linux/net/rds/ib_send.c

997 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/in.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/ratelimit.h>
#include "rds.h"
#include "ib.h"
/*
* Convert IB-specific error message to RDS error message and call core
* completion handler.
*/
static void rds_ib_send_complete(struct rds_message *rm,
int wc_status,
void (*complete)(struct rds_message *rm, int status))
{
int notify_status;
switch (wc_status) {
case IB_WC_WR_FLUSH_ERR:
return;
case IB_WC_SUCCESS:
notify_status = RDS_RDMA_SUCCESS;
break;
case IB_WC_REM_ACCESS_ERR:
notify_status = RDS_RDMA_REMOTE_ERROR;
break;
default:
notify_status = RDS_RDMA_OTHER_ERROR;
break;
}
complete(rm, notify_status);
}
static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
struct rm_data_op *op,
int wc_status)
{
if (op->op_nents)
ib_dma_unmap_sg(ic->i_cm_id->device,
op->op_sg, op->op_nents,
DMA_TO_DEVICE);
}
static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
struct rm_rdma_op *op,
int wc_status)
{
if (op->op_mapped) {
ib_dma_unmap_sg(ic->i_cm_id->device,
op->op_sg, op->op_nents,
op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
op->op_mapped = 0;
}
/* If the user asked for a completion notification on this
* message, we can implement three different semantics:
* 1. Notify when we received the ACK on the RDS message
* that was queued with the RDMA. This provides reliable
* notification of RDMA status at the expense of a one-way
* packet delay.
* 2. Notify when the IB stack gives us the completion event for
* the RDMA operation.
* 3. Notify when the IB stack gives us the completion event for
* the accompanying RDS messages.
* Here, we implement approach #3. To implement approach #2,
* we would need to take an event for the rdma WR. To implement #1,
* don't call rds_rdma_send_complete at all, and fall back to the notify
* handling in the ACK processing code.
*
* Note: There's no need to explicitly sync any RDMA buffers using
* ib_dma_sync_sg_for_cpu - the completion for the RDMA
* operation itself unmapped the RDMA buffers, which takes care
* of synching.
*/
rds_ib_send_complete(container_of(op, struct rds_message, rdma),
wc_status, rds_rdma_send_complete);
if (op->op_write)
rds_stats_add(s_send_rdma_bytes, op->op_bytes);
else
rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
}
static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
struct rm_atomic_op *op,
int wc_status)
{
/* unmap atomic recvbuf */
if (op->op_mapped) {
ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
DMA_FROM_DEVICE);
op->op_mapped = 0;
}
rds_ib_send_complete(container_of(op, struct rds_message, atomic),
wc_status, rds_atomic_send_complete);
if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
rds_ib_stats_inc(s_ib_atomic_cswp);
else
rds_ib_stats_inc(s_ib_atomic_fadd);
}
/*
* Unmap the resources associated with a struct send_work.
*
* Returns the rm for no good reason other than it is unobtainable
* other than by switching on wr.opcode, currently, and the caller,
* the event handler, needs it.
*/
static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
struct rds_ib_send_work *send,
int wc_status)
{
struct rds_message *rm = NULL;
/* In the error case, wc.opcode sometimes contains garbage */
switch (send->s_wr.opcode) {
case IB_WR_SEND:
if (send->s_op) {
rm = container_of(send->s_op, struct rds_message, data);
rds_ib_send_unmap_data(ic, send->s_op, wc_status);
}
break;
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_READ:
if (send->s_op) {
rm = container_of(send->s_op, struct rds_message, rdma);
rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
}
break;
case IB_WR_ATOMIC_FETCH_AND_ADD:
case IB_WR_ATOMIC_CMP_AND_SWP:
if (send->s_op) {
rm = container_of(send->s_op, struct rds_message, atomic);
rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
}
break;
default:
printk_ratelimited(KERN_NOTICE
"RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
__func__, send->s_wr.opcode);
break;
}
send->s_wr.opcode = 0xdead;
return rm;
}
void rds_ib_send_init_ring(struct rds_ib_connection *ic)
{
struct rds_ib_send_work *send;
u32 i;
for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
struct ib_sge *sge;
send->s_op = NULL;
send->s_wr.wr_id = i;
send->s_wr.sg_list = send->s_sge;
send->s_wr.ex.imm_data = 0;
sge = &send->s_sge[0];
sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
sge->length = sizeof(struct rds_header);
sge->lkey = ic->i_pd->local_dma_lkey;
send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
}
}
void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
{
struct rds_ib_send_work *send;
u32 i;
for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
if (send->s_op && send->s_wr.opcode != 0xdead)
rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
}
}
/*
* The only fast path caller always has a non-zero nr, so we don't
* bother testing nr before performing the atomic sub.
