linux/arch/x86/math-emu/fpu_entry.c

719 lines
20 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*---------------------------------------------------------------------------+
| fpu_entry.c |
| |
| The entry functions for wm-FPU-emu |
| |
| Copyright (C) 1992,1993,1994,1996,1997 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
| E-mail billm@suburbia.net |
| |
| See the files "README" and "COPYING" for further copyright and warranty |
| information. |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Note: |
| The file contains code which accesses user memory. |
| Emulator static data may change when user memory is accessed, due to |
| other processes using the emulator while swapping is in progress. |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
| entry points for wm-FPU-emu. |
+---------------------------------------------------------------------------*/
#include <linux/signal.h>
#include <linux/regset.h>
#include <linux/uaccess.h>
#include <asm/traps.h>
#include <asm/user.h>
#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
#include "fpu_system.h"
#include "fpu_emu.h"
#include "exception.h"
#include "control_w.h"
#include "status_w.h"
#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
/* fcmovCC and f(u)comi(p) are enabled if CPUID(1).EDX(15) "cmov" is set */
/* WARNING: "u" entries are not documented by Intel in their 80486 manual
and may not work on FPU clones or later Intel FPUs.
Changes to support them provided by Linus Torvalds. */
static FUNC const st_instr_table[64] = {
/* Opcode: d8 d9 da db */
/* dc dd de df */
/* c0..7 */ fadd__, fld_i_, fcmovb, fcmovnb,
/* c0..7 */ fadd_i, ffree_, faddp_, ffreep,/*u*/
/* c8..f */ fmul__, fxch_i, fcmove, fcmovne,
/* c8..f */ fmul_i, fxch_i,/*u*/ fmulp_, fxch_i,/*u*/
/* d0..7 */ fcom_st, fp_nop, fcmovbe, fcmovnbe,
/* d0..7 */ fcom_st,/*u*/ fst_i_, fcompst,/*u*/ fstp_i,/*u*/
/* d8..f */ fcompst, fstp_i,/*u*/ fcmovu, fcmovnu,
/* d8..f */ fcompst,/*u*/ fstp_i, fcompp, fstp_i,/*u*/
/* e0..7 */ fsub__, FPU_etc, __BAD__, finit_,
/* e0..7 */ fsubri, fucom_, fsubrp, fstsw_,
/* e8..f */ fsubr_, fconst, fucompp, fucomi_,
/* e8..f */ fsub_i, fucomp, fsubp_, fucomip,
/* f0..7 */ fdiv__, FPU_triga, __BAD__, fcomi_,
/* f0..7 */ fdivri, __BAD__, fdivrp, fcomip,
/* f8..f */ fdivr_, FPU_trigb, __BAD__, __BAD__,
/* f8..f */ fdiv_i, __BAD__, fdivp_, __BAD__,
};
#define _NONE_ 0 /* Take no special action */
#define _REG0_ 1 /* Need to check for not empty st(0) */
#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
#define _REGi_ 0 /* Uses st(rm) */
#define _PUSH_ 3 /* Need to check for space to push onto stack */
#define _null_ 4 /* Function illegal or not implemented */
#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
#define _REGIc 0 /* Compare st(0) and st(rm) */
#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
static u_char const type_table[64] = {
/* Opcode: d8 d9 da db dc dd de df */
/* c0..7 */ _REGI_, _NONE_, _REGIn, _REGIn, _REGIi, _REGi_, _REGIp, _REGi_,
/* c8..f */ _REGI_, _REGIn, _REGIn, _REGIn, _REGIi, _REGI_, _REGIp, _REGI_,
/* d0..7 */ _REGIc, _NONE_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
/* d8..f */ _REGIc, _REG0_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
/* e0..7 */ _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
/* e8..f */ _REGI_, _NONE_, _REGIc, _REGIc, _REGIi, _REGIc, _REGIp, _REGIc,
/* f0..7 */ _REGI_, _NONE_, _null_, _REGIc, _REGIi, _null_, _REGIp, _REGIc,
/* f8..f */ _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
};
#ifdef RE_ENTRANT_CHECKING
u_char emulating = 0;
