linux/net/can/isotp.c

1608 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
*
* This implementation does not provide ISO-TP specific return values to the
* userspace.
*
* - RX path timeout of data reception leads to -ETIMEDOUT
* - RX path SN mismatch leads to -EILSEQ
* - RX path data reception with wrong padding leads to -EBADMSG
* - TX path flowcontrol reception timeout leads to -ECOMM
* - TX path flowcontrol reception overflow leads to -EMSGSIZE
* - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
* - when a transfer (tx) is on the run the next write() blocks until it's done
* - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
* - as we have static buffers the check whether the PDU fits into the buffer
* is done at FF reception time (no support for sending 'wait frames')
*
* Copyright (c) 2020 Volkswagen Group Electronic Research
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Volkswagen nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Alternatively, provided that this notice is retained in full, this
* software may be distributed under the terms of the GNU General
* Public License ("GPL") version 2, in which case the provisions of the
* GPL apply INSTEAD OF those given above.
*
* The provided data structures and external interfaces from this code
* are not restricted to be used by modules with a GPL compatible license.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
#include <linux/spinlock.h>
#include <linux/hrtimer.h>
#include <linux/wait.h>
#include <linux/uio.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/core.h>
#include <linux/can/skb.h>
#include <linux/can/isotp.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <net/net_namespace.h>
MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
MODULE_ALIAS("can-proto-6");
#define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
#define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
(CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
(CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
/* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
* take full 32 bit values (4 Gbyte). We would need some good concept to handle
* this between user space and kernel space. For now increase the static buffer
* to something about 64 kbyte to be able to test this new functionality.
*/
#define MAX_MSG_LENGTH 66000
/* N_PCI type values in bits 7-4 of N_PCI bytes */
#define N_PCI_SF 0x00 /* single frame */
#define N_PCI_FF 0x10 /* first frame */
#define N_PCI_CF 0x20 /* consecutive frame */
#define N_PCI_FC 0x30 /* flow control */
#define N_PCI_SZ 1 /* size of the PCI byte #1 */
#define SF_PCI_SZ4 1 /* size of SingleFrame PCI including 4 bit SF_DL */
#define SF_PCI_SZ8 2 /* size of SingleFrame PCI including 8 bit SF_DL */
#define FF_PCI_SZ12 2 /* size of FirstFrame PCI including 12 bit FF_DL */
#define FF_PCI_SZ32 6 /* size of FirstFrame PCI including 32 bit FF_DL */
#define FC_CONTENT_SZ 3 /* flow control content size in byte (FS/BS/STmin) */
#define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
/* Flow Status given in FC frame */
#define ISOTP_FC_CTS 0 /* clear to send */
#define ISOTP_FC_WT 1 /* wait */
#define ISOTP_FC_OVFLW 2 /* overflow */
enum {
ISOTP_IDLE = 0,
ISOTP_WAIT_FIRST_FC,
ISOTP_WAIT_FC,
ISOTP_WAIT_DATA,
ISOTP_SENDING
};
struct tpcon {
unsigned int idx;
unsigned int len;
u32 state;
u8 bs;
u8 sn;
u8 ll_dl;
u8 buf[MAX_MSG_LENGTH + 1];
};
struct isotp_sock {
struct sock sk;
int bound;
int ifindex;
canid_t txid;
canid_t rxid;
ktime_t tx_gap;
ktime_t lastrxcf_tstamp;
struct hrtimer rxtimer, txtimer;
struct can_isotp_options opt;
struct can_isotp_fc_options rxfc, txfc;
struct can_isotp_ll_options ll;
u32 frame_txtime;
u32 force_tx_stmin;
u32 force_rx_stmin;
u32 cfecho; /* consecutive frame echo tag */
struct tpcon rx, tx;
struct list_head notifier;
wait_queue_head_t wait;
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
spinlock_t rx_lock; /* protect single thread state machine */
};
static LIST_HEAD(isotp_notifier_list);
static DEFINE_SPINLOCK(isotp_notifier_lock);
static struct isotp_sock *isotp_busy_notifier;
static inline struct isotp_sock *isotp_sk(const struct sock *sk)
{
return (struct isotp_sock *)sk;
}
static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
{
struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
rxtimer);
struct sock *sk = &so->sk;
if (so->rx.state == ISOTP_WAIT_DATA) {
/* we did not get new data frames in time */
/* report 'connection timed out' */
sk->sk_err = ETIMEDOUT;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
/* reset rx state */
so->rx.state = ISOTP_IDLE;
}
return HRTIMER_NORESTART;
}
static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
{
struct net_device *dev;
struct sk_buff *nskb;
struct canfd_frame *ncf;
struct isotp_sock *so = isotp_sk(sk);
int can_send_ret;
nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
if (!nskb)
return 1;
dev = dev_get_by_index(sock_net(sk), so->ifindex);
if (!dev) {
kfree_skb(nskb);
return 1;
}
can_skb_reserve(nskb);
can_skb_prv(nskb)->ifindex = dev->ifindex;