*/
static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
{
if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
waitqueue_active(&rds_ib_ring_empty_wait))
wake_up(&rds_ib_ring_empty_wait);
BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
}
/*
* The _oldest/_free ring operations here race cleanly with the alloc/unalloc
* operations performed in the send path. As the sender allocs and potentially
* unallocs the next free entry in the ring it doesn't alter which is
* the next to be freed, which is what this is concerned with.
*/
void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
{
struct rds_connection *conn = context;
struct rds_ib_connection *ic = conn->c_transport_data;
struct rds_message *rm = NULL;
struct ib_wc wc;
struct rds_ib_send_work *send;
u32 completed;
u32 oldest;
u32 i = 0;
int ret;
int nr_sig = 0;
rdsdebug("cq %p conn %p\n", cq, conn);
rds_ib_stats_inc(s_ib_tx_cq_call);
ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
if (ret)
rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
while (ib_poll_cq(cq, 1, &wc) > 0) {
rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
(unsigned long long)wc.wr_id, wc.status,
ib_wc_status_msg(wc.status), wc.byte_len,
be32_to_cpu(wc.ex.imm_data));
rds_ib_stats_inc(s_ib_tx_cq_event);
if (wc.wr_id == RDS_IB_ACK_WR_ID) {
if (time_after(jiffies, ic->i_ack_queued + HZ/2))
rds_ib_stats_inc(s_ib_tx_stalled);
rds_ib_ack_send_complete(ic);
continue;
}
oldest = rds_ib_ring_oldest(&ic->i_send_ring);
completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
for (i = 0; i < completed; i++) {
send = &ic->i_sends[oldest];
if (send->s_wr.send_flags & IB_SEND_SIGNALED)
nr_sig++;
rm = rds_ib_send_unmap_op(ic, send, wc.status);
if (time_after(jiffies, send->s_queued + HZ/2))
rds_ib_stats_inc(s_ib_tx_stalled);
if (send->s_op) {
if (send->s_op == rm->m_final_op) {
/* If anyone waited for this message to get flushed out, wake
* them up now */
rds_message_unmapped(rm);
}
rds_message_put(rm);
send->s_op = NULL;
}
oldest = (oldest + 1) % ic->i_send_ring.w_nr;
}
rds_ib_ring_free(&ic->i_send_ring, completed);
rds_ib_sub_signaled(ic, nr_sig);
nr_sig = 0;
if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
test_bit(0, &conn->c_map_queued))
queue_delayed_work(rds_wq, &conn->c_send_w, 0);
/* We expect errors as the qp is drained during shutdown */
if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
rds_ib_conn_error(conn, "send completion on %pI4 had status "
"%u (%s), disconnecting and reconnecting\n",
&conn->c_faddr, wc.status,
ib_wc_status_msg(wc.status));
}
}
}
/*
* This is the main function for allocating credits when sending
* messages.
*
* Conceptually, we have two counters:
* - send credits: this tells us how many WRs we're allowed
* to submit without overruning the receiver's queue. For
* each SEND WR we post, we decrement this by one.
*
* - posted credits: this tells us how many WRs we recently
* posted to the receive queue. This value is transferred
* to the peer as a "credit update" in a RDS header field.
* Every time we transmit credits to the peer, we subtract
* the amount of transferred credits from this counter.
*
* It is essential that we avoid situations where both sides have
* exhausted their send credits, and are unable to send new credits
* to the peer. We achieve this by requiring that we send at least
* one credit update to the peer before exhausting our credits.
* When new credits arrive, we subtract one credit that is withheld
* until we've posted new buffers and are ready to transmit these
* credits (see rds_ib_send_add_credits below).
