#include <linux/interrupt.h>
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
#include <linux/irq.h>
#include <asm/ptrace.h>
#include <asm/string.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/xmon.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/rtas.h>
#include <asm/sstep.h>
#include <asm/bug.h>
#include <asm/irq_regs.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/firmware.h>
#ifdef CONFIG_PPC64
#include <asm/hvcall.h>
#include <asm/paca.h>
#endif
#include "nonstdio.h"
#define scanhex xmon_scanhex
#define skipbl xmon_skipbl
#ifdef CONFIG_SMP
cpumask_t cpus_in_xmon = CPU_MASK_NONE;
static unsigned long xmon_taken = 1;
static int xmon_owner;
static int xmon_gate;
#endif /* CONFIG_SMP */
static unsigned long in_xmon = 0;
static unsigned long adrs;
static int size = 1;
#define MAX_DUMP (128 * 1024)
static unsigned long ndump = 64;
static unsigned long nidump = 16;
static unsigned long ncsum = 4096;
static int termch;
static char tmpstr[128];
#define JMP_BUF_LEN 23
static long bus_error_jmp[JMP_BUF_LEN];
static int catch_memory_errors;
static long *xmon_fault_jmp[NR_CPUS];
#define setjmp xmon_setjmp
#define longjmp xmon_longjmp
/* Breakpoint stuff */
struct bpt {
unsigned long address;
unsigned int instr[2];
atomic_t ref_count;
int enabled;
unsigned long pad;
};
/* Bits in bpt.enabled */
#define BP_IABR_TE 1 /* IABR translation enabled */
#define BP_IABR 2
#define BP_TRAP 8
#define BP_DABR 0x10
#define NBPTS 256
static struct bpt bpts[NBPTS];
static struct bpt dabr;
static struct bpt *iabr;
static unsigned bpinstr = 0x7fe00008; /* trap */
#define BP_NUM(bp) ((bp) - bpts + 1)
/* Prototypes */
static int cmds(struct pt_regs *);
static int mread(unsigned long, void *, int);
static int mwrite(unsigned long, void *, int);
static int handle_fault(struct pt_regs *);
static void byterev(unsigned char *, int);
static void memex(void);
static int bsesc(void);
static void dump(void);
static void prdump(unsigned long, long);
static int ppc_inst_dump(unsigned long, long, int);
void print_address(unsigned long);
static void backtrace(struct pt_regs *);
static void excprint(struct pt_regs *);
static void prregs(struct pt_regs *);
static void memops(int);
static void memlocate(void);
static void memzcan(void);
static void memdiffs(unsigned char *, unsigned char *, unsigned, unsigned);
int skipbl(void);
int scanhex(unsigned long *valp);
static void scannl(void);
static int hexdigit(int);
void getstring(char *, int);
static void flush_input(void);
static int inchar(void);
static void take_input(char *);
static unsigned long read_spr(int);
static void write_spr(int, unsigned long);
static void super_regs(void);
static void remove_bpts(void);
static void insert_bpts(void);
static void remove_cpu_bpts(void);
static void insert_cpu_bpts(void);
static struct bpt *at_breakpoint(unsigned long pc);
static struct bpt *in_breakpoint_table(unsigned long pc, unsigned long *offp);
static int do_step(struct pt_regs *);
static void bpt_cmds(void);
static void cacheflush(void);
static int cpu_cmd(void);
static void csum(void);
static void bootcmds(void);
static void proccall(void);
void dump_segments(void);
static void symbol_lookup(void);
static void xmon_show_stack(unsigned long sp, unsigned long lr,
unsigned long pc);
static void xmon_print_symbol(unsigned long address, const char *mid,
const char *after);
static const char *getvecname(unsigned long vec);
static int do_spu_cmd(void);
int xmon_no_auto_backtrace;
extern int print_insn_powerpc(unsigned long, unsigned long, int);
extern void xmon_enter(void);
extern void xmon_leave(void);
extern long setjmp(long *);
extern void longjmp(long *, long);
extern void xmon_save_regs(struct pt_regs *);
#ifdef CONFIG_PPC64
#define REG "%.16lx"
#define REGS_PER_LINE 4
#define LAST_VOLATILE 13
#else
#define REG "%.8lx"
#define REGS_PER_LINE 8
#define LAST_VOLATILE 12
#endif
#define GETWORD(v) (((v)[0] << 24) + ((v)[1] << 16) + ((v)[2] << 8) + (v)[3])
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
#define isalnum(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'z') \
|| ('A' <= (c) && (c) <= 'Z'))
#define isspace(c) (c == ' ' || c == '\t' || c == 10 || c == 13 || c == 0)
static char *help_string = "\
Commands:\n\
b show breakpoints\n\
bd set data breakpoint\n\
bi set instruction breakpoint\n\
bc clear breakpoint\n"
#ifdef CONFIG_SMP
"\
c print cpus stopped in xmon\n\
c# try to switch to cpu number h (in hex)\n"
#endif
"\
C checksum\n\
d dump bytes\n\
di dump instructions\n\
df dump float values\n\
dd dump double values\n\
dr dump stream of raw bytes\n\
e print exception information\n\
f flush cache\n\
la lookup symbol+offset of specified address\n\
ls lookup address of specified symbol\n\
m examine/change memory\n\
mm move a block of memory\n\
ms set a block of memory\n\
md compare two blocks of memory\n\
ml locate a block of memory\n\
mz zero a block of memory\n\
mi show information about memory allocation\n\
p call a procedure\n\
r print registers\n\
s single step\n"
#ifdef CONFIG_PPC_CELL
" ss stop execution on all spus\n\
sr restore execution on stopped spus\n\
sf # dump spu fields for spu # (in hex)\n\
sd # dump spu local store for spu # (in hex)\n"
#endif
" S print special registers\n\
t print backtrace\n\
x exit monitor and recover\n\
X exit monitor and dont recover\n"
#ifdef CONFIG_PPC64
" u dump segment table or SLB\n"
#endif
#ifdef CONFIG_PPC_STD_MMU_32
" u dump segment registers\n"
#endif
" ? help\n"
" zr reboot\n\
zh halt\n"
;
static struct pt_regs *xmon_regs;
static inline void sync(void)
{
asm volatile("sync; isync");
}
static inline void store_inst(void *p)
{
asm volatile ("dcbst 0,%0; sync; icbi 0,%0; isync" : : "r" (p));
}
static inline void cflush(void *p)
{
asm volatile ("dcbf 0,%0; icbi 0,%0" : : "r" (p));
}
static inline void cinval(void *p)
{
asm volatile ("dcbi 0,%0; icbi 0,%0" : : "r" (p));
}
/*
* Disable surveillance (the service processor watchdog function)
* while we are in xmon.
* XXX we should re-enable it when we leave. :)
*/
#define SURVEILLANCE_TOKEN 9000
static inline void disable_surveillance(void)
{
#ifdef CONFIG_PPC_PSERIES
/* Since this can't be a module, args should end up below 4GB. */
static struct rtas_args args;
/*
* At this point we have got all the cpus we can into
* xmon, so there is hopefully no other cpu calling RTAS
* at the moment, even though we don't take rtas.lock.
* If we did try to take rtas.lock there would be a
* real possibility of deadlock.