can_skb_prv(nskb)->skbcnt = 0;
nskb->dev = dev;
can_skb_set_owner(nskb, sk);
ncf = (struct canfd_frame *)nskb->data;
skb_put_zero(nskb, so->ll.mtu);
/* create & send flow control reply */
ncf->can_id = so->txid;
if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
ncf->len = CAN_MAX_DLEN;
} else {
ncf->len = ae + FC_CONTENT_SZ;
}
ncf->data[ae] = N_PCI_FC | flowstatus;
ncf->data[ae + 1] = so->rxfc.bs;
ncf->data[ae + 2] = so->rxfc.stmin;
if (ae)
ncf->data[0] = so->opt.ext_address;
ncf->flags = so->ll.tx_flags;
can_send_ret = can_send(nskb, 1);
if (can_send_ret)
pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
__func__, ERR_PTR(can_send_ret));
dev_put(dev);
/* reset blocksize counter */
so->rx.bs = 0;
/* reset last CF frame rx timestamp for rx stmin enforcement */
so->lastrxcf_tstamp = ktime_set(0, 0);
/* start rx timeout watchdog */
hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
return 0;
}
static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
{
struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
memset(addr, 0, sizeof(*addr));
addr->can_family = AF_CAN;
addr->can_ifindex = skb->dev->ifindex;
if (sock_queue_rcv_skb(sk, skb) < 0)
kfree_skb(skb);
}
static u8 padlen(u8 datalen)
{
static const u8 plen[] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, /* 0 - 8 */
12, 12, 12, 12, /* 9 - 12 */
16, 16, 16, 16, /* 13 - 16 */
20, 20, 20, 20, /* 17 - 20 */
24, 24, 24, 24, /* 21 - 24 */
32, 32, 32, 32, 32, 32, 32, 32, /* 25 - 32 */
48, 48, 48, 48, 48, 48, 48, 48, /* 33 - 40 */
48, 48, 48, 48, 48, 48, 48, 48 /* 41 - 48 */
};
if (datalen > 48)
return 64;
return plen[datalen];
}
/* check for length optimization and return 1/true when the check fails */
static int check_optimized(struct canfd_frame *cf, int start_index)
{
/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
* padding would start at this point. E.g. if the padding would
* start at cf.data[7] cf->len has to be 7 to be optimal.
* Note: The data[] index starts with zero.
*/
if (cf->len <= CAN_MAX_DLEN)
return (cf->len != start_index);
/* This relation is also valid in the non-linear DLC range, where
* we need to take care of the minimal next possible CAN_DL.
* The correct check would be (padlen(cf->len) != padlen(start_index)).
* But as cf->len can only take discrete values from 12, .., 64 at this
* point the padlen(cf->len) is always equal to cf->len.
*/
return (cf->len != padlen(start_index));
}
/* check padding and return 1/true when the check fails */
static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
int start_index, u8 content)
{
int i;
/* no RX_PADDING value => check length of optimized frame length */
if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
return check_optimized(cf, start_index);
/* no valid test against empty value => ignore frame */
return 1;
}
/* check datalength of correctly padded CAN frame */
if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
cf->len != padlen(cf->len))
return 1;
/* check padding content */
if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
for (i = start_index; i < cf->len; i++)
if (cf->data[i] != content)
return 1;
}
return 0;
}
static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
{
struct sock *sk = &so->sk;
if (so->tx.state != ISOTP_WAIT_FC &&
so->tx.state != ISOTP_WAIT_FIRST_FC)
return 0;
hrtimer_cancel(&so->txtimer);
if ((cf->len < ae + FC_CONTENT_SZ) ||
((so->opt.flags & ISOTP_CHECK_PADDING) &&
check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
/* malformed PDU - report 'not a data message' */
sk->sk_err = EBADMSG;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
so->tx.state = ISOTP_IDLE;
wake_up_interruptible(&so->wait);
return 1;
}
/* get communication parameters only from the first FC frame */
if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
so->txfc.bs = cf->data[ae + 1];
so->txfc.stmin = cf->data[ae + 2];
/* fix wrong STmin values according spec */
if (so->txfc.stmin > 0x7F &&
(so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
so->txfc.stmin = 0x7F;
so->tx_gap = ktime_set(0, 0);
/* add transmission time for CAN frame N_As */
so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
/* add waiting time for consecutive frames N_Cs */
if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
so->tx_gap = ktime_add_ns(so->tx_gap,
so->force_tx_stmin);
else if (so->txfc.stmin < 0x80)
so->tx_gap = ktime_add_ns(so->tx_gap,
so->txfc.stmin * 1000000);
else
so->tx_gap = ktime_add_ns(so->tx_gap,
(so->txfc.stmin - 0xF0)
* 100000);
so->tx.state = ISOTP_WAIT_FC;
}
switch (cf->data[ae] & 0x0F) {
case ISOTP_FC_CTS:
so->tx.bs = 0;
so->tx.state = ISOTP_SENDING;
/* start cyclic timer for sending CF frame */
hrtimer_start(&so->txtimer, so->tx_gap,
HRTIMER_MODE_REL_SOFT);
break;
case ISOTP_FC_WT:
/* start timer to wait for next FC frame */
hrtimer_start(&so->txtimer, ktime_set(1, 0),
HRTIMER_MODE_REL_SOFT);
break;
case ISOTP_FC_OVFLW:
/* overflow on receiver side - report 'message too long' */
sk->sk_err = EMSGSIZE;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
fallthrough;