*
* The RDS send code is essentially single-threaded; rds_send_xmit
* sets RDS_IN_XMIT to ensure exclusive access to the send ring.
* However, the ACK sending code is independent and can race with
* message SENDs.
*
* In the send path, we need to update the counters for send credits
* and the counter of posted buffers atomically - when we use the
* last available credit, we cannot allow another thread to race us
* and grab the posted credits counter. Hence, we have to use a
* spinlock to protect the credit counter, or use atomics.
*
* Spinlocks shared between the send and the receive path are bad,
* because they create unnecessary delays. An early implementation
* using a spinlock showed a 5% degradation in throughput at some
* loads.
*
* This implementation avoids spinlocks completely, putting both
* counters into a single atomic, and updating that atomic using
* atomic_add (in the receive path, when receiving fresh credits),
* and using atomic_cmpxchg when updating the two counters.
*/
int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
{
unsigned int avail, posted, got = 0, advertise;
long oldval, newval;
*adv_credits = 0;
if (!ic->i_flowctl)
return wanted;
try_again:
advertise = 0;
oldval = newval = atomic_read(&ic->i_credits);
posted = IB_GET_POST_CREDITS(oldval);
avail = IB_GET_SEND_CREDITS(oldval);
rdsdebug("wanted=%u credits=%u posted=%u\n",
wanted, avail, posted);
/* The last credit must be used to send a credit update. */
if (avail && !posted)
avail--;
if (avail < wanted) {
struct rds_connection *conn = ic->i_cm_id->context;
/* Oops, there aren't that many credits left! */
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
got = avail;
} else {
/* Sometimes you get what you want, lalala. */
got = wanted;
}
newval -= IB_SET_SEND_CREDITS(got);
/*
* If need_posted is non-zero, then the caller wants
* the posted regardless of whether any send credits are
* available.
*/
if (posted && (got || need_posted)) {
advertise = min_t(unsigned int, posted, max_posted);
newval -= IB_SET_POST_CREDITS(advertise);
}
/* Finally bill everything */
if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
goto try_again;
*adv_credits = advertise;
return got;
}
void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
{
struct rds_ib_connection *ic = conn->c_transport_data;
if (credits == 0)
return;
rdsdebug("credits=%u current=%u%s\n",
credits,
IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
queue_delayed_work(rds_wq, &conn->c_send_w, 0);
WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
rds_ib_stats_inc(s_ib_rx_credit_updates);
}
void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
{
struct rds_ib_connection *ic = conn->c_transport_data;
if (posted == 0)
return;
atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
/* Decide whether to send an update to the peer now.
* If we would send a credit update for every single buffer we
* post, we would end up with an ACK storm (ACK arrives,
* consumes buffer, we refill the ring, send ACK to remote
* advertising the newly posted buffer... ad inf)
*
* Performance pretty much depends on how often we send
* credit updates - too frequent updates mean lots of ACKs.
* Too infrequent updates, and the peer will run out of
* credits and has to throttle.
* For the time being, 16 seems to be a good compromise.
*/
if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
}
static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
struct rds_ib_send_work *send,
bool notify)
{
/*
* We want to delay signaling completions just enough to get
* the batching benefits but not so much that we create dead time
* on the wire.
*/
if (ic->i_unsignaled_wrs-- == 0 || notify) {
ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
send->s_wr.send_flags |= IB_SEND_SIGNALED;
return 1;
}
return 0;
}
/*
* This can be called multiple times for a given message. The first time
* we see a message we map its scatterlist into the IB device so that
* we can provide that mapped address to the IB scatter gather entries
* in the IB work requests. We translate the scatterlist into a series
* of work requests that fragment the message. These work requests complete
* in order so we pass ownership of the message to the completion handler
* once we send the final fragment.
*
* The RDS core uses the c_send_lock to only enter this function once
* per connection. This makes sure that the tx ring alloc/unalloc pairs
* don't get out of sync and confuse the ring.