*/
args.token = rtas_token("set-indicator");
if (args.token == RTAS_UNKNOWN_SERVICE)
return;
args.nargs = 3;
args.nret = 1;
args.rets = &args.args[3];
args.args[0] = SURVEILLANCE_TOKEN;
args.args[1] = 0;
args.args[2] = 0;
enter_rtas(__pa(&args));
#endif /* CONFIG_PPC_PSERIES */
}
#ifdef CONFIG_SMP
static int xmon_speaker;
static void get_output_lock(void)
{
int me = smp_processor_id() + 0x100;
int last_speaker = 0, prev;
long timeout;
if (xmon_speaker == me)
return;
for (;;) {
if (xmon_speaker == 0) {
last_speaker = cmpxchg(&xmon_speaker, 0, me);
if (last_speaker == 0)
return;
}
timeout = 10000000;
while (xmon_speaker == last_speaker) {
if (--timeout > 0)
continue;
/* hostile takeover */
prev = cmpxchg(&xmon_speaker, last_speaker, me);
if (prev == last_speaker)
return;
break;
}
}
}
static void release_output_lock(void)
{
xmon_speaker = 0;
}
#endif
static int xmon_core(struct pt_regs *regs, int fromipi)
{
int cmd = 0;
unsigned long msr;
struct bpt *bp;
long recurse_jmp[JMP_BUF_LEN];
unsigned long offset;
#ifdef CONFIG_SMP
int cpu;
int secondary;
unsigned long timeout;
#endif
msr = mfmsr();
mtmsr(msr & ~MSR_EE); /* disable interrupts */
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL) {
regs->nip = bp->address + offset;
atomic_dec(&bp->ref_count);
}
remove_cpu_bpts();
#ifdef CONFIG_SMP
cpu = smp_processor_id();
if (cpu_isset(cpu, cpus_in_xmon)) {
get_output_lock();
excprint(regs);
printf("cpu 0x%x: Exception %lx %s in xmon, "
"returning to main loop\n",
cpu, regs->trap, getvecname(TRAP(regs)));
release_output_lock();
longjmp(xmon_fault_jmp[cpu], 1);
}
if (setjmp(recurse_jmp) != 0) {
if (!in_xmon || !xmon_gate) {
get_output_lock();
printf("xmon: WARNING: bad recursive fault "
"on cpu 0x%x\n", cpu);
release_output_lock();
goto waiting;
}
secondary = !(xmon_taken && cpu == xmon_owner);
goto cmdloop;
}
xmon_fault_jmp[cpu] = recurse_jmp;
cpu_set(cpu, cpus_in_xmon);
bp = NULL;
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF))
bp = at_breakpoint(regs->nip);
if (bp || (regs->msr & MSR_RI) == 0)
fromipi = 0;
if (!fromipi) {
get_output_lock();
excprint(regs);
if (bp) {
printf("cpu 0x%x stopped at breakpoint 0x%x (",
cpu, BP_NUM(bp));
xmon_print_symbol(regs->nip, " ", ")\n");
}
if ((regs->msr & MSR_RI) == 0)
printf("WARNING: exception is not recoverable, "
"can't continue\n");
release_output_lock();
}
waiting:
secondary = 1;
while (secondary && !xmon_gate) {
if (in_xmon == 0) {
if (fromipi)
goto leave;
secondary = test_and_set_bit(0, &in_xmon);
}
barrier();
}
if (!secondary && !xmon_gate) {
/* we are the first cpu to come in */
/* interrupt other cpu(s) */
int ncpus = num_online_cpus();
xmon_owner = cpu;
mb();
if (ncpus > 1) {
smp_send_debugger_break(MSG_ALL_BUT_SELF);
/* wait for other cpus to come in */
for (timeout = 100000000; timeout != 0; --timeout) {
if (cpus_weight(cpus_in_xmon) >= ncpus)
break;
barrier();
}
}
remove_bpts();
disable_surveillance();
/* for breakpoint or single step, print the current instr. */
if (bp || TRAP(regs) == 0xd00)
ppc_inst_dump(regs->nip, 1, 0);
printf("enter ? for help\n");
mb();
xmon_gate = 1;
barrier();
}
cmdloop:
while (in_xmon) {
if (secondary) {
if (cpu == xmon_owner) {
if (!test_and_set_bit(0, &xmon_taken)) {
secondary = 0;
continue;
}
/* missed it */
while (cpu == xmon_owner)
barrier();
}
barrier();
} else {
cmd = cmds(regs);
if (cmd != 0) {
/* exiting xmon */
insert_bpts();
xmon_gate = 0;
wmb();
in_xmon = 0;
break;
}
/* have switched to some other cpu */
secondary = 1;
}
}
leave:
cpu_clear(cpu, cpus_in_xmon);
xmon_fault_jmp[cpu] = NULL;
#else
/* UP is simple... */
if (in_xmon) {
printf("Exception %lx %s in xmon, returning to main loop\n",
regs->trap, getvecname(TRAP(regs)));
longjmp(xmon_fault_jmp[0], 1);
}
if (setjmp(recurse_jmp) == 0) {
xmon_fault_jmp[0] = recurse_jmp;
in_xmon = 1;
excprint(regs);
bp = at_breakpoint(regs->nip);
if (bp) {
printf("Stopped at breakpoint %x (", BP_NUM(bp));
xmon_print_symbol(regs->nip, " ", ")\n");
}
if ((regs->msr & MSR_RI) == 0)
printf("WARNING: exception is not recoverable, "
"can't continue\n");
remove_bpts();
disable_surveillance();
/* for breakpoint or single step, print the current instr. */
if (bp || TRAP(regs) == 0xd00)
ppc_inst_dump(regs->nip, 1, 0);
printf("enter ? for help\n");
}
cmd = cmds(regs);
insert_bpts();
in_xmon = 0;
#endif
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF)) {
bp = at_breakpoint(regs->nip);
if (bp != NULL) {
int stepped = emulate_step(regs, bp->instr[0]);
if (stepped == 0) {
regs->nip = (unsigned long) &bp->instr[0];
atomic_inc(&bp->ref_count);
} else if (stepped < 0) {
printf("Couldn't single-step %s instruction\n",
(IS_RFID(bp->instr[0])? "rfid": "mtmsrd"));
}
}
}
insert_cpu_bpts();
mtmsr(msr); /* restore interrupt enable */
return cmd != 'X' && cmd != EOF;
}
int xmon(struct pt_regs *excp)
{
struct pt_regs regs;
if (excp == NULL) {
xmon_save_regs(&regs);
excp = &regs;
}
return xmon_core(excp, 0);
}
EXPORT_SYMBOL(xmon);
irqreturn_t xmon_irq(int irq, void *d)
{
unsigned long flags;
local_irq_save(flags);
printf("Keyboard interrupt\n");
xmon(get_irq_regs());
local_irq_restore(flags);
return IRQ_HANDLED;
}
static int xmon_bpt(struct pt_regs *regs)
{
struct bpt *bp;
unsigned long offset;
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF))
return 0;
/* Are we at the trap at bp->instr[1] for some bp? */
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL && offset == 4) {
regs->nip = bp->address + 4;
atomic_dec(&bp->ref_count);
return 1;
}
/* Are we at a breakpoint? */
bp = at_breakpoint(regs->nip);
if (!bp)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_sstep(struct pt_regs *regs)
{
if (user_mode(regs))
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_dabr_match(struct pt_regs *regs)
{
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF))
return 0;
if (dabr.enabled == 0)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_iabr_match(struct pt_regs *regs)
{
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF))
return 0;
if (iabr == 0)
return 0;
xmon_core(regs, 0);
return 1;
}
static int xmon_ipi(struct pt_regs *regs)
{
#ifdef CONFIG_SMP
if (in_xmon && !cpu_isset(smp_processor_id(), cpus_in_xmon))
xmon_core(regs, 1);
#endif
return 0;
}
static int xmon_fault_handler(struct pt_regs *regs)
{
struct bpt *bp;
unsigned long offset;
if (in_xmon && catch_memory_errors)
handle_fault(regs); /* doesn't return */
if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF)) {
bp = in_breakpoint_table(regs->nip, &offset);