default:
/* stop this tx job */
so->tx.state = ISOTP_IDLE;
wake_up_interruptible(&so->wait);
}
return 0;
}
static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
struct sk_buff *skb, int len)
{
struct isotp_sock *so = isotp_sk(sk);
struct sk_buff *nskb;
hrtimer_cancel(&so->rxtimer);
so->rx.state = ISOTP_IDLE;
if (!len || len > cf->len - pcilen)
return 1;
if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
/* malformed PDU - report 'not a data message' */
sk->sk_err = EBADMSG;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
return 1;
}
nskb = alloc_skb(len, gfp_any());
if (!nskb)
return 1;
memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
nskb->tstamp = skb->tstamp;
nskb->dev = skb->dev;
isotp_rcv_skb(nskb, sk);
return 0;
}
static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
{
struct isotp_sock *so = isotp_sk(sk);
int i;
int off;
int ff_pci_sz;
hrtimer_cancel(&so->rxtimer);
so->rx.state = ISOTP_IDLE;
/* get the used sender LL_DL from the (first) CAN frame data length */
so->rx.ll_dl = padlen(cf->len);
/* the first frame has to use the entire frame up to LL_DL length */
if (cf->len != so->rx.ll_dl)
return 1;
/* get the FF_DL */
so->rx.len = (cf->data[ae] & 0x0F) << 8;
so->rx.len += cf->data[ae + 1];
/* Check for FF_DL escape sequence supporting 32 bit PDU length */
if (so->rx.len) {
ff_pci_sz = FF_PCI_SZ12;
} else {
/* FF_DL = 0 => get real length from next 4 bytes */
so->rx.len = cf->data[ae + 2] << 24;
so->rx.len += cf->data[ae + 3] << 16;
so->rx.len += cf->data[ae + 4] << 8;
so->rx.len += cf->data[ae + 5];
ff_pci_sz = FF_PCI_SZ32;
}
/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
return 1;
if (so->rx.len > MAX_MSG_LENGTH) {
/* send FC frame with overflow status */
isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
return 1;
}
/* copy the first received data bytes */
so->rx.idx = 0;
for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
so->rx.buf[so->rx.idx++] = cf->data[i];
/* initial setup for this pdu reception */
so->rx.sn = 1;
so->rx.state = ISOTP_WAIT_DATA;
/* no creation of flow control frames */
if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
return 0;
/* send our first FC frame */
isotp_send_fc(sk, ae, ISOTP_FC_CTS);
return 0;
}
static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
struct sk_buff *skb)
{
struct isotp_sock *so = isotp_sk(sk);
struct sk_buff *nskb;
int i;
if (so->rx.state != ISOTP_WAIT_DATA)
return 0;
/* drop if timestamp gap is less than force_rx_stmin nano secs */
if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
so->force_rx_stmin)
return 0;
so->lastrxcf_tstamp = skb->tstamp;
}
hrtimer_cancel(&so->rxtimer);
/* CFs are never longer than the FF */
if (cf->len > so->rx.ll_dl)
return 1;
/* CFs have usually the LL_DL length */
if (cf->len < so->rx.ll_dl) {
/* this is only allowed for the last CF */
if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
return 1;
}
if ((cf->data[ae] & 0x0F) != so->rx.sn) {
/* wrong sn detected - report 'illegal byte sequence' */
sk->sk_err = EILSEQ;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
/* reset rx state */
so->rx.state = ISOTP_IDLE;
return 1;
}
so->rx.sn++;
so->rx.sn %= 16;
for (i = ae + N_PCI_SZ; i < cf->len; i++) {
so->rx.buf[so->rx.idx++] = cf->data[i];
if (so->rx.idx >= so->rx.len)
break;
}
if (so->rx.idx >= so->rx.len) {
/* we are done */
so->rx.state = ISOTP_IDLE;
if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
/* malformed PDU - report 'not a data message' */
sk->sk_err = EBADMSG;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
return 1;
}
nskb = alloc_skb(so->rx.len, gfp_any());
if (!nskb)
return 1;
memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
so->rx.len);
nskb->tstamp = skb->tstamp;
nskb->dev = skb->dev;
isotp_rcv_skb(nskb, sk);
return 0;
}
/* perform blocksize handling, if enabled */
if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
/* start rx timeout watchdog */
hrtimer_start(&so->rxtimer, ktime_set(1, 0),
HRTIMER_MODE_REL_SOFT);
return 0;
}
/* no creation of flow control frames */
if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
return 0;
/* we reached the specified blocksize so->rxfc.bs */
isotp_send_fc(sk, ae, ISOTP_FC_CTS);
return 0;
}
static void isotp_rcv(struct sk_buff *skb, void *data)
{
struct sock *sk = (struct sock *)data;
struct isotp_sock *so = isotp_sk(sk);
struct canfd_frame *cf;
int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
u8 n_pci_type, sf_dl;
/* Strictly receive only frames with the configured MTU size
* => clear separation of CAN2.0 / CAN FD transport channels
*/
if (skb->len != so->ll.mtu)
return;
cf = (struct canfd_frame *)skb->data;
/* if enabled: check reception of my configured extended address */
if (ae && cf->data[0] != so->opt.rx_ext_address)
return;
n_pci_type = cf->data[ae] & 0xF0;
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
/* Make sure the state changes and data structures stay consistent at
* CAN frame reception time. This locking is not needed in real world
* use cases but the inconsistency can be triggered with syzkaller.