*/
int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
unsigned int hdr_off, unsigned int sg, unsigned int off)
{
struct rds_ib_connection *ic = conn->c_transport_data;
struct ib_device *dev = ic->i_cm_id->device;
struct rds_ib_send_work *send = NULL;
struct rds_ib_send_work *first;
struct rds_ib_send_work *prev;
struct ib_send_wr *failed_wr;
struct scatterlist *scat;
u32 pos;
u32 i;
u32 work_alloc;
u32 credit_alloc = 0;
u32 posted;
u32 adv_credits = 0;
int send_flags = 0;
int bytes_sent = 0;
int ret;
int flow_controlled = 0;
int nr_sig = 0;
BUG_ON(off % RDS_FRAG_SIZE);
BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
/* Do not send cong updates to IB loopback */
if (conn->c_loopback
&& rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
rds: prevent BUG_ON triggering on congestion map updates Recently had this bug halt reported to me: kernel BUG at net/rds/send.c:329! Oops: Exception in kernel mode, sig: 5 [#1] SMP NR_CPUS=1024 NUMA pSeries Modules linked in: rds sunrpc ipv6 dm_mirror dm_region_hash dm_log ibmveth sg ext4 jbd2 mbcache sd_mod crc_t10dif ibmvscsic scsi_transport_srp scsi_tgt dm_mod [last unloaded: scsi_wait_scan] NIP: d000000003ca68f4 LR: d000000003ca67fc CTR: d000000003ca8770 REGS: c000000175cab980 TRAP: 0700 Not tainted (2.6.32-118.el6.ppc64) MSR: 8000000000029032 <EE,ME,CE,IR,DR> CR: 44000022 XER: 00000000 TASK = c00000017586ec90[1896] 'krdsd' THREAD: c000000175ca8000 CPU: 0 GPR00: 0000000000000150 c000000175cabc00 d000000003cb7340 0000000000002030 GPR04: ffffffffffffffff 0000000000000030 0000000000000000 0000000000000030 GPR08: 0000000000000001 0000000000000001 c0000001756b1e30 0000000000010000 GPR12: d000000003caac90 c000000000fa2500 c0000001742b2858 c0000001742b2a00 GPR16: c0000001742b2a08 c0000001742b2820 0000000000000001 0000000000000001 GPR20: 0000000000000040 c0000001742b2814 c000000175cabc70 0800000000000000 GPR24: 0000000000000004 0200000000000000 0000000000000000 c0000001742b2860 GPR28: 0000000000000000 c0000001756b1c80 d000000003cb68e8 c0000001742b27b8 NIP [d000000003ca68f4] .rds_send_xmit+0x4c4/0x8a0 [rds] LR [d000000003ca67fc] .rds_send_xmit+0x3cc/0x8a0 [rds] Call Trace: [c000000175cabc00] [d000000003ca67fc] .rds_send_xmit+0x3cc/0x8a0 [rds] (unreliable) [c000000175cabd30] [d000000003ca7e64] .rds_send_worker+0x54/0x100 [rds] [c000000175cabdb0] [c0000000000b475c] .worker_thread+0x1dc/0x3c0 [c000000175cabed0] [c0000000000baa9c] .kthread+0xbc/0xd0 [c000000175cabf90] [c000000000032114] .kernel_thread+0x54/0x70 Instruction dump: 4bfffd50 60000000 60000000 39080001 935f004c f91f0040 41820024 813d017c 7d094a78 7d290074 7929d182 394a0020 <0b090000> 40e2ff68 4bffffa4 39200000 Kernel panic - not syncing: Fatal exception Call Trace: [c000000175cab560] [c000000000012e04] .show_stack+0x74/0x1c0 (unreliable) [c000000175cab610] [c0000000005a365c] .panic+0x80/0x1b4 [c000000175cab6a0] [c00000000002fbcc] .die+0x21c/0x2a0 [c000000175cab750] [c000000000030000] ._exception+0x110/0x220 [c000000175cab910] [c000000000004b9c] program_check_common+0x11c/0x180 Signed-off-by: David S. Miller <davem@davemloft.net>
2011-03-02 06:28:22 +00:00
scat = &rm->data.op_sg[sg];
rds: prevent BUG_ON triggered on congestion update to loopback After congestion update on a local connection, when rds_ib_xmit returns less bytes than that are there in the message, rds_send_xmit calls back rds_ib_xmit with an offset that causes BUG_ON(off & RDS_FRAG_SIZE) to trigger. For a 4Kb PAGE_SIZE rds_ib_xmit returns min(8240,4096)=4096 when actually the message contains 8240 bytes. rds_send_xmit thinks there is more to send and calls rds_ib_xmit again with a data offset "off" of 4096-48(rds header) =4048 bytes thus hitting the BUG_ON(off & RDS_FRAG_SIZE) [RDS_FRAG_SIZE=4k]. The commit 6094628bfd94323fc1cea05ec2c6affd98c18f7f "rds: prevent BUG_ON triggering on congestion map updates" introduced this regression. That change was addressing the triggering of a different BUG_ON in rds_send_xmit() on PowerPC architecture with 64Kbytes PAGE_SIZE: BUG_ON(ret != 0 && conn->c_xmit_sg == rm->data.op_nents); This was the sequence it was going through: (rds_ib_xmit) /* Do not send cong updates to IB loopback */ if (conn->c_loopback && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { rds_cong_map_updated(conn->c_fcong, ~(u64) 0); return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES; } rds_ib_xmit returns 8240 rds_send_xmit: c_xmit_data_off = 0 + 8240 - 48 (rds header accounted only the first time) = 8192 c_xmit_data_off < 65536 (sg->length), so calls rds_ib_xmit again rds_ib_xmit returns 8240 rds_send_xmit: c_xmit_data_off = 8192 + 8240 = 16432, calls rds_ib_xmit again and so on (c_xmit_data_off 24672,32912,41152,49392,57632) rds_ib_xmit returns 8240 On this iteration this sequence causes the BUG_ON in rds_send_xmit: while (ret) { tmp = min_t(int, ret, sg->length - conn->c_xmit_data_off); [tmp = 65536 - 57632 = 7904] conn->c_xmit_data_off += tmp; [c_xmit_data_off = 57632 + 7904 = 65536] ret -= tmp; [ret = 8240 - 7904 = 336] if (conn->c_xmit_data_off == sg->length) { conn->c_xmit_data_off = 0; sg++; conn->c_xmit_sg++; BUG_ON(ret != 0 && conn->c_xmit_sg == rm->data.op_nents); [c_xmit_sg = 1, rm->data.op_nents = 1] What the current fix does: Since the congestion update over loopback is not actually transmitted as a message, all that rds_ib_xmit needs to do is let the caller think the full message has been transmitted and not return partial bytes. It will return 8240 (RDS_CONG_MAP_BYTES+48) when PAGE_SIZE is 4Kb. And 64Kb+48 when page size is 64Kb. Reported-by: Josh Hunt <joshhunt00@gmail.com> Tested-by: Honggang Li <honli@redhat.com> Acked-by: Bang Nguyen <bang.nguyen@oracle.com> Signed-off-by: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-12-02 23:41:39 +00:00
ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
return sizeof(struct rds_header) + ret;
}
/* FIXME we may overallocate here */
if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
i = 1;
else
i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
if (work_alloc == 0) {
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
rds_ib_stats_inc(s_ib_tx_ring_full);
ret = -ENOMEM;
goto out;
}
if (ic->i_flowctl) {
credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
adv_credits += posted;
if (credit_alloc < work_alloc) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
work_alloc = credit_alloc;
flow_controlled = 1;
}
if (work_alloc == 0) {
set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
rds_ib_stats_inc(s_ib_tx_throttle);
ret = -ENOMEM;
goto out;
}
}
/* map the message the first time we see it */
if (!ic->i_data_op) {
if (rm->data.op_nents) {
rm->data.op_count = ib_dma_map_sg(dev,
rm->data.op_sg,
rm->data.op_nents,
DMA_TO_DEVICE);
rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
if (rm->data.op_count == 0) {
rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
ret = -ENOMEM; /* XXX ? */
goto out;
}
} else {
rm->data.op_count = 0;
}
rds_message_addref(rm);
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
rm->data.op_dmasg = 0;
rm->data.op_dmaoff = 0;
ic->i_data_op = &rm->data;
/* Finalize the header */
if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
/* If it has a RDMA op, tell the peer we did it. This is
* used by the peer to release use-once RDMA MRs. */
if (rm->rdma.op_active) {
struct rds_ext_header_rdma ext_hdr;
ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
rds_message_add_extension(&rm->m_inc.i_hdr,
RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
}
if (rm->m_rdma_cookie) {
rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
rds_rdma_cookie_key(rm->m_rdma_cookie),
rds_rdma_cookie_offset(rm->m_rdma_cookie));
}
/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
* we should not do this unless we have a chance of at least
* sticking the header into the send ring. Which is why we
* should call rds_ib_ring_alloc first. */
rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
rds_message_make_checksum(&rm->m_inc.i_hdr);
/*
* Update adv_credits since we reset the ACK_REQUIRED bit.