if (bp != NULL) {
regs->nip = bp->address + offset;
atomic_dec(&bp->ref_count);
}
}
return 0;
}
static struct bpt *at_breakpoint(unsigned long pc)
{
int i;
struct bpt *bp;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp)
if (bp->enabled && pc == bp->address)
return bp;
return NULL;
}
static struct bpt *in_breakpoint_table(unsigned long nip, unsigned long *offp)
{
unsigned long off;
off = nip - (unsigned long) bpts;
if (off >= sizeof(bpts))
return NULL;
off %= sizeof(struct bpt);
if (off != offsetof(struct bpt, instr[0])
&& off != offsetof(struct bpt, instr[1]))
return NULL;
*offp = off - offsetof(struct bpt, instr[0]);
return (struct bpt *) (nip - off);
}
static struct bpt *new_breakpoint(unsigned long a)
{
struct bpt *bp;
a &= ~3UL;
bp = at_breakpoint(a);
if (bp)
return bp;
for (bp = bpts; bp < &bpts[NBPTS]; ++bp) {
if (!bp->enabled && atomic_read(&bp->ref_count) == 0) {
bp->address = a;
bp->instr[1] = bpinstr;
store_inst(&bp->instr[1]);
return bp;
}
}
printf("Sorry, no free breakpoints. Please clear one first.\n");
return NULL;
}
static void insert_bpts(void)
{
int i;
struct bpt *bp;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if ((bp->enabled & (BP_TRAP|BP_IABR)) == 0)
continue;
if (mread(bp->address, &bp->instr[0], 4) != 4) {
printf("Couldn't read instruction at %lx, "
"disabling breakpoint there\n", bp->address);
bp->enabled = 0;
continue;
}
if (IS_MTMSRD(bp->instr[0]) || IS_RFID(bp->instr[0])) {
printf("Breakpoint at %lx is on an mtmsrd or rfid "
"instruction, disabling it\n", bp->address);
bp->enabled = 0;
continue;
}
store_inst(&bp->instr[0]);
if (bp->enabled & BP_IABR)
continue;
if (mwrite(bp->address, &bpinstr, 4) != 4) {
printf("Couldn't write instruction at %lx, "
"disabling breakpoint there\n", bp->address);
bp->enabled &= ~BP_TRAP;
continue;
}
store_inst((void *)bp->address);
}
}
static void insert_cpu_bpts(void)
{
if (dabr.enabled)
set_dabr(dabr.address | (dabr.enabled & 7));
if (iabr && cpu_has_feature(CPU_FTR_IABR))
mtspr(SPRN_IABR, iabr->address
| (iabr->enabled & (BP_IABR|BP_IABR_TE)));
}
static void remove_bpts(void)
{
int i;
struct bpt *bp;
unsigned instr;
bp = bpts;
for (i = 0; i < NBPTS; ++i, ++bp) {
if ((bp->enabled & (BP_TRAP|BP_IABR)) != BP_TRAP)
continue;
if (mread(bp->address, &instr, 4) == 4
&& instr == bpinstr
&& mwrite(bp->address, &bp->instr, 4) != 4)
printf("Couldn't remove breakpoint at %lx\n",
bp->address);
else
store_inst((void *)bp->address);
}
}
static void remove_cpu_bpts(void)
{
set_dabr(0);
if (cpu_has_feature(CPU_FTR_IABR))
mtspr(SPRN_IABR, 0);
}
/* Command interpreting routine */
static char *last_cmd;
static int
cmds(struct pt_regs *excp)
{
int cmd = 0;
last_cmd = NULL;
xmon_regs = excp;
if (!xmon_no_auto_backtrace) {
xmon_no_auto_backtrace = 1;
xmon_show_stack(excp->gpr[1], excp->link, excp->nip);
}
for(;;) {
#ifdef CONFIG_SMP
printf("%x:", smp_processor_id());
#endif /* CONFIG_SMP */
printf("mon> ");
flush_input();
termch = 0;
cmd = skipbl();
if( cmd == '\n' ) {
if (last_cmd == NULL)
continue;
take_input(last_cmd);
last_cmd = NULL;
cmd = inchar();
}
switch (cmd) {
case 'm':
cmd = inchar();
switch (cmd) {
case 'm':
case 's':
case 'd':
memops(cmd);
break;
case 'l':
memlocate();
break;
case 'z':
memzcan();
break;
case 'i':
show_mem();
break;
default:
termch = cmd;
memex();
}
break;
case 'd':
dump();
break;
case 'l':
symbol_lookup();
break;
case 'r':
prregs(excp); /* print regs */
break;
case 'e':
excprint(excp);
break;
case 'S':
super_regs();
break;
case 't':
backtrace(excp);
break;
case 'f':
cacheflush();
break;
case 's':
if (do_spu_cmd() == 0)
break;
if (do_step(excp))
return cmd;
break;
case 'x':
case 'X':
return cmd;
case EOF:
printf(" <no input ...>\n");
mdelay(2000);
return cmd;
case '?':
printf(help_string);
break;
case 'b':
bpt_cmds();
break;
case 'C':
csum();
break;
case 'c':
if (cpu_cmd())
return 0;
break;
case 'z':
bootcmds();
break;
case 'p':
proccall();
break;
#ifdef CONFIG_PPC_STD_MMU
case 'u':
dump_segments();
break;
#endif
default:
printf("Unrecognized command: ");
do {
if (' ' < cmd && cmd <= '~')
putchar(cmd);
else
printf("\\x%x", cmd);
cmd = inchar();
} while (cmd != '\n');
printf(" (type ? for help)\n");
break;
}
}
}
/*
* Step a single instruction.
* Some instructions we emulate, others we execute with MSR_SE set.
*/
static int do_step(struct pt_regs *regs)
{
unsigned int instr;
int stepped;
/* check we are in 64-bit kernel mode, translation enabled */
if ((regs->msr & (MSR_SF|MSR_PR|MSR_IR)) == (MSR_SF|MSR_IR)) {
if (mread(regs->nip, &instr, 4) == 4) {
stepped = emulate_step(regs, instr);
if (stepped < 0) {
printf("Couldn't single-step %s instruction\n",
(IS_RFID(instr)? "rfid": "mtmsrd"));
return 0;
}
if (stepped > 0) {
regs->trap = 0xd00 | (regs->trap & 1);
printf("stepped to ");
xmon_print_symbol(regs->nip, " ", "\n");
ppc_inst_dump(regs->nip, 1, 0);
return 0;
}
}
}
regs->msr |= MSR_SE;
return 1;
}
static void bootcmds(void)
{
int cmd;
cmd = inchar();
if (cmd == 'r')
ppc_md.restart(NULL);
else if (cmd == 'h')
ppc_md.halt();
else if (cmd == 'p')
ppc_md.power_off();
}
static int cpu_cmd(void)
{
#ifdef CONFIG_SMP
unsigned long cpu;
int timeout;
int count;
if (!scanhex(&cpu)) {
/* print cpus waiting or in xmon */
printf("cpus stopped:");
count = 0;
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
if (cpu_isset(cpu, cpus_in_xmon)) {
if (count == 0)
printf(" %x", cpu);
++count;
} else {
if (count > 1)
printf("-%x", cpu - 1);
count = 0;
}
}
if (count > 1)
printf("-%x", NR_CPUS - 1);
printf("\n");
return 0;
}
/* try to switch to cpu specified */
if (!cpu_isset(cpu, cpus_in_xmon)) {
printf("cpu 0x%x isn't in xmon\n", cpu);
return 0;
}
xmon_taken = 0;
mb();
xmon_owner = cpu;
timeout = 10000000;
while (!xmon_taken) {
if (--timeout == 0) {
if (test_and_set_bit(0, &xmon_taken))
break;
/* take control back */
mb();
xmon_owner = smp_processor_id();
printf("cpu %u didn't take control\n", cpu);
return 0;
}
barrier();
}
return 1;
#else
return 0;
#endif /* CONFIG_SMP */
}
static unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
#define FCS(fcs, c) (((fcs) >> 8) ^ fcstab[((fcs) ^ (c)) & 0xff])
static void
csum(void)
{
unsigned int i;
unsigned short fcs;
unsigned char v;
if (!scanhex(&adrs))
return;
if (!scanhex(&ncsum))
return;
fcs = 0xffff;
for (i = 0; i < ncsum; ++i) {
if (mread(adrs+i, &v, 1) == 0) {
printf("csum stopped at %x\n", adrs+i);
break;
}
fcs = FCS(fcs, v);
}
printf("%x\n", fcs);
}
/*
* Check if this is a suitable place to put a breakpoint.