*/
spin_lock(&so->rx_lock);
if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
/* check rx/tx path half duplex expectations */
if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
(so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
goto out_unlock;
}
switch (n_pci_type) {
case N_PCI_FC:
/* tx path: flow control frame containing the FC parameters */
isotp_rcv_fc(so, cf, ae);
break;
case N_PCI_SF:
/* rx path: single frame
*
* As we do not have a rx.ll_dl configuration, we can only test
* if the CAN frames payload length matches the LL_DL == 8
* requirements - no matter if it's CAN 2.0 or CAN FD
*/
/* get the SF_DL from the N_PCI byte */
sf_dl = cf->data[ae] & 0x0F;
if (cf->len <= CAN_MAX_DLEN) {
isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
} else {
if (skb->len == CANFD_MTU) {
/* We have a CAN FD frame and CAN_DL is greater than 8:
* Only frames with the SF_DL == 0 ESC value are valid.
*
* If so take care of the increased SF PCI size
* (SF_PCI_SZ8) to point to the message content behind
* the extended SF PCI info and get the real SF_DL
* length value from the formerly first data byte.
*/
if (sf_dl == 0)
isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
cf->data[SF_PCI_SZ4 + ae]);
}
}
break;
case N_PCI_FF:
/* rx path: first frame */
isotp_rcv_ff(sk, cf, ae);
break;
case N_PCI_CF:
/* rx path: consecutive frame */
isotp_rcv_cf(sk, cf, ae, skb);
break;
}
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
out_unlock:
spin_unlock(&so->rx_lock);
}
static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
int ae, int off)
{
int pcilen = N_PCI_SZ + ae + off;
int space = so->tx.ll_dl - pcilen;
int num = min_t(int, so->tx.len - so->tx.idx, space);
int i;
cf->can_id = so->txid;
cf->len = num + pcilen;
if (num < space) {
if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
/* user requested padding */
cf->len = padlen(cf->len);
memset(cf->data, so->opt.txpad_content, cf->len);
} else if (cf->len > CAN_MAX_DLEN) {
/* mandatory padding for CAN FD frames */
cf->len = padlen(cf->len);
memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
cf->len);
}
}
for (i = 0; i < num; i++)
cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
if (ae)
cf->data[0] = so->opt.ext_address;
}
static void isotp_send_cframe(struct isotp_sock *so)
{
struct sock *sk = &so->sk;
struct sk_buff *skb;
struct net_device *dev;
struct canfd_frame *cf;
int can_send_ret;
int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
dev = dev_get_by_index(sock_net(sk), so->ifindex);
if (!dev)
return;
skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
if (!skb) {
dev_put(dev);
return;
}
can_skb_reserve(skb);
can_skb_prv(skb)->ifindex = dev->ifindex;
can_skb_prv(skb)->skbcnt = 0;
cf = (struct canfd_frame *)skb->data;
skb_put_zero(skb, so->ll.mtu);
/* create consecutive frame */
isotp_fill_dataframe(cf, so, ae, 0);
/* place consecutive frame N_PCI in appropriate index */
cf->data[ae] = N_PCI_CF | so->tx.sn++;
so->tx.sn %= 16;
so->tx.bs++;
cf->flags = so->ll.tx_flags;
skb->dev = dev;
can_skb_set_owner(skb, sk);
/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
if (so->cfecho)
pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
/* set consecutive frame echo tag */
so->cfecho = *(u32 *)cf->data;
/* send frame with local echo enabled */
can_send_ret = can_send(skb, 1);
if (can_send_ret) {
pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
__func__, ERR_PTR(can_send_ret));
if (can_send_ret == -ENOBUFS)
pr_notice_once("can-isotp: tx queue is full\n");
}
dev_put(dev);
}
static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
int ae)
{
int i;
int ff_pci_sz;
cf->can_id = so->txid;
cf->len = so->tx.ll_dl;
if (ae)
cf->data[0] = so->opt.ext_address;
/* create N_PCI bytes with 12/32 bit FF_DL data length */
if (so->tx.len > 4095) {
/* use 32 bit FF_DL notation */
cf->data[ae] = N_PCI_FF;
cf->data[ae + 1] = 0;
cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
ff_pci_sz = FF_PCI_SZ32;
} else {
/* use 12 bit FF_DL notation */
cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
ff_pci_sz = FF_PCI_SZ12;
}
/* add first data bytes depending on ae */
for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
cf->data[i] = so->tx.buf[so->tx.idx++];
so->tx.sn = 1;
so->tx.state = ISOTP_WAIT_FIRST_FC;
}
static void isotp_rcv_echo(struct sk_buff *skb, void *data)
{
struct sock *sk = (struct sock *)data;
struct isotp_sock *so = isotp_sk(sk);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
/* only handle my own local echo skb's */
if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
return;
/* cancel local echo timeout */
hrtimer_cancel(&so->txtimer);
/* local echo skb with consecutive frame has been consumed */
so->cfecho = 0;
if (so->tx.idx >= so->tx.len) {
/* we are done */