#endif /* RE_ENTRANT_CHECKING */
static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip,
overrides * override);
void math_emulate(struct math_emu_info *info)
{
u_char FPU_modrm, byte1;
unsigned short code;
fpu_addr_modes addr_modes;
int unmasked;
FPU_REG loaded_data;
FPU_REG *st0_ptr;
u_char loaded_tag, st0_tag;
void __user *data_address;
struct address data_sel_off;
struct address entry_sel_off;
unsigned long code_base = 0;
unsigned long code_limit = 0; /* Initialized to stop compiler warnings */
struct desc_struct code_descriptor;
#ifdef RE_ENTRANT_CHECKING
if (emulating) {
printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
}
RE_ENTRANT_CHECK_ON;
#endif /* RE_ENTRANT_CHECKING */
FPU_info = info;
FPU_ORIG_EIP = FPU_EIP;
if ((FPU_EFLAGS & 0x00020000) != 0) {
/* Virtual 8086 mode */
addr_modes.default_mode = VM86;
FPU_EIP += code_base = FPU_CS << 4;
code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */
} else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) {
addr_modes.default_mode = 0;
} else if (FPU_CS == __KERNEL_CS) {
printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP);
panic("Math emulation needed in kernel");
} else {
if ((FPU_CS & 4) != 4) { /* Must be in the LDT */
/* Can only handle segmented addressing via the LDT
for now, and it must be 16 bit */
printk("FPU emulator: Unsupported addressing mode\n");
math_abort(FPU_info, SIGILL);
}
code_descriptor = FPU_get_ldt_descriptor(FPU_CS);
if (code_descriptor.d) {
/* The above test may be wrong, the book is not clear */
/* Segmented 32 bit protected mode */
addr_modes.default_mode = SEG32;
} else {
/* 16 bit protected mode */
addr_modes.default_mode = PM16;
}
FPU_EIP += code_base = seg_get_base(&code_descriptor);
code_limit = seg_get_limit(&code_descriptor) + 1;
code_limit *= seg_get_granularity(&code_descriptor);
code_limit += code_base - 1;
if (code_limit < code_base)
code_limit = 0xffffffff;
}
FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF);
if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
&addr_modes.override)) {
RE_ENTRANT_CHECK_OFF;
printk
("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"
"FPU emulator: self-modifying code! (emulation impossible)\n",
byte1);
RE_ENTRANT_CHECK_ON;
EXCEPTION(EX_INTERNAL | 0x126);
math_abort(FPU_info, SIGILL);
}
do_another_FPU_instruction:
no_ip_update = 0;
FPU_EIP++; /* We have fetched the prefix and first code bytes. */
if (addr_modes.default_mode) {
/* This checks for the minimum instruction bytes.
We also need to check any extra (address mode) code access. */
if (FPU_EIP > code_limit)
math_abort(FPU_info, SIGSEGV);
}
if ((byte1 & 0xf8) != 0xd8) {
if (byte1 == FWAIT_OPCODE) {
if (partial_status & SW_Summary)
goto do_the_FPU_interrupt;
else
goto FPU_fwait_done;
}
#ifdef PARANOID
EXCEPTION(EX_INTERNAL | 0x128);
math_abort(FPU_info, SIGILL);
#endif /* PARANOID */
}
RE_ENTRANT_CHECK_OFF;
FPU_code_access_ok(1);
FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP);
RE_ENTRANT_CHECK_ON;
FPU_EIP++;
if (partial_status & SW_Summary) {
/* Ignore the error for now if the current instruction is a no-wait
control instruction */
/* The 80486 manual contradicts itself on this topic,
but a real 80486 uses the following instructions:
fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
*/
code = (FPU_modrm << 8) | byte1;
if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
(((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
fnstsw */
((code & 0xc000) != 0xc000))))) {
/*
* We need to simulate the action of the kernel to FPU
* interrupts here.