*/
static long check_bp_loc(unsigned long addr)
{
unsigned int instr;
addr &= ~3;
if (!is_kernel_addr(addr)) {
printf("Breakpoints may only be placed at kernel addresses\n");
return 0;
}
if (!mread(addr, &instr, sizeof(instr))) {
printf("Can't read instruction at address %lx\n", addr);
return 0;
}
if (IS_MTMSRD(instr) || IS_RFID(instr)) {
printf("Breakpoints may not be placed on mtmsrd or rfid "
"instructions\n");
return 0;
}
return 1;
}
static char *breakpoint_help_string =
"Breakpoint command usage:\n"
"b show breakpoints\n"
"b <addr> [cnt] set breakpoint at given instr addr\n"
"bc clear all breakpoints\n"
"bc <n/addr> clear breakpoint number n or at addr\n"
"bi <addr> [cnt] set hardware instr breakpoint (POWER3/RS64 only)\n"
"bd <addr> [cnt] set hardware data breakpoint\n"
"";
static void
bpt_cmds(void)
{
int cmd;
unsigned long a;
int mode, i;
struct bpt *bp;
const char badaddr[] = "Only kernel addresses are permitted "
"for breakpoints\n";
cmd = inchar();
switch (cmd) {
#ifndef CONFIG_8xx
case 'd': /* bd - hardware data breakpoint */
mode = 7;
cmd = inchar();
if (cmd == 'r')
mode = 5;
else if (cmd == 'w')
mode = 6;
else
termch = cmd;
dabr.address = 0;
dabr.enabled = 0;
if (scanhex(&dabr.address)) {
if (!is_kernel_addr(dabr.address)) {
printf(badaddr);
break;
}
dabr.address &= ~7;
dabr.enabled = mode | BP_DABR;
}
break;
case 'i': /* bi - hardware instr breakpoint */
if (!cpu_has_feature(CPU_FTR_IABR)) {
printf("Hardware instruction breakpoint "
"not supported on this cpu\n");
break;
}
if (iabr) {
iabr->enabled &= ~(BP_IABR | BP_IABR_TE);
iabr = NULL;
}
if (!scanhex(&a))
break;
if (!check_bp_loc(a))
break;
bp = new_breakpoint(a);
if (bp != NULL) {
bp->enabled |= BP_IABR | BP_IABR_TE;
iabr = bp;
}
break;
#endif
case 'c':
if (!scanhex(&a)) {
/* clear all breakpoints */
for (i = 0; i < NBPTS; ++i)
bpts[i].enabled = 0;
iabr = NULL;
dabr.enabled = 0;
printf("All breakpoints cleared\n");
break;
}
if (a <= NBPTS && a >= 1) {
/* assume a breakpoint number */
bp = &bpts[a-1]; /* bp nums are 1 based */
} else {
/* assume a breakpoint address */
bp = at_breakpoint(a);
if (bp == 0) {
printf("No breakpoint at %x\n", a);
break;
}
}
printf("Cleared breakpoint %x (", BP_NUM(bp));
xmon_print_symbol(bp->address, " ", ")\n");
bp->enabled = 0;
break;
default:
termch = cmd;
cmd = skipbl();
if (cmd == '?') {
printf(breakpoint_help_string);
break;
}
termch = cmd;
if (!scanhex(&a)) {
/* print all breakpoints */
printf(" type address\n");
if (dabr.enabled) {
printf(" data "REG" [", dabr.address);
if (dabr.enabled & 1)
printf("r");
if (dabr.enabled & 2)
printf("w");
printf("]\n");
}
for (bp = bpts; bp < &bpts[NBPTS]; ++bp) {
if (!bp->enabled)
continue;
printf("%2x %s ", BP_NUM(bp),
(bp->enabled & BP_IABR)? "inst": "trap");
xmon_print_symbol(bp->address, " ", "\n");
}
break;
}
if (!check_bp_loc(a))
break;
bp = new_breakpoint(a);
if (bp != NULL)
bp->enabled |= BP_TRAP;
break;
}
}
/* Very cheap human name for vector lookup. */
static
const char *getvecname(unsigned long vec)
{
char *ret;
switch (vec) {
case 0x100: ret = "(System Reset)"; break;
case 0x200: ret = "(Machine Check)"; break;
case 0x300: ret = "(Data Access)"; break;
case 0x380: ret = "(Data SLB Access)"; break;
case 0x400: ret = "(Instruction Access)"; break;
case 0x480: ret = "(Instruction SLB Access)"; break;
case 0x500: ret = "(Hardware Interrupt)"; break;
case 0x600: ret = "(Alignment)"; break;
case 0x700: ret = "(Program Check)"; break;
case 0x800: ret = "(FPU Unavailable)"; break;
case 0x900: ret = "(Decrementer)"; break;
case 0xc00: ret = "(System Call)"; break;
case 0xd00: ret = "(Single Step)"; break;
case 0xf00: ret = "(Performance Monitor)"; break;
case 0xf20: ret = "(Altivec Unavailable)"; break;
case 0x1300: ret = "(Instruction Breakpoint)"; break;
default: ret = "";
}
return ret;
}
static void get_function_bounds(unsigned long pc, unsigned long *startp,
unsigned long *endp)
{
unsigned long size, offset;
const char *name;
char *modname;
*startp = *endp = 0;
if (pc == 0)
return;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
name = kallsyms_lookup(pc, &size, &offset, &modname, tmpstr);
if (name != NULL) {
*startp = pc - offset;
*endp = pc - offset + size;
}
sync();
}
catch_memory_errors = 0;
}
static int xmon_depth_to_print = 64;
#ifdef CONFIG_PPC64
#define LRSAVE_OFFSET 0x10
#define REG_FRAME_MARKER 0x7265677368657265ul /* "regshere" */
#define MARKER_OFFSET 0x60
#define REGS_OFFSET 0x70
#else
#define LRSAVE_OFFSET 4
#define REG_FRAME_MARKER 0x72656773
#define MARKER_OFFSET 8
#define REGS_OFFSET 16
#endif
static void xmon_show_stack(unsigned long sp, unsigned long lr,
unsigned long pc)
{
unsigned long ip;
unsigned long newsp;
unsigned long marker;
int count = 0;
struct pt_regs regs;
do {
if (sp < PAGE_OFFSET) {
if (sp != 0)
printf("SP (%lx) is in userspace\n", sp);
break;
}
if (!mread(sp + LRSAVE_OFFSET, &ip, sizeof(unsigned long))
|| !mread(sp, &newsp, sizeof(unsigned long))) {
printf("Couldn't read stack frame at %lx\n", sp);
break;
}
/*
* For the first stack frame, try to work out if
* LR and/or the saved LR value in the bottommost
* stack frame are valid.
*/
if ((pc | lr) != 0) {
unsigned long fnstart, fnend;
unsigned long nextip;
int printip = 1;
get_function_bounds(pc, &fnstart, &fnend);
nextip = 0;
if (newsp > sp)
mread(newsp + LRSAVE_OFFSET, &nextip,
sizeof(unsigned long));
if (lr == ip) {
if (lr < PAGE_OFFSET
|| (fnstart <= lr && lr < fnend))
printip = 0;
} else if (lr == nextip) {
printip = 0;
} else if (lr >= PAGE_OFFSET
&& !(fnstart <= lr && lr < fnend)) {
printf("[link register ] ");
xmon_print_symbol(lr, " ", "\n");
}
if (printip) {
printf("["REG"] ", sp);
xmon_print_symbol(ip, " ", " (unreliable)\n");
}
pc = lr = 0;
} else {
printf("["REG"] ", sp);
xmon_print_symbol(ip, " ", "\n");
}
/* Look for "regshere" marker to see if this is
an exception frame. */
if (mread(sp + MARKER_OFFSET, &marker, sizeof(unsigned long))
&& marker == REG_FRAME_MARKER) {
if (mread(sp + REGS_OFFSET, &regs, sizeof(regs))
!= sizeof(regs)) {
printf("Couldn't read registers at %lx\n",
sp + REGS_OFFSET);
break;
}
printf("--- Exception: %lx %s at ", regs.trap,
getvecname(TRAP(&regs)));
pc = regs.nip;
lr = regs.link;
xmon_print_symbol(pc, " ", "\n");
}
if (newsp == 0)
break;
sp = newsp;
} while (count++ < xmon_depth_to_print);
}
static void backtrace(struct pt_regs *excp)
{
unsigned long sp;
if (scanhex(&sp))
xmon_show_stack(sp, 0, 0);
else
xmon_show_stack(excp->gpr[1], excp->link, excp->nip);
scannl();
}
static void print_bug_trap(struct pt_regs *regs)
{
struct bug_entry *bug;
unsigned long addr;
if (regs->msr & MSR_PR)
return; /* not in kernel */
addr = regs->nip; /* address of trap instruction */
if (addr < PAGE_OFFSET)
return;
bug = find_bug(regs->nip);