so->tx.state = ISOTP_IDLE;
wake_up_interruptible(&so->wait);
return;
}
if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
/* stop and wait for FC with timeout */
so->tx.state = ISOTP_WAIT_FC;
hrtimer_start(&so->txtimer, ktime_set(1, 0),
HRTIMER_MODE_REL_SOFT);
return;
}
/* no gap between data frames needed => use burst mode */
if (!so->tx_gap) {
isotp_send_cframe(so);
return;
}
/* start timer to send next consecutive frame with correct delay */
hrtimer_start(&so->txtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
}
static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
{
struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
txtimer);
struct sock *sk = &so->sk;
enum hrtimer_restart restart = HRTIMER_NORESTART;
switch (so->tx.state) {
case ISOTP_SENDING:
/* cfecho should be consumed by isotp_rcv_echo() here */
if (!so->cfecho) {
/* start timeout for unlikely lost echo skb */
hrtimer_set_expires(&so->txtimer,
ktime_add(ktime_get(),
ktime_set(2, 0)));
restart = HRTIMER_RESTART;
/* push out the next consecutive frame */
isotp_send_cframe(so);
break;
}
/* cfecho has not been cleared in isotp_rcv_echo() */
pr_notice_once("can-isotp: cfecho %08X timeout\n", so->cfecho);
fallthrough;
case ISOTP_WAIT_FC:
case ISOTP_WAIT_FIRST_FC:
/* we did not get any flow control frame in time */
/* report 'communication error on send' */
sk->sk_err = ECOMM;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
/* reset tx state */
so->tx.state = ISOTP_IDLE;
wake_up_interruptible(&so->wait);
break;
default:
WARN_ON_ONCE(1);
}
return restart;
}
static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
struct sock *sk = sock->sk;
struct isotp_sock *so = isotp_sk(sk);
u32 old_state = so->tx.state;
struct sk_buff *skb;
struct net_device *dev;
struct canfd_frame *cf;
int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
int off;
int err;
if (!so->bound)
return -EADDRNOTAVAIL;
/* we do not support multiple buffers - for now */
if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
wq_has_sleeper(&so->wait)) {
if (msg->msg_flags & MSG_DONTWAIT) {
err = -EAGAIN;
goto err_out;
}
/* wait for complete transmission of current pdu */
can: isotp: isotp_sendmsg(): add result check for wait_event_interruptible() Using wait_event_interruptible() to wait for complete transmission, but do not check the result of wait_event_interruptible() which can be interrupted. It will result in TX buffer has multiple accessors and the later process interferes with the previous process. Following is one of the problems reported by syzbot. ============================================================= WARNING: CPU: 0 PID: 0 at net/can/isotp.c:840 isotp_tx_timer_handler+0x2e0/0x4c0 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc7+ #68 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 RIP: 0010:isotp_tx_timer_handler+0x2e0/0x4c0 Call Trace: <IRQ> ? isotp_setsockopt+0x390/0x390 __hrtimer_run_queues+0xb8/0x610 hrtimer_run_softirq+0x91/0xd0 ? rcu_read_lock_sched_held+0x4d/0x80 __do_softirq+0xe8/0x553 irq_exit_rcu+0xf8/0x100 sysvec_apic_timer_interrupt+0x9e/0xc0 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 Add result check for wait_event_interruptible() in isotp_sendmsg() to avoid multiple accessers for tx buffer. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/all/10ca695732c9dd267c76a3c30f37aefe1ff7e32f.1633764159.git.william.xuanziyang@huawei.com Cc: stable@vger.kernel.org Reported-by: syzbot+78bab6958a614b0c80b9@syzkaller.appspotmail.com Signed-off-by: Ziyang Xuan <william.xuanziyang@huawei.com> Acked-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2021-10-09 07:40:18 +00:00
err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
if (err)
goto err_out;
}
if (!size || size > MAX_MSG_LENGTH) {
err = -EINVAL;
goto err_out_drop;
}
/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
/* does the given data fit into a single frame for SF_BROADCAST? */
if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
(size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
err = -EINVAL;
goto err_out_drop;
}
err = memcpy_from_msg(so->tx.buf, msg, size);
if (err < 0)
goto err_out_drop;
dev = dev_get_by_index(sock_net(sk), so->ifindex);
if (!dev) {
err = -ENXIO;
goto err_out_drop;
}
skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
msg->msg_flags & MSG_DONTWAIT, &err);
if (!skb) {
dev_put(dev);
goto err_out_drop;
}
can_skb_reserve(skb);
can_skb_prv(skb)->ifindex = dev->ifindex;
can_skb_prv(skb)->skbcnt = 0;
so->tx.len = size;
so->tx.idx = 0;
cf = (struct canfd_frame *)skb->data;
skb_put_zero(skb, so->ll.mtu);
/* check for single frame transmission depending on TX_DL */
if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
/* The message size generally fits into a SingleFrame - good.