*/
do_the_FPU_interrupt:
FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */
RE_ENTRANT_CHECK_OFF;
current->thread.trap_nr = X86_TRAP_MF;
current->thread.error_code = 0;
send_sig(SIGFPE, current, 1);
return;
}
}
entry_sel_off.offset = FPU_ORIG_EIP;
entry_sel_off.selector = FPU_CS;
entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
entry_sel_off.empty = 0;
FPU_rm = FPU_modrm & 7;
if (FPU_modrm < 0300) {
/* All of these instructions use the mod/rm byte to get a data address */
if ((addr_modes.default_mode & SIXTEEN)
^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX))
data_address =
FPU_get_address_16(FPU_modrm, &FPU_EIP,
&data_sel_off, addr_modes);
else
data_address =
FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,
addr_modes);
if (addr_modes.default_mode) {
if (FPU_EIP - 1 > code_limit)
math_abort(FPU_info, SIGSEGV);
}
if (!(byte1 & 1)) {
unsigned short status1 = partial_status;
st0_ptr = &st(0);
st0_tag = FPU_gettag0();
/* Stack underflow has priority */
if (NOT_EMPTY_ST0) {
if (addr_modes.default_mode & PROTECTED) {
/* This table works for 16 and 32 bit protected mode */
if (access_limit <
data_sizes_16[(byte1 >> 1) & 3])
math_abort(FPU_info, SIGSEGV);
}
unmasked = 0; /* Do this here to stop compiler warnings. */
switch ((byte1 >> 1) & 3) {
case 0:
unmasked =
FPU_load_single((float __user *)
data_address,
&loaded_data);
loaded_tag = unmasked & 0xff;
unmasked &= ~0xff;
break;
case 1:
loaded_tag =
FPU_load_int32((long __user *)
data_address,
&loaded_data);
break;
case 2:
unmasked =
FPU_load_double((double __user *)
data_address,
&loaded_data);
loaded_tag = unmasked & 0xff;
unmasked &= ~0xff;
break;
case 3:
default: /* Used here to suppress gcc warnings. */
loaded_tag =
FPU_load_int16((short __user *)
data_address,
&loaded_data);
break;
}
/* No more access to user memory, it is safe
to use static data now */
/* NaN operands have the next priority. */
/* We have to delay looking at st(0) until after
loading the data, because that data might contain an SNaN */
if (((st0_tag == TAG_Special) && isNaN(st0_ptr))
|| ((loaded_tag == TAG_Special)
&& isNaN(&loaded_data))) {
/* Restore the status word; we might have loaded a
denormal. */
partial_status = status1;
if ((FPU_modrm & 0x30) == 0x10) {
/* fcom or fcomp */
EXCEPTION(EX_Invalid);
setcc(SW_C3 | SW_C2 | SW_C0);
if ((FPU_modrm & 0x08)
&& (control_word &
CW_Invalid))
FPU_pop(); /* fcomp, masked, so we pop. */
} else {
if (loaded_tag == TAG_Special)
loaded_tag =
FPU_Special
(&loaded_data);
#ifdef PECULIAR_486
/* This is not really needed, but gives behaviour
identical to an 80486 */
if ((FPU_modrm & 0x28) == 0x20)
/* fdiv or fsub */
real_2op_NaN
(&loaded_data,
loaded_tag, 0,
&loaded_data);
else
#endif /* PECULIAR_486 */
/* fadd, fdivr, fmul, or fsubr */
real_2op_NaN
(&loaded_data,
loaded_tag, 0,
st0_ptr);
}
goto reg_mem_instr_done;
}
if (unmasked && !((FPU_modrm & 0x30) == 0x10)) {
/* Is not a comparison instruction. */
if ((FPU_modrm & 0x38) == 0x38) {
/* fdivr */
if ((st0_tag == TAG_Zero) &&
((loaded_tag == TAG_Valid)
|| (loaded_tag ==
TAG_Special
&&
isdenormal
(&loaded_data)))) {
if (FPU_divide_by_zero
(0,
getsign
(&loaded_data))
< 0) {
/* We use the fact here that the unmasked
exception in the loaded data was for a
denormal operand */
/* Restore the state of the denormal op bit */
partial_status
&=
~SW_Denorm_Op;
partial_status
|=
status1 &
SW_Denorm_Op;
} else
setsign(st0_ptr,
getsign
(&loaded_data));
}
}