if (bug == NULL)
return;
if (bug->line & BUG_WARNING_TRAP)
return;
printf("kernel BUG in %s at %s:%d!\n",
bug->function, bug->file, (unsigned int)bug->line);
}
void excprint(struct pt_regs *fp)
{
unsigned long trap;
#ifdef CONFIG_SMP
printf("cpu 0x%x: ", smp_processor_id());
#endif /* CONFIG_SMP */
trap = TRAP(fp);
printf("Vector: %lx %s at [%lx]\n", fp->trap, getvecname(trap), fp);
printf(" pc: ");
xmon_print_symbol(fp->nip, ": ", "\n");
printf(" lr: ", fp->link);
xmon_print_symbol(fp->link, ": ", "\n");
printf(" sp: %lx\n", fp->gpr[1]);
printf(" msr: %lx\n", fp->msr);
if (trap == 0x300 || trap == 0x380 || trap == 0x600) {
printf(" dar: %lx\n", fp->dar);
if (trap != 0x380)
printf(" dsisr: %lx\n", fp->dsisr);
}
printf(" current = 0x%lx\n", current);
#ifdef CONFIG_PPC64
printf(" paca = 0x%lx\n", get_paca());
#endif
if (current) {
printf(" pid = %ld, comm = %s\n",
current->pid, current->comm);
}
if (trap == 0x700)
print_bug_trap(fp);
}
void prregs(struct pt_regs *fp)
{
int n, trap;
unsigned long base;
struct pt_regs regs;
if (scanhex(&base)) {
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
regs = *(struct pt_regs *)base;
sync();
__delay(200);
} else {
catch_memory_errors = 0;
printf("*** Error reading registers from "REG"\n",
base);
return;
}
catch_memory_errors = 0;
fp = &regs;
}
#ifdef CONFIG_PPC64
if (FULL_REGS(fp)) {
for (n = 0; n < 16; ++n)
printf("R%.2ld = "REG" R%.2ld = "REG"\n",
n, fp->gpr[n], n+16, fp->gpr[n+16]);
} else {
for (n = 0; n < 7; ++n)
printf("R%.2ld = "REG" R%.2ld = "REG"\n",
n, fp->gpr[n], n+7, fp->gpr[n+7]);
}
#else
for (n = 0; n < 32; ++n) {
printf("R%.2d = %.8x%s", n, fp->gpr[n],
(n & 3) == 3? "\n": " ");
if (n == 12 && !FULL_REGS(fp)) {
printf("\n");
break;
}
}
#endif
printf("pc = ");
xmon_print_symbol(fp->nip, " ", "\n");
printf("lr = ");
xmon_print_symbol(fp->link, " ", "\n");
printf("msr = "REG" cr = %.8lx\n", fp->msr, fp->ccr);
printf("ctr = "REG" xer = "REG" trap = %4lx\n",
fp->ctr, fp->xer, fp->trap);
trap = TRAP(fp);
if (trap == 0x300 || trap == 0x380 || trap == 0x600)
printf("dar = "REG" dsisr = %.8lx\n", fp->dar, fp->dsisr);
}
void cacheflush(void)
{
int cmd;
unsigned long nflush;
cmd = inchar();
if (cmd != 'i')
termch = cmd;
scanhex((void *)&adrs);
if (termch != '\n')
termch = 0;
nflush = 1;
scanhex(&nflush);
nflush = (nflush + L1_CACHE_BYTES - 1) / L1_CACHE_BYTES;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
if (cmd != 'i') {
for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES)
cflush((void *) adrs);
} else {
for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES)
cinval((void *) adrs);
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
}
catch_memory_errors = 0;
}
unsigned long
read_spr(int n)
{
unsigned int instrs[2];
unsigned long (*code)(void);
unsigned long ret = -1UL;
#ifdef CONFIG_PPC64
unsigned long opd[3];
opd[0] = (unsigned long)instrs;
opd[1] = 0;
opd[2] = 0;
code = (unsigned long (*)(void)) opd;
#else
code = (unsigned long (*)(void)) instrs;
#endif
/* mfspr r3,n; blr */
instrs[0] = 0x7c6002a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6);
instrs[1] = 0x4e800020;
store_inst(instrs);
store_inst(instrs+1);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
ret = code();
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
}
return ret;
}
void
write_spr(int n, unsigned long val)
{
unsigned int instrs[2];
unsigned long (*code)(unsigned long);
#ifdef CONFIG_PPC64
unsigned long opd[3];
opd[0] = (unsigned long)instrs;
opd[1] = 0;
opd[2] = 0;
code = (unsigned long (*)(unsigned long)) opd;
#else
code = (unsigned long (*)(unsigned long)) instrs;
#endif
instrs[0] = 0x7c6003a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6);
instrs[1] = 0x4e800020;
store_inst(instrs);
store_inst(instrs+1);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
code(val);
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
}
}
static unsigned long regno;
extern char exc_prolog;
extern char dec_exc;
void super_regs(void)
{
int cmd;
unsigned long val;
cmd = skipbl();
if (cmd == '\n') {
unsigned long sp, toc;
asm("mr %0,1" : "=r" (sp) :);
asm("mr %0,2" : "=r" (toc) :);
printf("msr = "REG" sprg0= "REG"\n",
mfmsr(), mfspr(SPRN_SPRG0));
printf("pvr = "REG" sprg1= "REG"\n",
mfspr(SPRN_PVR), mfspr(SPRN_SPRG1));
printf("dec = "REG" sprg2= "REG"\n",
mfspr(SPRN_DEC), mfspr(SPRN_SPRG2));
printf("sp = "REG" sprg3= "REG"\n", sp, mfspr(SPRN_SPRG3));
printf("toc = "REG" dar = "REG"\n", toc, mfspr(SPRN_DAR));
#ifdef CONFIG_PPC_ISERIES
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
struct paca_struct *ptrPaca;
struct lppaca *ptrLpPaca;
struct ItLpRegSave *ptrLpRegSave;
/* Dump out relevant Paca data areas. */
printf("Paca: \n");
ptrPaca = get_paca();
printf(" Local Processor Control Area (LpPaca): \n");
ptrLpPaca = ptrPaca->lppaca_ptr;
printf(" Saved Srr0=%.16lx Saved Srr1=%.16lx \n",
ptrLpPaca->saved_srr0, ptrLpPaca->saved_srr1);
printf(" Saved Gpr3=%.16lx Saved Gpr4=%.16lx \n",
ptrLpPaca->saved_gpr3, ptrLpPaca->saved_gpr4);
printf(" Saved Gpr5=%.16lx \n", ptrLpPaca->saved_gpr5);
printf(" Local Processor Register Save Area (LpRegSave): \n");
ptrLpRegSave = ptrPaca->reg_save_ptr;
printf(" Saved Sprg0=%.16lx Saved Sprg1=%.16lx \n",
ptrLpRegSave->xSPRG0, ptrLpRegSave->xSPRG0);
printf(" Saved Sprg2=%.16lx Saved Sprg3=%.16lx \n",
ptrLpRegSave->xSPRG2, ptrLpRegSave->xSPRG3);
printf(" Saved Msr =%.16lx Saved Nia =%.16lx \n",
ptrLpRegSave->xMSR, ptrLpRegSave->xNIA);
}
#endif
return;
}
scanhex(&regno);
switch (cmd) {
case 'w':
val = read_spr(regno);
scanhex(&val);
write_spr(regno, val);
/* fall through */
case 'r':
printf("spr %lx = %lx\n", regno, read_spr(regno));
break;
}
scannl();
}
/*
* Stuff for reading and writing memory safely
*/
int
mread(unsigned long adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
p = (char *)adrs;
q = (char *)buf;
switch (size) {
case 2:
*(u16 *)q = *(u16 *)p;
break;
case 4:
*(u32 *)q = *(u32 *)p;
break;
case 8:
*(u64 *)q = *(u64 *)p;
break;
default:
for( ; n < size; ++n) {
*q++ = *p++;
sync();
}
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
}
catch_memory_errors = 0;
return n;
}
int
mwrite(unsigned long adrs, void *buf, int size)
{
volatile int n;
char *p, *q;
n = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
p = (char *) adrs;
q = (char *) buf;
switch (size) {
case 2:
*(u16 *)p = *(u16 *)q;
break;
case 4:
*(u32 *)p = *(u32 *)q;
break;
case 8:
*(u64 *)p = *(u64 *)q;
break;
default:
for ( ; n < size; ++n) {
*p++ = *q++;
sync();
}
}
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
n = size;
} else {
printf("*** Error writing address %x\n", adrs + n);
}
catch_memory_errors = 0;
return n;
}
static int fault_type;
static int fault_except;
static char *fault_chars[] = { "--", "**", "##" };