*
* SF_DL ESC offset optimization:
*
* When TX_DL is greater 8 but the message would still fit
* into a 8 byte CAN frame, we can omit the offset.
* This prevents a protocol caused length extension from
* CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
*/
if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
off = 0;
isotp_fill_dataframe(cf, so, ae, off);
/* place single frame N_PCI w/o length in appropriate index */
cf->data[ae] = N_PCI_SF;
/* place SF_DL size value depending on the SF_DL ESC offset */
if (off)
cf->data[SF_PCI_SZ4 + ae] = size;
else
cf->data[ae] |= size;
so->tx.state = ISOTP_IDLE;
wake_up_interruptible(&so->wait);
/* don't enable wait queue for a single frame transmission */
wait_tx_done = 0;
} else {
/* send first frame and wait for FC */
isotp_create_fframe(cf, so, ae);
/* start timeout for FC */
hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
}
/* send the first or only CAN frame */
cf->flags = so->ll.tx_flags;
skb->dev = dev;
skb->sk = sk;
err = can_send(skb, 1);
dev_put(dev);
if (err) {
pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
__func__, ERR_PTR(err));
goto err_out_drop;
}
if (wait_tx_done) {
/* wait for complete transmission of current pdu */
wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
if (sk->sk_err)
return -sk->sk_err;
}
return size;
err_out_drop:
/* drop this PDU and unlock a potential wait queue */
old_state = ISOTP_IDLE;
err_out:
so->tx.state = old_state;
if (so->tx.state == ISOTP_IDLE)
wake_up_interruptible(&so->wait);
return err;
}
static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
int flags)
{
struct sock *sk = sock->sk;
struct sk_buff *skb;
int err = 0;
int noblock;
noblock = flags & MSG_DONTWAIT;
flags &= ~MSG_DONTWAIT;
skb = skb_recv_datagram(sk, flags, noblock, &err);
if (!skb)
return err;
if (size < skb->len)
msg->msg_flags |= MSG_TRUNC;
else
size = skb->len;
err = memcpy_to_msg(msg, skb->data, size);
if (err < 0) {
skb_free_datagram(sk, skb);
return err;
}
sock_recv_timestamp(msg, sk, skb);
if (msg->msg_name) {
__sockaddr_check_size(ISOTP_MIN_NAMELEN);
msg->msg_namelen = ISOTP_MIN_NAMELEN;
memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
}
skb_free_datagram(sk, skb);
return size;
}
static int isotp_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct isotp_sock *so;
struct net *net;
if (!sk)
return 0;
so = isotp_sk(sk);
net = sock_net(sk);
/* wait for complete transmission of current pdu */
wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
spin_lock(&isotp_notifier_lock);
while (isotp_busy_notifier == so) {
spin_unlock(&isotp_notifier_lock);
schedule_timeout_uninterruptible(1);
spin_lock(&isotp_notifier_lock);
}
list_del(&so->notifier);
spin_unlock(&isotp_notifier_lock);
lock_sock(sk);
/* remove current filters & unregister */
if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
if (so->ifindex) {
struct net_device *dev;
dev = dev_get_by_index(net, so->ifindex);
if (dev) {
can_rx_unregister(net, dev, so->rxid,
SINGLE_MASK(so->rxid),
isotp_rcv, sk);
can_rx_unregister(net, dev, so->txid,
SINGLE_MASK(so->txid),
isotp_rcv_echo, sk);
dev_put(dev);
synchronize_rcu();
}
}
}
hrtimer_cancel(&so->txtimer);
hrtimer_cancel(&so->rxtimer);
so->ifindex = 0;
so->bound = 0;
sock_orphan(sk);
sock->sk = NULL;
release_sock(sk);
sock_put(sk);
return 0;
}
static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
{
struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
struct sock *sk = sock->sk;
struct isotp_sock *so = isotp_sk(sk);
struct net *net = sock_net(sk);
int ifindex;
struct net_device *dev;
int err = 0;
int notify_enetdown = 0;
int do_rx_reg = 1;
if (len < ISOTP_MIN_NAMELEN)
return -EINVAL;
if (addr->can_addr.tp.tx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG))
return -EADDRNOTAVAIL;
if (!addr->can_ifindex)
return -ENODEV;
lock_sock(sk);
/* do not register frame reception for functional addressing */
if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
do_rx_reg = 0;
/* do not validate rx address for functional addressing */
if (do_rx_reg) {
if (addr->can_addr.tp.rx_id == addr->can_addr.tp.tx_id) {
err = -EADDRNOTAVAIL;
goto out;
}
if (addr->can_addr.tp.rx_id & (CAN_ERR_FLAG | CAN_RTR_FLAG)) {
err = -EADDRNOTAVAIL;
goto out;
}
}
