linux/drivers/mtd/ofpart.c

234 lines
5.6 KiB
C
Raw Normal View History

/*
* Flash partitions described by the OF (or flattened) device tree
*
* Copyright © 2006 MontaVista Software Inc.
* Author: Vitaly Wool <vwool@ru.mvista.com>
*
* Revised to handle newer style flash binding by:
* Copyright © 2007 David Gibson, IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/mtd/mtd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/mtd/partitions.h>
static bool node_has_compatible(struct device_node *pp)
{
return of_get_property(pp, "compatible", NULL);
}
static int parse_ofpart_partitions(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_partition *parts;
struct device_node *mtd_node;
struct device_node *ofpart_node;
const char *partname;
struct device_node *pp;
int nr_parts, i, ret = 0;
bool dedicated = true;
/* Pull of_node from the master device node */
mtd_node = mtd_get_of_node(master);
if (!mtd_node)
return 0;
ofpart_node = of_get_child_by_name(mtd_node, "partitions");
if (!ofpart_node) {
/*
* We might get here even when ofpart isn't used at all (e.g.,
* when using another parser), so don't be louder than
* KERN_DEBUG
*/
pr_debug("%s: 'partitions' subnode not found on %s. Trying to parse direct subnodes as partitions.\n",
master->name, mtd_node->full_name);
ofpart_node = mtd_node;
dedicated = false;
} else if (!of_device_is_compatible(ofpart_node, "fixed-partitions")) {
/* The 'partitions' subnode might be used by another parser */
return 0;
}
/* First count the subnodes */
nr_parts = 0;
for_each_child_of_node(ofpart_node, pp) {
if (!dedicated && node_has_compatible(pp))
continue;
nr_parts++;
}
if (nr_parts == 0)
return 0;
parts = kzalloc(nr_parts * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
i = 0;
for_each_child_of_node(ofpart_node, pp) {
const __be32 *reg;
int len;
int a_cells, s_cells;
if (!dedicated && node_has_compatible(pp))
continue;
reg = of_get_property(pp, "reg", &len);
if (!reg) {
if (dedicated) {
pr_debug("%s: ofpart partition %s (%s) missing reg property.\n",
master->name, pp->full_name,
mtd_node->full_name);
goto ofpart_fail;
} else {
nr_parts--;
continue;
}
}
a_cells = of_n_addr_cells(pp);
s_cells = of_n_size_cells(pp);
if (len / 4 != a_cells + s_cells) {
pr_debug("%s: ofpart partition %s (%s) error parsing reg property.\n",
master->name, pp->full_name,
mtd_node->full_name);
goto ofpart_fail;
}
parts[i].offset = of_read_number(reg, a_cells);
parts[i].size = of_read_number(reg + a_cells, s_cells);
parts[i].of_node = pp;
partname = of_get_property(pp, "label", &len);
if (!partname)
partname = of_get_property(pp, "name", &len);
parts[i].name = partname;
if (of_get_property(pp, "read-only", &len))
parts[i].mask_flags |= MTD_WRITEABLE;
if (of_get_property(pp, "lock", &len))
parts[i].mask_flags |= MTD_POWERUP_LOCK;
i++;
}
if (!nr_parts)
goto ofpart_none;
*pparts = parts;
return nr_parts;
ofpart_fail:
pr_err("%s: error parsing ofpart partition %s (%s)\n",
master->name, pp->full_name, mtd_node->full_name);
ret = -EINVAL;
ofpart_none:
of_node_put(pp);
kfree(parts);
return ret;
}
static struct mtd_part_parser ofpart_parser = {
.parse_fn = parse_ofpart_partitions,
.name = "ofpart",
};
static int parse_ofoldpart_partitions(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_partition *parts;
struct device_node *dp;
int i, plen, nr_parts;
const struct {
__be32 offset, len;
} *part;
const char *names;
/* Pull of_node from the master device node */
dp = mtd_get_of_node(master);
if (!dp)
return 0;
part = of_get_property(dp, "partitions", &plen);
if (!part)
return 0; /* No partitions found */
pr_warning("Device tree uses obsolete partition map binding: %s\n",
dp->full_name);
nr_parts = plen / sizeof(part[0]);
parts = kzalloc(nr_parts * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
names = of_get_property(dp, "partition-names", &plen);
for (i = 0; i < nr_parts; i++) {
parts[i].offset = be32_to_cpu(part->offset);
parts[i].size = be32_to_cpu(part->len) & ~1;
/* bit 0 set signifies read only partition */
if (be32_to_cpu(part->len) & 1)
parts[i].mask_flags = MTD_WRITEABLE;
if (names && (plen > 0)) {
int len = strlen(names) + 1;
parts[i].name = names;
plen -= len;
names += len;
} else {
parts[i].name = "unnamed";
}
part++;
}
*pparts = parts;
return nr_parts;
}
static struct mtd_part_parser ofoldpart_parser = {
.parse_fn = parse_ofoldpart_partitions,
.name = "ofoldpart",
};
static int __init ofpart_parser_init(void)
{
register_mtd_parser(&ofpart_parser);
register_mtd_parser(&ofoldpart_parser);
return 0;
}
static void __exit ofpart_parser_exit(void)
{
deregister_mtd_parser(&ofpart_parser);
deregister_mtd_parser(&ofoldpart_parser);
}
module_init(ofpart_parser_init);
module_exit(ofpart_parser_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree");
MODULE_AUTHOR("Vitaly Wool, David Gibson");
/*
* When MTD core cannot find the requested parser, it tries to load the module
* with the same name. Since we provide the ofoldpart parser, we should have
* the corresponding alias.
*/
MODULE_ALIAS("ofoldpart");