static int handle_fault(struct pt_regs *regs)
{
fault_except = TRAP(regs);
switch (TRAP(regs)) {
case 0x200:
fault_type = 0;
break;
case 0x300:
case 0x380:
fault_type = 1;
break;
default:
fault_type = 2;
}
longjmp(bus_error_jmp, 1);
return 0;
}
#define SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t))
void
byterev(unsigned char *val, int size)
{
int t;
switch (size) {
case 2:
SWAP(val[0], val[1], t);
break;
case 4:
SWAP(val[0], val[3], t);
SWAP(val[1], val[2], t);
break;
case 8: /* is there really any use for this? */
SWAP(val[0], val[7], t);
SWAP(val[1], val[6], t);
SWAP(val[2], val[5], t);
SWAP(val[3], val[4], t);
break;
}
}
static int brev;
static int mnoread;
static char *memex_help_string =
"Memory examine command usage:\n"
"m [addr] [flags] examine/change memory\n"
" addr is optional. will start where left off.\n"
" flags may include chars from this set:\n"
" b modify by bytes (default)\n"
" w modify by words (2 byte)\n"
" l modify by longs (4 byte)\n"
" d modify by doubleword (8 byte)\n"
" r toggle reverse byte order mode\n"
" n do not read memory (for i/o spaces)\n"
" . ok to read (default)\n"
"NOTE: flags are saved as defaults\n"
"";
static char *memex_subcmd_help_string =
"Memory examine subcommands:\n"
" hexval write this val to current location\n"
" 'string' write chars from string to this location\n"
" ' increment address\n"
" ^ decrement address\n"
" / increment addr by 0x10. //=0x100, ///=0x1000, etc\n"
" \\ decrement addr by 0x10. \\\\=0x100, \\\\\\=0x1000, etc\n"
" ` clear no-read flag\n"
" ; stay at this addr\n"
" v change to byte mode\n"
" w change to word (2 byte) mode\n"
" l change to long (4 byte) mode\n"
" u change to doubleword (8 byte) mode\n"
" m addr change current addr\n"
" n toggle no-read flag\n"
" r toggle byte reverse flag\n"
" < count back up count bytes\n"
" > count skip forward count bytes\n"
" x exit this mode\n"
"";
void
memex(void)
{
int cmd, inc, i, nslash;
unsigned long n;
unsigned char val[16];
scanhex((void *)&adrs);
cmd = skipbl();
if (cmd == '?') {
printf(memex_help_string);
return;
} else {
termch = cmd;
}
last_cmd = "m\n";
while ((cmd = skipbl()) != '\n') {
switch( cmd ){
case 'b': size = 1; break;
case 'w': size = 2; break;
case 'l': size = 4; break;
case 'd': size = 8; break;
case 'r': brev = !brev; break;
case 'n': mnoread = 1; break;
case '.': mnoread = 0; break;
}
}
if( size <= 0 )
size = 1;
else if( size > 8 )
size = 8;
for(;;){
if (!mnoread)
n = mread(adrs, val, size);
printf(REG"%c", adrs, brev? 'r': ' ');
if (!mnoread) {
if (brev)
byterev(val, size);
putchar(' ');
for (i = 0; i < n; ++i)
printf("%.2x", val[i]);
for (; i < size; ++i)
printf("%s", fault_chars[fault_type]);
}
putchar(' ');
inc = size;
nslash = 0;
for(;;){
if( scanhex(&n) ){
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
inc = size;
}
cmd = skipbl();
if (cmd == '\n')
break;
inc = 0;
switch (cmd) {
case '\'':
for(;;){
n = inchar();
if( n == '\\' )
n = bsesc();
else if( n == '\'' )
break;
for (i = 0; i < size; ++i)
val[i] = n >> (i * 8);
if (!brev)
byterev(val, size);
mwrite(adrs, val, size);
adrs += size;
}
adrs -= size;
inc = size;
break;
case ',':
adrs += size;
break;
case '.':
mnoread = 0;
break;
case ';':
break;
case 'x':
case EOF:
scannl();
return;
case 'b':
case 'v':
size = 1;
break;
case 'w':
size = 2;
break;
case 'l':
size = 4;
break;
case 'u':
size = 8;
break;
case '^':
adrs -= size;
break;
break;
case '/':
if (nslash > 0)
adrs -= 1 << nslash;
else
nslash = 0;
nslash += 4;
adrs += 1 << nslash;
break;
case '\\':
if (nslash < 0)
adrs += 1 << -nslash;
else
nslash = 0;
nslash -= 4;
adrs -= 1 << -nslash;
break;
case 'm':
scanhex((void *)&adrs);
break;
case 'n':
mnoread = 1;
break;
case 'r':
brev = !brev;
break;
case '<':
n = size;
scanhex(&n);
adrs -= n;
break;
case '>':
n = size;
scanhex(&n);
adrs += n;
break;
case '?':
printf(memex_subcmd_help_string);
break;
}
}
adrs += inc;
}
}
int
bsesc(void)
{
int c;
c = inchar();
switch( c ){
case 'n': c = '\n'; break;
case 'r': c = '\r'; break;
case 'b': c = '\b'; break;
case 't': c = '\t'; break;
}
return c;
}
static void xmon_rawdump (unsigned long adrs, long ndump)
{
long n, m, r, nr;
unsigned char temp[16];
for (n = ndump; n > 0;) {
r = n < 16? n: 16;
nr = mread(adrs, temp, r);
adrs += nr;
for (m = 0; m < r; ++m) {
if (m < nr)
printf("%.2x", temp[m]);
else
printf("%s", fault_chars[fault_type]);
}
n -= r;
if (nr < r)
break;
}
printf("\n");
}
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|| ('a' <= (c) && (c) <= 'f') \
|| ('A' <= (c) && (c) <= 'F'))
void
dump(void)
{
int c;
c = inchar();
if ((isxdigit(c) && c != 'f' && c != 'd') || c == '\n')
termch = c;
scanhex((void *)&adrs);
if (termch != '\n')
termch = 0;
if (c == 'i') {
scanhex(&nidump);
if (nidump == 0)
nidump = 16;
else if (nidump > MAX_DUMP)
nidump = MAX_DUMP;
adrs += ppc_inst_dump(adrs, nidump, 1);
last_cmd = "di\n";
} else if (c == 'r') {
scanhex(&ndump);
if (ndump == 0)
ndump = 64;
xmon_rawdump(adrs, ndump);
adrs += ndump;
last_cmd = "dr\n";
} else {
scanhex(&ndump);
if (ndump == 0)
ndump = 64;
else if (ndump > MAX_DUMP)
ndump = MAX_DUMP;
prdump(adrs, ndump);
adrs += ndump;
last_cmd = "d\n";
}
}
void
prdump(unsigned long adrs, long ndump)
{
long n, m, c, r, nr;
unsigned char temp[16];
for (n = ndump; n > 0;) {
printf(REG, adrs);
putchar(' ');
r = n < 16? n: 16;
nr = mread(adrs, temp, r);
adrs += nr;
for (m = 0; m < r; ++m) {
if ((m & (sizeof(long) - 1)) == 0 && m > 0)
putchar(' ');
if (m < nr)
printf("%.2x", temp[m]);
else
printf("%s", fault_chars[fault_type]);
}
for (; m < 16; ++m) {
if ((m & (sizeof(long) - 1)) == 0)
putchar(' ');
printf(" ");
}
printf(" |");
for (m = 0; m < r; ++m) {
if (m < nr) {
c = temp[m];
putchar(' ' <= c && c <= '~'? c: '.');
} else
putchar(' ');
}
n -= r;
for (; m < 16; ++m)
putchar(' ');
printf("|\n");
if (nr < r)
break;
}
}
int
ppc_inst_dump(unsigned long adr, long count, int praddr)
{
int nr, dotted;
unsigned long first_adr;
unsigned long inst, last_inst = 0;
unsigned char val[4];
dotted = 0;
for (first_adr = adr; count > 0; --count, adr += 4) {
nr = mread(adr, val, 4);
if (nr == 0) {
if (praddr) {
const char *x = fault_chars[fault_type];
printf(REG" %s%s%s%s\n", adr, x, x, x, x);
}
break;
}
inst = GETWORD(val);
if (adr > first_adr && inst == last_inst) {
if (!dotted) {
printf(" ...\n");
dotted = 1;
}
continue;
}
dotted = 0;
last_inst = inst;
if (praddr)
printf(REG" %.8x", adr, inst);
printf("\t");
print_insn_powerpc(inst, adr, 0); /* always returns 4 */
printf("\n");
}
return adr - first_adr;
}
void
print_address(unsigned long addr)
{
xmon_print_symbol(addr, "\t# ", "");
}
/*
* Memory operations - move, set, print differences
*/
static unsigned long mdest; /* destination address */
static unsigned long msrc; /* source address */