if (so->bound && addr->can_ifindex == so->ifindex &&
addr->can_addr.tp.rx_id == so->rxid &&
addr->can_addr.tp.tx_id == so->txid)
goto out;
dev = dev_get_by_index(net, addr->can_ifindex);
if (!dev) {
err = -ENODEV;
goto out;
}
if (dev->type != ARPHRD_CAN) {
dev_put(dev);
err = -ENODEV;
goto out;
}
if (dev->mtu < so->ll.mtu) {
dev_put(dev);
err = -EINVAL;
goto out;
}
if (!(dev->flags & IFF_UP))
notify_enetdown = 1;
ifindex = dev->ifindex;
if (do_rx_reg) {
can_rx_register(net, dev, addr->can_addr.tp.rx_id,
SINGLE_MASK(addr->can_addr.tp.rx_id),
isotp_rcv, sk, "isotp", sk);
/* no consecutive frame echo skb in flight */
so->cfecho = 0;
/* register for echo skb's */
can_rx_register(net, dev, addr->can_addr.tp.tx_id,
SINGLE_MASK(addr->can_addr.tp.tx_id),
isotp_rcv_echo, sk, "isotpe", sk);
}
dev_put(dev);
if (so->bound && do_rx_reg) {
/* unregister old filter */
if (so->ifindex) {
dev = dev_get_by_index(net, so->ifindex);
if (dev) {
can_rx_unregister(net, dev, so->rxid,
SINGLE_MASK(so->rxid),
isotp_rcv, sk);
can_rx_unregister(net, dev, so->txid,
SINGLE_MASK(so->txid),
isotp_rcv_echo, sk);
dev_put(dev);
}
}
}
/* switch to new settings */
so->ifindex = ifindex;
so->rxid = addr->can_addr.tp.rx_id;
so->txid = addr->can_addr.tp.tx_id;
so->bound = 1;
out:
release_sock(sk);
if (notify_enetdown) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
}
return err;
}
static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
{
struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
struct sock *sk = sock->sk;
struct isotp_sock *so = isotp_sk(sk);
if (peer)
return -EOPNOTSUPP;
memset(addr, 0, ISOTP_MIN_NAMELEN);
addr->can_family = AF_CAN;
addr->can_ifindex = so->ifindex;
addr->can_addr.tp.rx_id = so->rxid;
addr->can_addr.tp.tx_id = so->txid;
return ISOTP_MIN_NAMELEN;
}
static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct isotp_sock *so = isotp_sk(sk);
int ret = 0;
if (so->bound)
return -EISCONN;
switch (optname) {
case CAN_ISOTP_OPTS:
if (optlen != sizeof(struct can_isotp_options))
return -EINVAL;
if (copy_from_sockptr(&so->opt, optval, optlen))
return -EFAULT;
/* no separate rx_ext_address is given => use ext_address */
if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
so->opt.rx_ext_address = so->opt.ext_address;
/* check for frame_txtime changes (0 => no changes) */
if (so->opt.frame_txtime) {
if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
so->frame_txtime = 0;
else
so->frame_txtime = so->opt.frame_txtime;
}
break;
case CAN_ISOTP_RECV_FC:
if (optlen != sizeof(struct can_isotp_fc_options))
return -EINVAL;
if (copy_from_sockptr(&so->rxfc, optval, optlen))
return -EFAULT;
break;
case CAN_ISOTP_TX_STMIN:
if (optlen != sizeof(u32))
return -EINVAL;
if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
return -EFAULT;
break;
case CAN_ISOTP_RX_STMIN:
if (optlen != sizeof(u32))
return -EINVAL;
if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
return -EFAULT;
break;
case CAN_ISOTP_LL_OPTS:
if (optlen == sizeof(struct can_isotp_ll_options)) {
struct can_isotp_ll_options ll;
if (copy_from_sockptr(&ll, optval, optlen))
return -EFAULT;
/* check for correct ISO 11898-1 DLC data length */
if (ll.tx_dl != padlen(ll.tx_dl))
return -EINVAL;
if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
return -EINVAL;
if (ll.mtu == CAN_MTU &&
(ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
return -EINVAL;
memcpy(&so->ll, &ll, sizeof(ll));
/* set ll_dl for tx path to similar place as for rx */
so->tx.ll_dl = ll.tx_dl;
} else {
return -EINVAL;
}
break;
default:
ret = -ENOPROTOOPT;
}
return ret;
}
static int isotp_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
int ret;
if (level != SOL_CAN_ISOTP)
return -EINVAL;
lock_sock(sk);
ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
release_sock(sk);
return ret;
}
static int isotp_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct isotp_sock *so = isotp_sk(sk);
int len;
void *val;
if (level != SOL_CAN_ISOTP)
return -EINVAL;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case CAN_ISOTP_OPTS:
len = min_t(int, len, sizeof(struct can_isotp_options));
val = &so->opt;
break;
case CAN_ISOTP_RECV_FC:
len = min_t(int, len, sizeof(struct can_isotp_fc_options));
val = &so->rxfc;
break;
case CAN_ISOTP_TX_STMIN:
len = min_t(int, len, sizeof(u32));