*/
if (ic->i_flowctl) {
rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
adv_credits += posted;
BUG_ON(adv_credits > 255);
}
}
/* Sometimes you want to put a fence between an RDMA
* READ and the following SEND.
* We could either do this all the time
* or when requested by the user. Right now, we let
* the application choose.
*/
if (rm->rdma.op_active && rm->rdma.op_fence)
send_flags = IB_SEND_FENCE;
/* Each frag gets a header. Msgs may be 0 bytes */
send = &ic->i_sends[pos];
first = send;
prev = NULL;
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
i = 0;
do {
unsigned int len = 0;
/* Set up the header */
send->s_wr.send_flags = send_flags;
send->s_wr.opcode = IB_WR_SEND;
send->s_wr.num_sge = 1;
send->s_wr.next = NULL;
send->s_queued = jiffies;
send->s_op = NULL;
send->s_sge[0].addr = ic->i_send_hdrs_dma
+ (pos * sizeof(struct rds_header));
send->s_sge[0].length = sizeof(struct rds_header);
memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
/* Set up the data, if present */
if (i < work_alloc
&& scat != &rm->data.op_sg[rm->data.op_count]) {
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
len = min(RDS_FRAG_SIZE,
ib_sg_dma_len(dev, scat) - rm->data.op_dmaoff);
send->s_wr.num_sge = 2;
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
send->s_sge[1].addr = ib_sg_dma_address(dev, scat);
send->s_sge[1].addr += rm->data.op_dmaoff;
send->s_sge[1].length = len;
bytes_sent += len;
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
rm->data.op_dmaoff += len;
if (rm->data.op_dmaoff == ib_sg_dma_len(dev, scat)) {
scat++;
rds: re-entry of rds_ib_xmit/rds_iw_xmit The BUG_ON at line 452/453 is triggered in function rds_send_xmit. 441 while (ret) { 442 tmp = min_t(int, ret, sg->length - 443 conn->c_xmit_data_off); 444 conn->c_xmit_data_off += tmp; 445 ret -= tmp; 446 if (conn->c_xmit_data_off == sg->length) { 447 conn->c_xmit_data_off = 0; 448 sg++; 449 conn->c_xmit_sg++; 450 if (ret != 0 && conn->c_xmit_sg == rm->data.op_nents) 451 printk(KERN_ERR "conn %p rm %p sg %p ret %d\n", conn, rm, sg, ret); 452 BUG_ON(ret != 0 && 453 conn->c_xmit_sg == rm->data.op_nents); 454 } 455 } it is complaining the total sent length is bigger that we want to send. rds_ib_xmit() is wrong for the second entry for the same rds_message returning wrong value. the sg and off passed by rds_send_xmit to rds_ib_xmit is based on scatterlist.offset/length, but the rds_ib_xmit action is based on scatterlist.dma_address/dma_length. in case dma_length is larger than length there is problem. for the 2nd and later entries of rds_ib_xmit for same rds_message, at least one of the following two is wrong: 1) the scatterlist to start with, the choosen one can far beyond the correct one. 2) the offset to start with within the scatterlist. fix: add op_dmasg and op_dmaoff to rm_data_op structure indicating the scatterlist and offset within the it to start with for rds_ib_xmit respectively. op_dmasg and op_dmaoff are initialized to zero when doing dma mapping for the first see of the message and are changed when filling send slots. the same applies to rds_iw_xmit too. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-05-21 05:11:40 +00:00
rm->data.op_dmasg++;
rm->data.op_dmaoff = 0;
}
}
rds_ib_set_wr_signal_state(ic, send, 0);
/*
* Always signal the last one if we're stopping due to flow control.
