License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2010-10-26 00:58:04 +00:00
|
|
|
/*
|
|
|
|
* sp5100_tco: TCO timer driver for sp5100 chipsets.
|
|
|
|
*
|
|
|
|
* (c) Copyright 2009 Google Inc., All Rights Reserved.
|
|
|
|
*
|
|
|
|
* TCO timer driver for sp5100 chipsets
|
|
|
|
*/
|
|
|
|
|
2017-12-24 21:04:15 +00:00
|
|
|
#include <linux/bitops.h>
|
|
|
|
|
2010-10-26 00:58:04 +00:00
|
|
|
/*
|
|
|
|
* Some address definitions for the Watchdog
|
|
|
|
*/
|
|
|
|
#define SP5100_WDT_MEM_MAP_SIZE 0x08
|
|
|
|
#define SP5100_WDT_CONTROL(base) ((base) + 0x00) /* Watchdog Control */
|
|
|
|
#define SP5100_WDT_COUNT(base) ((base) + 0x04) /* Watchdog Count */
|
|
|
|
|
2017-12-24 21:04:15 +00:00
|
|
|
#define SP5100_WDT_START_STOP_BIT BIT(0)
|
|
|
|
#define SP5100_WDT_FIRED BIT(1)
|
|
|
|
#define SP5100_WDT_ACTION_RESET BIT(2)
|
2017-12-24 21:04:16 +00:00
|
|
|
#define SP5100_WDT_DISABLED BIT(3)
|
2017-12-24 21:04:15 +00:00
|
|
|
#define SP5100_WDT_TRIGGER_BIT BIT(7)
|
2010-10-26 00:58:04 +00:00
|
|
|
|
|
|
|
#define SP5100_PM_IOPORTS_SIZE 0x02
|
|
|
|
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
/*
|
|
|
|
* These two IO registers are hardcoded and there doesn't seem to be a way to
|
2010-10-26 00:58:04 +00:00
|
|
|
* read them from a register.
|
|
|
|
*/
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
|
2017-12-24 21:04:06 +00:00
|
|
|
/* For SP5100/SB7x0/SB8x0 chipset */
|
2010-10-26 00:58:04 +00:00
|
|
|
#define SP5100_IO_PM_INDEX_REG 0xCD6
|
|
|
|
#define SP5100_IO_PM_DATA_REG 0xCD7
|
|
|
|
|
2017-12-24 21:04:06 +00:00
|
|
|
/* For SP5100/SB7x0 chipset */
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
#define SP5100_SB_RESOURCE_MMIO_BASE 0x9C
|
|
|
|
|
2010-10-26 00:58:04 +00:00
|
|
|
#define SP5100_PM_WATCHDOG_CONTROL 0x69
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
#define SP5100_PM_WATCHDOG_BASE 0x6C
|
2010-10-26 00:58:04 +00:00
|
|
|
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
#define SP5100_PCI_WATCHDOG_MISC_REG 0x41
|
2017-12-24 21:04:15 +00:00
|
|
|
#define SP5100_PCI_WATCHDOG_DECODE_EN BIT(3)
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
|
2017-12-24 21:04:15 +00:00
|
|
|
#define SP5100_PM_WATCHDOG_DISABLE ((u8)BIT(0))
|
|
|
|
#define SP5100_PM_WATCHDOG_SECOND_RES GENMASK(2, 1)
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
|
|
|
|
#define SP5100_DEVNAME "SP5100 TCO"
|
|
|
|
|
|
|
|
/* For SB8x0(or later) chipset */
|
|
|
|
#define SB800_PM_ACPI_MMIO_EN 0x24
|
|
|
|
#define SB800_PM_WATCHDOG_CONTROL 0x48
|
|
|
|
#define SB800_PM_WATCHDOG_BASE 0x48
|
|
|
|
#define SB800_PM_WATCHDOG_CONFIG 0x4C
|
|
|
|
|
2017-12-24 21:04:15 +00:00
|
|
|
#define SB800_PCI_WATCHDOG_DECODE_EN BIT(0)
|
|
|
|
#define SB800_PM_WATCHDOG_DISABLE ((u8)BIT(1))
|
|
|
|
#define SB800_PM_WATCHDOG_SECOND_RES GENMASK(1, 0)
|
|
|
|
#define SB800_ACPI_MMIO_DECODE_EN BIT(0)
|
|
|
|
#define SB800_ACPI_MMIO_SEL BIT(1)
|
2022-02-02 15:35:23 +00:00
|
|
|
#define SB800_ACPI_MMIO_MASK GENMASK(1, 0)
|
watchdog: sp5100_tco: Add SB8x0 chipset support
The current sp5100_tco driver only supports SP5100/SB7x0 chipset, doesn't
support SB8x0 chipset, because current sp5100_tco driver doesn't know that the
offset address for watchdog timer was changed from SB8x0 chipset.
The offset address of SP5100 and SB7x0 chipsets are as follows, quote from the
AMD SB700/710/750 Register Reference Guide (Page 164) and the AMD SP5100
Register Reference Guide (Page 166).
WatchDogTimerControl 69h
WatchDogTimerBase0 6Ch
WatchDogTimerBase1 6Dh
WatchDogTimerBase2 6Eh
WatchDogTimerBase3 6Fh
In contrast, the offset address of SB8x0 chipset is as follows, quote from
AMD SB800-Series Southbridges Register Reference Guide (Page 147).
WatchDogTimerEn 48h
WatchDogTimerConfig 4Ch
So, In the case of SB8x0 chipset, sp5100_tco reads meaningless MMIO
address (for example, 0xbafe00) from wrong offset address, and the following
message is logged.