goto reg_mem_instr_done;
}
switch ((FPU_modrm >> 3) & 7) {
case 0: /* fadd */
clear_C1();
FPU_add(&loaded_data, loaded_tag, 0,
control_word);
break;
case 1: /* fmul */
clear_C1();
FPU_mul(&loaded_data, loaded_tag, 0,
control_word);
break;
case 2: /* fcom */
FPU_compare_st_data(&loaded_data,
loaded_tag);
break;
case 3: /* fcomp */
if (!FPU_compare_st_data
(&loaded_data, loaded_tag)
&& !unmasked)
FPU_pop();
break;
case 4: /* fsub */
clear_C1();
FPU_sub(LOADED | loaded_tag,
(int)&loaded_data,
control_word);
break;
case 5: /* fsubr */
clear_C1();
FPU_sub(REV | LOADED | loaded_tag,
(int)&loaded_data,
control_word);
break;
case 6: /* fdiv */
clear_C1();
FPU_div(LOADED | loaded_tag,
(int)&loaded_data,
control_word);
break;
case 7: /* fdivr */
clear_C1();
if (st0_tag == TAG_Zero)
partial_status = status1; /* Undo any denorm tag,
zero-divide has priority. */
FPU_div(REV | LOADED | loaded_tag,
(int)&loaded_data,
control_word);
break;
}
} else {
if ((FPU_modrm & 0x30) == 0x10) {
/* The instruction is fcom or fcomp */
EXCEPTION(EX_StackUnder);
setcc(SW_C3 | SW_C2 | SW_C0);
if ((FPU_modrm & 0x08)
&& (control_word & CW_Invalid))
FPU_pop(); /* fcomp */
} else
FPU_stack_underflow();
}
reg_mem_instr_done:
operand_address = data_sel_off;
} else {
if (!(no_ip_update =
FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6))
>> 1, addr_modes, data_address))) {
operand_address = data_sel_off;
}
}
} else {
/* None of these instructions access user memory */
u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
#ifdef PECULIAR_486
/* This is supposed to be undefined, but a real 80486 seems
to do this: */
operand_address.offset = 0;
operand_address.selector = FPU_DS;
#endif /* PECULIAR_486 */
st0_ptr = &st(0);
st0_tag = FPU_gettag0();
switch (type_table[(int)instr_index]) {
case _NONE_: /* also _REGIc: _REGIn */
break;
case _REG0_:
if (!NOT_EMPTY_ST0) {
FPU_stack_underflow();
goto FPU_instruction_done;
}
break;
case _REGIi:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
FPU_stack_underflow_i(FPU_rm);
goto FPU_instruction_done;
}
break;
case _REGIp:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
FPU_stack_underflow_pop(FPU_rm);
goto FPU_instruction_done;
}
break;
case _REGI_:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
FPU_stack_underflow();
goto FPU_instruction_done;
}
break;
case _PUSH_: /* Only used by the fld st(i) instruction */
break;
case _null_:
FPU_illegal();
goto FPU_instruction_done;
default:
EXCEPTION(EX_INTERNAL | 0x111);
goto FPU_instruction_done;
}
(*st_instr_table[(int)instr_index]) ();
FPU_instruction_done:
;
}
if (!no_ip_update)
instruction_address = entry_sel_off;
FPU_fwait_done:
#ifdef DEBUG
RE_ENTRANT_CHECK_OFF;
FPU_printall();
RE_ENTRANT_CHECK_ON;
#endif /* DEBUG */
if (FPU_lookahead && !need_resched()) {
FPU_ORIG_EIP = FPU_EIP - code_base;
if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
&addr_modes.override))
goto do_another_FPU_instruction;
}
if (addr_modes.default_mode)
FPU_EIP -= code_base;
RE_ENTRANT_CHECK_OFF;
}
/* Support for prefix bytes is not yet complete. To properly handle
all prefix bytes, further changes are needed in the emulator code
which accesses user address space. Access to separate segments is
important for msdos emulation. */
static int valid_prefix(u_char *Byte, u_char __user **fpu_eip,
overrides * override)
{
u_char byte;
u_char __user *ip = *fpu_eip;
*override = (overrides) {
0, 0, PREFIX_DEFAULT}; /* defaults */
RE_ENTRANT_CHECK_OFF;