static unsigned long mval; /* byte value to set memory to */
static unsigned long mcount; /* # bytes to affect */
static unsigned long mdiffs; /* max # differences to print */
void
memops(int cmd)
{
scanhex((void *)&mdest);
if( termch != '\n' )
termch = 0;
scanhex((void *)(cmd == 's'? &mval: &msrc));
if( termch != '\n' )
termch = 0;
scanhex((void *)&mcount);
switch( cmd ){
case 'm':
memmove((void *)mdest, (void *)msrc, mcount);
break;
case 's':
memset((void *)mdest, mval, mcount);
break;
case 'd':
if( termch != '\n' )
termch = 0;
scanhex((void *)&mdiffs);
memdiffs((unsigned char *)mdest, (unsigned char *)msrc, mcount, mdiffs);
break;
}
}
void
memdiffs(unsigned char *p1, unsigned char *p2, unsigned nb, unsigned maxpr)
{
unsigned n, prt;
prt = 0;
for( n = nb; n > 0; --n )
if( *p1++ != *p2++ )
if( ++prt <= maxpr )
printf("%.16x %.2x # %.16x %.2x\n", p1 - 1,
p1[-1], p2 - 1, p2[-1]);
if( prt > maxpr )
printf("Total of %d differences\n", prt);
}
static unsigned mend;
static unsigned mask;
void
memlocate(void)
{
unsigned a, n;
unsigned char val[4];
last_cmd = "ml";
scanhex((void *)&mdest);
if (termch != '\n') {
termch = 0;
scanhex((void *)&mend);
if (termch != '\n') {
termch = 0;
scanhex((void *)&mval);
mask = ~0;
if (termch != '\n') termch = 0;
scanhex((void *)&mask);
}
}
n = 0;
for (a = mdest; a < mend; a += 4) {
if (mread(a, val, 4) == 4
&& ((GETWORD(val) ^ mval) & mask) == 0) {
printf("%.16x: %.16x\n", a, GETWORD(val));
if (++n >= 10)
break;
}
}
}
static unsigned long mskip = 0x1000;
static unsigned long mlim = 0xffffffff;
void
memzcan(void)
{
unsigned char v;
unsigned a;
int ok, ook;
scanhex(&mdest);
if (termch != '\n') termch = 0;
scanhex(&mskip);
if (termch != '\n') termch = 0;
scanhex(&mlim);
ook = 0;
for (a = mdest; a < mlim; a += mskip) {
ok = mread(a, &v, 1);
if (ok && !ook) {
printf("%.8x .. ", a);
} else if (!ok && ook)
printf("%.8x\n", a - mskip);
ook = ok;
if (a + mskip < a)
break;
}
if (ook)
printf("%.8x\n", a - mskip);
}
void proccall(void)
{
unsigned long args[8];
unsigned long ret;
int i;
typedef unsigned long (*callfunc_t)(unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long);
callfunc_t func;
if (!scanhex(&adrs))
return;
if (termch != '\n')
termch = 0;
for (i = 0; i < 8; ++i)
args[i] = 0;
for (i = 0; i < 8; ++i) {
if (!scanhex(&args[i]) || termch == '\n')
break;
termch = 0;
}
func = (callfunc_t) adrs;
ret = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
ret = func(args[0], args[1], args[2], args[3],
args[4], args[5], args[6], args[7]);
sync();
printf("return value is %x\n", ret);
} else {
printf("*** %x exception occurred\n", fault_except);
}
catch_memory_errors = 0;
}
/* Input scanning routines */
int
skipbl(void)
{
int c;
if( termch != 0 ){
c = termch;
termch = 0;
} else
c = inchar();
while( c == ' ' || c == '\t' )
c = inchar();
return c;
}
#define N_PTREGS 44
static char *regnames[N_PTREGS] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"pc", "msr", "or3", "ctr", "lr", "xer", "ccr",
#ifdef CONFIG_PPC64
"softe",
#else
"mq",
#endif
"trap", "dar", "dsisr", "res"
};
int
scanhex(unsigned long *vp)
{
int c, d;
unsigned long v;
c = skipbl();
if (c == '%') {
/* parse register name */
char regname[8];
int i;
for (i = 0; i < sizeof(regname) - 1; ++i) {
c = inchar();
if (!isalnum(c)) {
termch = c;
break;
}
regname[i] = c;
}
regname[i] = 0;
for (i = 0; i < N_PTREGS; ++i) {
if (strcmp(regnames[i], regname) == 0) {
if (xmon_regs == NULL) {
printf("regs not available\n");
return 0;
}
*vp = ((unsigned long *)xmon_regs)[i];
return 1;
}
}
printf("invalid register name '%%%s'\n", regname);
return 0;
}
/* skip leading "0x" if any */
if (c == '0') {
c = inchar();
if (c == 'x') {
c = inchar();
} else {
d = hexdigit(c);
if (d == EOF) {
termch = c;
*vp = 0;
return 1;
}
}
} else if (c == '$') {
int i;
for (i=0; i<63; i++) {
c = inchar();
if (isspace(c)) {
termch = c;
break;
}
tmpstr[i] = c;
}
tmpstr[i++] = 0;
*vp = 0;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
*vp = kallsyms_lookup_name(tmpstr);
sync();
}
catch_memory_errors = 0;
if (!(*vp)) {
printf("unknown symbol '%s'\n", tmpstr);
return 0;
}
return 1;
}
d = hexdigit(c);
if (d == EOF) {
termch = c;
return 0;
}
v = 0;
do {
v = (v << 4) + d;
c = inchar();
d = hexdigit(c);
} while (d != EOF);
termch = c;
*vp = v;
return 1;
}
void
scannl(void)
{
int c;
c = termch;
termch = 0;
while( c != '\n' )
c = inchar();
}
int hexdigit(int c)
{
if( '0' <= c && c <= '9' )
return c - '0';
if( 'A' <= c && c <= 'F' )
return c - ('A' - 10);
if( 'a' <= c && c <= 'f' )
return c - ('a' - 10);
return EOF;
}
void
getstring(char *s, int size)
{
int c;
c = skipbl();
do {
if( size > 1 ){
*s++ = c;
--size;
}
c = inchar();
} while( c != ' ' && c != '\t' && c != '\n' );
termch = c;
*s = 0;
}
static char line[256];
static char *lineptr;
void
flush_input(void)
{
lineptr = NULL;
}
int
inchar(void)
{
if (lineptr == NULL || *lineptr == 0) {
if (xmon_gets(line, sizeof(line)) == NULL) {
lineptr = NULL;
return EOF;
}
lineptr = line;
}
return *lineptr++;
}
void
take_input(char *str)
{
lineptr = str;
}
static void
symbol_lookup(void)
{
int type = inchar();
unsigned long addr;
static char tmp[64];
switch (type) {
case 'a':
if (scanhex(&addr))
xmon_print_symbol(addr, ": ", "\n");
termch = 0;
break;
case 's':
getstring(tmp, 64);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
addr = kallsyms_lookup_name(tmp);
if (addr)
printf("%s: %lx\n", tmp, addr);
else
printf("Symbol '%s' not found.\n", tmp);
sync();
}
catch_memory_errors = 0;
termch = 0;
break;
}
}
/* Print an address in numeric and symbolic form (if possible) */
static void xmon_print_symbol(unsigned long address, const char *mid,
const char *after)
{
char *modname;
const char *name = NULL;
unsigned long offset, size;
printf(REG, address);
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
name = kallsyms_lookup(address, &size, &offset, &modname,
tmpstr);
sync();
/* wait a little while to see if we get a machine check */
__delay(200);
}
catch_memory_errors = 0;
if (name) {
printf("%s%s+%#lx/%#lx", mid, name, offset, size);
if (modname)
printf(" [%s]", modname);
}
printf("%s", after);
}
#ifdef CONFIG_PPC64
static void dump_slb(void)
{
int i;
unsigned long tmp;
printf("SLB contents of cpu %x\n", smp_processor_id());
for (i = 0; i < SLB_NUM_ENTRIES; i++) {
asm volatile("slbmfee %0,%1" : "=r" (tmp) : "r" (i));
printf("%02d %016lx ", i, tmp);
asm volatile("slbmfev %0,%1" : "=r" (tmp) : "r" (i));
printf("%016lx\n", tmp);
}
}
static void dump_stab(void)
{
int i;
unsigned long *tmp = (unsigned long *)get_paca()->stab_addr;
printf("Segment table contents of cpu %x\n", smp_processor_id());
for (i = 0; i < PAGE_SIZE/16; i++) {
unsigned long a, b;
a = *tmp++;
b = *tmp++;
if (a || b) {
printf("%03d %016lx ", i, a);