val = &so->force_tx_stmin;
break;
case CAN_ISOTP_RX_STMIN:
len = min_t(int, len, sizeof(u32));
val = &so->force_rx_stmin;
break;
case CAN_ISOTP_LL_OPTS:
len = min_t(int, len, sizeof(struct can_isotp_ll_options));
val = &so->ll;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
static void isotp_notify(struct isotp_sock *so, unsigned long msg,
struct net_device *dev)
{
struct sock *sk = &so->sk;
if (!net_eq(dev_net(dev), sock_net(sk)))
return;
if (so->ifindex != dev->ifindex)
return;
switch (msg) {
case NETDEV_UNREGISTER:
lock_sock(sk);
/* remove current filters & unregister */
if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
can_rx_unregister(dev_net(dev), dev, so->rxid,
SINGLE_MASK(so->rxid),
isotp_rcv, sk);
can_rx_unregister(dev_net(dev), dev, so->txid,
SINGLE_MASK(so->txid),
isotp_rcv_echo, sk);
}
so->ifindex = 0;
so->bound = 0;
release_sock(sk);
sk->sk_err = ENODEV;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
break;
case NETDEV_DOWN:
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
break;
}
}
static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
if (dev->type != ARPHRD_CAN)
return NOTIFY_DONE;
if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
return NOTIFY_DONE;
if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
return NOTIFY_DONE;
spin_lock(&isotp_notifier_lock);
list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
spin_unlock(&isotp_notifier_lock);
isotp_notify(isotp_busy_notifier, msg, dev);
spin_lock(&isotp_notifier_lock);
}
isotp_busy_notifier = NULL;
spin_unlock(&isotp_notifier_lock);
return NOTIFY_DONE;
}
static int isotp_init(struct sock *sk)
{
struct isotp_sock *so = isotp_sk(sk);
so->ifindex = 0;
so->bound = 0;
so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
/* set ll_dl for tx path to similar place as for rx */
so->tx.ll_dl = so->ll.tx_dl;
so->rx.state = ISOTP_IDLE;
so->tx.state = ISOTP_IDLE;
hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
so->rxtimer.function = isotp_rx_timer_handler;
hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
so->txtimer.function = isotp_tx_timer_handler;
init_waitqueue_head(&so->wait);
can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. Fixes: e057dd3fc20f ("can: add ISO 15765-2:2016 transport protocol") Link: https://lore.kernel.org/linux-can/d7e69278-d741-c706-65e1-e87623d9a8e8@huawei.com/T/ Link: https://lore.kernel.org/all/20220208200026.13783-1-socketcan@hartkopp.net Cc: stable@vger.kernel.org Reported-by: syzbot+4c63f36709a642f801c5@syzkaller.appspotmail.com Reported-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-02-08 20:00:26 +00:00
spin_lock_init(&so->rx_lock);
spin_lock(&isotp_notifier_lock);
list_add_tail(&so->notifier, &isotp_notifier_list);
spin_unlock(&isotp_notifier_lock);
return 0;
}
static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
unsigned long arg)
{
/* no ioctls for socket layer -> hand it down to NIC layer */
return -ENOIOCTLCMD;
}
static const struct proto_ops isotp_ops = {
.family = PF_CAN,
.release = isotp_release,
.bind = isotp_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = isotp_getname,
.poll = datagram_poll,
.ioctl = isotp_sock_no_ioctlcmd,
.gettstamp = sock_gettstamp,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = isotp_setsockopt,
.getsockopt = isotp_getsockopt,
.sendmsg = isotp_sendmsg,
.recvmsg = isotp_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct proto isotp_proto __read_mostly = {
.name = "CAN_ISOTP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct isotp_sock),
.init = isotp_init,
};
static const struct can_proto isotp_can_proto = {
.type = SOCK_DGRAM,
.protocol = CAN_ISOTP,
.ops = &isotp_ops,
.prot = &isotp_proto,
};
static struct notifier_block canisotp_notifier = {
.notifier_call = isotp_notifier
};
static __init int isotp_module_init(void)
{
int err;
pr_info("can: isotp protocol\n");
err = can_proto_register(&isotp_can_proto);
if (err < 0)
pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
else
register_netdevice_notifier(&canisotp_notifier);
return err;
}
static __exit void isotp_module_exit(void)
{
can_proto_unregister(&isotp_can_proto);
unregister_netdevice_notifier(&canisotp_notifier);
}
module_init(isotp_module_init);
module_exit(isotp_module_exit);