SP5100 TCO timer: mmio address 0xbafe00 already in use
With this patch, sp5100_tco driver supports SB8x0 chipset, and can avoid
iomem resource conflict. The processing of this patch is as follows.
Step 1) Attempt to get the watchdog base address from indirect I/O (0xCD6
and 0xCD7).
- Go to the step 7 if obtained address hasn't conflicted with other
resource. But, currently, the address (0xfec000f0) conflicts with the
IOAPIC MMIO address, and the following message is logged.
SP5100 TCO timer: mmio address 0xfec000f0 already in use
0xfec000f0 is recommended by AMD BIOS Developer's Guide. So, go to the
next step.
Step 2) Attempt to get the SBResource_MMIO base address from AcpiMmioEN (for
SB8x0, PM_Reg:24h) or SBResource_MMIO (SP5100/SB7x0, PCI_Reg:9Ch)
register.
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- If above condition isn't true, go to the next step.
Step 3) Attempt to get the free MMIO address from allocate_resource().
- Go to the step 7 if these register has enabled by BIOS, and obtained
address hasn't conflicted with other resource.
- Driver initialization has failed if obtained address has conflicted
with other resource, and no 'force_addr' parameter is specified.
Step 4) Use the specified address If 'force_addr' parameter is specified.
- allocate_resource() function may fail, when the PCI bridge device occupies
iomem resource from 0xf0000000 to 0xffffffff. To handle such a case,
I added 'force_addr' parameter to sp5100_tco driver. With 'force_addr'
parameter, sp5100_tco driver directly can assign MMIO address for watchdog
timer from free iomem region. Note that It's dangerous to specify wrong
address in the 'force_addr' parameter.
Example of force_addr parameter use
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
<--- free MMIO region
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
# cat /etc/modprobe.d/sp5100_tco.conf
options sp5100_tco force_addr=0xfec00800
# modprobe sp5100_tco
# cat /proc/iomem
...snip...
fec00000-fec003ff : IOAPIC 0
fec00800-fec00807 : SP5100 TCO <--- watchdog timer MMIO address
fec10000-fec1001f : pnp 00:0b
fec20000-fec203ff : IOAPIC 1
...snip...
#
- Driver initialization has failed if specified address has conflicted
with other resource.
Step 5) Disable the watchdog timer
- To rewrite the watchdog timer register of the chipset, absolutely
guarantee that the watchdog timer is disabled.
Step 6) Re-program the watchdog timer MMIO address to chipset.
- Re-program the obtained MMIO address in Step 3 or Step 4 to chipset via
indirect I/O (0xCD6 and 0xCD7).
Step 7) Enable and setup the watchdog timer
This patch has worked fine on my test environment (ASUS M4A89GTD-PRO/USB3 and
DL165G7). therefore I believe that it's no problem to re-program the MMIO
address for watchdog timer to chipset during disabled watchdog. However,
I'm not sure about it, because I don't know much about chipset programming.
So, any comments will be welcome.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43176
Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Signed-off-by: Takahisa Tanaka <mc74hc00@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2012-12-02 05:33:18 +00:00
|
|
|
|
|
|
|
#define SB800_PM_WDT_MMIO_OFFSET 0xB00
|
|
|
|
|
|
|
|
#define SB800_DEVNAME "SB800 TCO"
|
2017-12-24 21:04:17 +00:00
|
|
|
|
|
|
|
/* For recent chips with embedded FCH (rev 40+) */
|
|
|
|
|
|
|
|
#define EFCH_PM_DECODEEN 0x00
|
|
|
|
|
|
|
|
#define EFCH_PM_DECODEEN_WDT_TMREN BIT(7)
|
|
|
|
|
|
|
|
|
2020-09-10 16:31:08 +00:00
|
|
|
#define EFCH_PM_DECODEEN3 0x03
|
2017-12-24 21:04:17 +00:00
|
|
|
#define EFCH_PM_DECODEEN_SECOND_RES GENMASK(1, 0)
|
|
|
|
#define EFCH_PM_WATCHDOG_DISABLE ((u8)GENMASK(3, 2))
|
|
|
|
|
|
|
|
/* WDT MMIO if enabled with PM00_DECODEEN_WDT_TMREN */
|
|
|
|
#define EFCH_PM_WDT_ADDR 0xfeb00000
|
|
|
|
|
|
|
|
#define EFCH_PM_ISACONTROL 0x04
|
|
|
|
|
|
|
|
#define EFCH_PM_ISACONTROL_MMIOEN BIT(1)
|
|
|
|
|
|
|
|
#define EFCH_PM_ACPI_MMIO_ADDR 0xfed80000
|
2022-02-02 15:35:24 +00:00
|
|
|
#define EFCH_PM_ACPI_MMIO_PM_OFFSET 0x00000300
|
2017-12-24 21:04:17 +00:00
|
|
|
#define EFCH_PM_ACPI_MMIO_WDT_OFFSET 0x00000b00
|
2022-02-02 15:35:24 +00:00
|
|
|
|
|
|
|
#define EFCH_PM_ACPI_MMIO_PM_ADDR (EFCH_PM_ACPI_MMIO_ADDR + \
|
|
|
|
EFCH_PM_ACPI_MMIO_PM_OFFSET)
|
|
|
|
#define EFCH_PM_ACPI_MMIO_PM_SIZE 8
|
2022-02-02 15:35:25 +00:00
|
|
|
#define AMD_ZEN_SMBUS_PCI_REV 0x51
|