*/
if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
if (send->s_wr.send_flags & IB_SEND_SIGNALED)
nr_sig++;
rdsdebug("send %p wr %p num_sge %u next %p\n", send,
&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
if (ic->i_flowctl && adv_credits) {
struct rds_header *hdr = &ic->i_send_hdrs[pos];
/* add credit and redo the header checksum */
hdr->h_credit = adv_credits;
rds_message_make_checksum(hdr);
adv_credits = 0;
rds_ib_stats_inc(s_ib_tx_credit_updates);
}
if (prev)
prev->s_wr.next = &send->s_wr;
prev = send;
pos = (pos + 1) % ic->i_send_ring.w_nr;
send = &ic->i_sends[pos];
i++;
} while (i < work_alloc
&& scat != &rm->data.op_sg[rm->data.op_count]);
/* Account the RDS header in the number of bytes we sent, but just once.
* The caller has no concept of fragmentation. */
if (hdr_off == 0)
bytes_sent += sizeof(struct rds_header);
/* if we finished the message then send completion owns it */
if (scat == &rm->data.op_sg[rm->data.op_count]) {
prev->s_op = ic->i_data_op;
prev->s_wr.send_flags |= IB_SEND_SOLICITED;
if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) {
ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
prev->s_wr.send_flags |= IB_SEND_SIGNALED;
nr_sig++;
}
ic->i_data_op = NULL;
}
/* Put back wrs & credits we didn't use */
if (i < work_alloc) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
work_alloc = i;
}
if (ic->i_flowctl && i < credit_alloc)
rds_ib_send_add_credits(conn, credit_alloc - i);
if (nr_sig)
atomic_add(nr_sig, &ic->i_signaled_sends);
/* XXX need to worry about failed_wr and partial sends. */
failed_wr = &first->s_wr;
ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
first, &first->s_wr, ret, failed_wr);
BUG_ON(failed_wr != &first->s_wr);
if (ret) {
printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
"returned %d\n", &conn->c_faddr, ret);
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_sub_signaled(ic, nr_sig);
if (prev->s_op) {
ic->i_data_op = prev->s_op;
prev->s_op = NULL;
}
rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
goto out;
}
ret = bytes_sent;
out:
BUG_ON(adv_credits);
return ret;
}
/*
* Issue atomic operation.
* A simplified version of the rdma case, we always map 1 SG, and
* only 8 bytes, for the return value from the atomic operation.
*/
int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
{
struct rds_ib_connection *ic = conn->c_transport_data;
struct rds_ib_send_work *send = NULL;
struct ib_send_wr *failed_wr;
struct rds_ib_device *rds_ibdev;
u32 pos;
u32 work_alloc;
int ret;
int nr_sig = 0;
rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
if (work_alloc != 1) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_stats_inc(s_ib_tx_ring_full);
ret = -ENOMEM;
goto out;
}
/* address of send request in ring */
send = &ic->i_sends[pos];
send->s_queued = jiffies;
if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
send->s_wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
send->s_wr.wr.atomic.compare_add = op->op_m_cswp.compare;
send->s_wr.wr.atomic.swap = op->op_m_cswp.swap;
send->s_wr.wr.atomic.compare_add_mask = op->op_m_cswp.compare_mask;
send->s_wr.wr.atomic.swap_mask = op->op_m_cswp.swap_mask;
} else { /* FADD */
send->s_wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
send->s_wr.wr.atomic.compare_add = op->op_m_fadd.add;
send->s_wr.wr.atomic.swap = 0;
send->s_wr.wr.atomic.compare_add_mask = op->op_m_fadd.nocarry_mask;
send->s_wr.wr.atomic.swap_mask = 0;
}
nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
send->s_wr.num_sge = 1;
send->s_wr.next = NULL;
send->s_wr.wr.atomic.remote_addr = op->op_remote_addr;
send->s_wr.wr.atomic.rkey = op->op_rkey;
send->s_op = op;
rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
/* map 8 byte retval buffer to the device */
ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
if (ret != 1) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
ret = -ENOMEM; /* XXX ? */
goto out;
}
/* Convert our struct scatterlist to struct ib_sge */
send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
send->s_sge[0].addr, send->s_sge[0].length);