printf("%016lx\n", b);
}
}
}
void dump_segments(void)
{
if (cpu_has_feature(CPU_FTR_SLB))
dump_slb();
else
dump_stab();
}
#endif
#ifdef CONFIG_PPC_STD_MMU_32
void dump_segments(void)
{
int i;
printf("sr0-15 =");
for (i = 0; i < 16; ++i)
printf(" %x", mfsrin(i));
printf("\n");
}
#endif
void xmon_init(int enable)
{
if (enable) {
__debugger = xmon;
__debugger_ipi = xmon_ipi;
__debugger_bpt = xmon_bpt;
__debugger_sstep = xmon_sstep;
__debugger_iabr_match = xmon_iabr_match;
__debugger_dabr_match = xmon_dabr_match;
__debugger_fault_handler = xmon_fault_handler;
} else {
__debugger = NULL;
__debugger_ipi = NULL;
__debugger_bpt = NULL;
__debugger_sstep = NULL;
__debugger_iabr_match = NULL;
__debugger_dabr_match = NULL;
__debugger_fault_handler = NULL;
}
xmon_map_scc();
}
#ifdef CONFIG_MAGIC_SYSRQ
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static void sysrq_handle_xmon(int key, struct tty_struct *tty)
{
/* ensure xmon is enabled */
xmon_init(1);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
debugger(get_irq_regs());
}
static struct sysrq_key_op sysrq_xmon_op =
{
.handler = sysrq_handle_xmon,
.help_msg = "Xmon",
.action_msg = "Entering xmon",
};
static int __init setup_xmon_sysrq(void)
{
register_sysrq_key('x', &sysrq_xmon_op);
return 0;
}
__initcall(setup_xmon_sysrq);
#endif /* CONFIG_MAGIC_SYSRQ */
int __initdata xmon_early, xmon_off;
static int __init early_parse_xmon(char *p)
{
if (!p || strncmp(p, "early", 5) == 0) {
/* just "xmon" is equivalent to "xmon=early" */
xmon_init(1);
xmon_early = 1;
} else if (strncmp(p, "on", 2) == 0)
xmon_init(1);
else if (strncmp(p, "off", 3) == 0)
xmon_off = 1;
else if (strncmp(p, "nobt", 4) == 0)
xmon_no_auto_backtrace = 1;
else
return 1;
return 0;
}
early_param("xmon", early_parse_xmon);
void __init xmon_setup(void)
{
#ifdef CONFIG_XMON_DEFAULT
if (!xmon_off)
xmon_init(1);
#endif
if (xmon_early)
debugger(NULL);
}
#ifdef CONFIG_PPC_CELL
struct spu_info {
struct spu *spu;
u64 saved_mfc_sr1_RW;
u32 saved_spu_runcntl_RW;
unsigned long dump_addr;
u8 stopped_ok;
};
#define XMON_NUM_SPUS 16 /* Enough for current hardware */
static struct spu_info spu_info[XMON_NUM_SPUS];
void xmon_register_spus(struct list_head *list)
{
struct spu *spu;
list_for_each_entry(spu, list, full_list) {
if (spu->number >= XMON_NUM_SPUS) {
WARN_ON(1);
continue;
}
spu_info[spu->number].spu = spu;
spu_info[spu->number].stopped_ok = 0;
spu_info[spu->number].dump_addr = (unsigned long)
spu_info[spu->number].spu->local_store;
}
}
static void stop_spus(void)
{
struct spu *spu;
int i;
u64 tmp;
for (i = 0; i < XMON_NUM_SPUS; i++) {
if (!spu_info[i].spu)
continue;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
spu = spu_info[i].spu;
spu_info[i].saved_spu_runcntl_RW =
in_be32(&spu->problem->spu_runcntl_RW);
tmp = spu_mfc_sr1_get(spu);
spu_info[i].saved_mfc_sr1_RW = tmp;
tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
spu_mfc_sr1_set(spu, tmp);
sync();
__delay(200);
spu_info[i].stopped_ok = 1;
printf("Stopped spu %.2d (was %s)\n", i,
spu_info[i].saved_spu_runcntl_RW ?
"running" : "stopped");
} else {
catch_memory_errors = 0;
printf("*** Error stopping spu %.2d\n", i);
}
catch_memory_errors = 0;
}
}
static void restart_spus(void)
{
struct spu *spu;
int i;
for (i = 0; i < XMON_NUM_SPUS; i++) {
if (!spu_info[i].spu)
continue;
if (!spu_info[i].stopped_ok) {
printf("*** Error, spu %d was not successfully stopped"
", not restarting\n", i);
continue;
}
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
spu = spu_info[i].spu;
spu_mfc_sr1_set(spu, spu_info[i].saved_mfc_sr1_RW);
out_be32(&spu->problem->spu_runcntl_RW,
spu_info[i].saved_spu_runcntl_RW);
sync();
__delay(200);
printf("Restarted spu %.2d\n", i);
} else {
catch_memory_errors = 0;
printf("*** Error restarting spu %.2d\n", i);
}
catch_memory_errors = 0;
}
}
#define DUMP_WIDTH 23
#define DUMP_VALUE(format, field, value) \
do { \
if (setjmp(bus_error_jmp) == 0) { \
catch_memory_errors = 1; \
sync(); \
printf(" %-*s = "format"\n", DUMP_WIDTH, \
#field, value); \
sync(); \
__delay(200); \
} else { \
catch_memory_errors = 0; \
printf(" %-*s = *** Error reading field.\n", \
DUMP_WIDTH, #field); \
} \
catch_memory_errors = 0; \
} while (0)
#define DUMP_FIELD(obj, format, field) \
DUMP_VALUE(format, field, obj->field)
static void dump_spu_fields(struct spu *spu)
{
printf("Dumping spu fields at address %p:\n", spu);
DUMP_FIELD(spu, "0x%x", number);
DUMP_FIELD(spu, "%s", name);
DUMP_FIELD(spu, "%s", devnode->full_name);
DUMP_FIELD(spu, "0x%x", nid);
DUMP_FIELD(spu, "0x%lx", local_store_phys);
DUMP_FIELD(spu, "0x%p", local_store);
DUMP_FIELD(spu, "0x%lx", ls_size);
DUMP_FIELD(spu, "0x%x", node);
DUMP_FIELD(spu, "0x%lx", flags);
DUMP_FIELD(spu, "0x%lx", dar);
DUMP_FIELD(spu, "0x%lx", dsisr);
DUMP_FIELD(spu, "%d", class_0_pending);
DUMP_FIELD(spu, "0x%lx", irqs[0]);
DUMP_FIELD(spu, "0x%lx", irqs[1]);
DUMP_FIELD(spu, "0x%lx", irqs[2]);
DUMP_FIELD(spu, "0x%x", slb_replace);
DUMP_FIELD(spu, "%d", pid);
DUMP_FIELD(spu, "%d", prio);
DUMP_FIELD(spu, "0x%p", mm);
DUMP_FIELD(spu, "0x%p", ctx);
DUMP_FIELD(spu, "0x%p", rq);
DUMP_FIELD(spu, "0x%p", timestamp);
DUMP_FIELD(spu, "0x%lx", problem_phys);
DUMP_FIELD(spu, "0x%p", problem);
DUMP_VALUE("0x%x", problem->spu_runcntl_RW,
in_be32(&spu->problem->spu_runcntl_RW));
DUMP_VALUE("0x%x", problem->spu_status_R,
in_be32(&spu->problem->spu_status_R));
DUMP_VALUE("0x%x", problem->spu_npc_RW,
in_be32(&spu->problem->spu_npc_RW));
DUMP_FIELD(spu, "0x%p", priv1);
if (spu->priv1) {
DUMP_VALUE("0x%lx", priv1->mfc_sr1_RW,
in_be64(&spu->priv1->mfc_sr1_RW));
}
DUMP_FIELD(spu, "0x%p", priv2);
}
static void dump_spu_ls(unsigned long num)
{
unsigned long offset, addr, ls_addr;
if (setjmp(bus_error_jmp) == 0) {
catch_memory_errors = 1;
sync();
ls_addr = (unsigned long)spu_info[num].spu->local_store;
sync();
__delay(200);
} else {
catch_memory_errors = 0;
printf("*** Error: accessing spu info for spu %d\n", num);
return;
}
catch_memory_errors = 0;
if (scanhex(&offset))
addr = ls_addr + offset;
else
addr = spu_info[num].dump_addr;
if (addr >= ls_addr + LS_SIZE) {
printf("*** Error: address outside of local store\n");
return;
}
prdump(addr, 64);
addr += 64;
last_cmd = "sd\n";
spu_info[num].dump_addr = addr;
}
static int do_spu_cmd(void)
{
static unsigned long num = 0;
int cmd;
cmd = inchar();
switch (cmd) {
case 's':
stop_spus();
break;
case 'r':
restart_spus();
break;
case 'f':
case 'd':
scanhex(&num);
if (num >= XMON_NUM_SPUS || !spu_info[num].spu) {
printf("*** Error: invalid spu number\n");
return 0;
}
switch (cmd) {
case 'f':
dump_spu_fields(spu_info[num].spu);
break;
default:
dump_spu_ls(num);
break;
}
break;
default:
return -1;
}
return 0;
}
#else /* ! CONFIG_PPC_CELL */
static int do_spu_cmd(void)
{
return -1;
}
#endif