if (nr_sig)
atomic_add(nr_sig, &ic->i_signaled_sends);
failed_wr = &send->s_wr;
ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr);
rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
send, &send->s_wr, ret, failed_wr);
BUG_ON(failed_wr != &send->s_wr);
if (ret) {
printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
"returned %d\n", &conn->c_faddr, ret);
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_sub_signaled(ic, nr_sig);
goto out;
}
if (unlikely(failed_wr != &send->s_wr)) {
printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
BUG_ON(failed_wr != &send->s_wr);
}
out:
return ret;
}
int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
{
struct rds_ib_connection *ic = conn->c_transport_data;
struct rds_ib_send_work *send = NULL;
struct rds_ib_send_work *first;
struct rds_ib_send_work *prev;
struct ib_send_wr *failed_wr;
struct scatterlist *scat;
unsigned long len;
u64 remote_addr = op->op_remote_addr;
u32 max_sge = ic->rds_ibdev->max_sge;
u32 pos;
u32 work_alloc;
u32 i;
u32 j;
int sent;
int ret;
int num_sge;
int nr_sig = 0;
/* map the op the first time we see it */
if (!op->op_mapped) {
op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
op->op_sg, op->op_nents, (op->op_write) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
if (op->op_count == 0) {
rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
ret = -ENOMEM; /* XXX ? */
goto out;
}
op->op_mapped = 1;
}
/*
* Instead of knowing how to return a partial rdma read/write we insist that there
* be enough work requests to send the entire message.
*/
i = ceil(op->op_count, max_sge);
work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
if (work_alloc != i) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_stats_inc(s_ib_tx_ring_full);
ret = -ENOMEM;
goto out;
}
send = &ic->i_sends[pos];
first = send;
prev = NULL;
scat = &op->op_sg[0];
sent = 0;
num_sge = op->op_count;
for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
send->s_wr.send_flags = 0;
send->s_queued = jiffies;
send->s_op = NULL;
nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify);
send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
send->s_wr.wr.rdma.remote_addr = remote_addr;
send->s_wr.wr.rdma.rkey = op->op_rkey;
if (num_sge > max_sge) {
send->s_wr.num_sge = max_sge;
num_sge -= max_sge;
} else {
send->s_wr.num_sge = num_sge;
}
send->s_wr.next = NULL;
if (prev)
prev->s_wr.next = &send->s_wr;
for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) {
len = ib_sg_dma_len(ic->i_cm_id->device, scat);
send->s_sge[j].addr =
ib_sg_dma_address(ic->i_cm_id->device, scat);
send->s_sge[j].length = len;
send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
sent += len;
rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
remote_addr += len;
scat++;
}
rdsdebug("send %p wr %p num_sge %u next %p\n", send,
&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
prev = send;
if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
send = ic->i_sends;
}
/* give a reference to the last op */
if (scat == &op->op_sg[op->op_count]) {
prev->s_op = op;
rds_message_addref(container_of(op, struct rds_message, rdma));
}
if (i < work_alloc) {
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
work_alloc = i;
}
if (nr_sig)
atomic_add(nr_sig, &ic->i_signaled_sends);
failed_wr = &first->s_wr;
ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
first, &first->s_wr, ret, failed_wr);
BUG_ON(failed_wr != &first->s_wr);
if (ret) {
printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
"returned %d\n", &conn->c_faddr, ret);
rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
rds_ib_sub_signaled(ic, nr_sig);
goto out;
}
if (unlikely(failed_wr != &first->s_wr)) {
printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
BUG_ON(failed_wr != &first->s_wr);
}
out:
return ret;
}
void rds_ib_xmit_complete(struct rds_connection *conn)
{
struct rds_ib_connection *ic = conn->c_transport_data;
/* We may have a pending ACK or window update we were unable
* to send previously (due to flow control). Try again. */
rds_ib_attempt_ack(ic);
}