FPU_code_access_ok(1);
FPU_get_user(byte, ip);
RE_ENTRANT_CHECK_ON;
while (1) {
switch (byte) {
case ADDR_SIZE_PREFIX:
override->address_size = ADDR_SIZE_PREFIX;
goto do_next_byte;
case OP_SIZE_PREFIX:
override->operand_size = OP_SIZE_PREFIX;
goto do_next_byte;
case PREFIX_CS:
override->segment = PREFIX_CS_;
goto do_next_byte;
case PREFIX_ES:
override->segment = PREFIX_ES_;
goto do_next_byte;
case PREFIX_SS:
override->segment = PREFIX_SS_;
goto do_next_byte;
case PREFIX_FS:
override->segment = PREFIX_FS_;
goto do_next_byte;
case PREFIX_GS:
override->segment = PREFIX_GS_;
goto do_next_byte;
case PREFIX_DS:
override->segment = PREFIX_DS_;
goto do_next_byte;
/* lock is not a valid prefix for FPU instructions,
let the cpu handle it to generate a SIGILL. */
/* case PREFIX_LOCK: */
/* rep.. prefixes have no meaning for FPU instructions */
case PREFIX_REPE:
case PREFIX_REPNE:
do_next_byte:
ip++;
RE_ENTRANT_CHECK_OFF;
FPU_code_access_ok(1);
FPU_get_user(byte, ip);
RE_ENTRANT_CHECK_ON;
break;
case FWAIT_OPCODE:
*Byte = byte;
return 1;
default:
if ((byte & 0xf8) == 0xd8) {
*Byte = byte;
*fpu_eip = ip;
return 1;
} else {
/* Not a valid sequence of prefix bytes followed by
an FPU instruction. */
*Byte = byte; /* Needed for error message. */
return 0;
}
}
}
}
void math_abort(struct math_emu_info *info, unsigned int signal)
{
FPU_EIP = FPU_ORIG_EIP;
current->thread.trap_nr = X86_TRAP_MF;
current->thread.error_code = 0;
send_sig(signal, current, 1);
RE_ENTRANT_CHECK_OFF;
__asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4));
#ifdef PARANOID
printk("ERROR: wm-FPU-emu math_abort failed!\n");
#endif /* PARANOID */
}
#define S387 ((struct swregs_state *)s387)
#define sstatus_word() \
((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top))
int fpregs_soft_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct swregs_state *s387 = &target->thread.fpu.fpstate->regs.soft;
void *space = s387->st_space;
int ret;
int offset, other, i, tags, regnr, tag, newtop;
RE_ENTRANT_CHECK_OFF;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0,
offsetof(struct swregs_state, st_space));
RE_ENTRANT_CHECK_ON;
if (ret)
return ret;
S387->ftop = (S387->swd >> SW_Top_Shift) & 7;
offset = (S387->ftop & 7) * 10;
other = 80 - offset;
RE_ENTRANT_CHECK_OFF;
/* Copy all registers in stack order. */
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
space + offset, 0, other);
if (!ret && offset)
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
space, 0, offset);
RE_ENTRANT_CHECK_ON;
/* The tags may need to be corrected now. */
tags = S387->twd;
newtop = S387->ftop;
for (i = 0; i < 8; i++) {
regnr = (i + newtop) & 7;
if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) {
/* The loaded data over-rides all other cases. */
tag =
FPU_tagof((FPU_REG *) ((u_char *) S387->st_space +
10 * regnr));
tags &= ~(3 << (regnr * 2));
tags |= (tag & 3) << (regnr * 2);
}
}
S387->twd = tags;
return ret;
}
int fpregs_soft_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
struct swregs_state *s387 = &target->thread.fpu.fpstate->regs.soft;
const void *space = s387->st_space;
int offset = (S387->ftop & 7) * 10, other = 80 - offset;
RE_ENTRANT_CHECK_OFF;
#ifdef PECULIAR_486
S387->cwd &= ~0xe080;
/* An 80486 sets nearly all of the reserved bits to 1. */
S387->cwd |= 0xffff0040;
S387->swd = sstatus_word() | 0xffff0000;
S387->twd |= 0xffff0000;
S387->fcs &= ~0xf8000000;
S387->fos |= 0xffff0000;
#endif /* PECULIAR_486 */
membuf_write(&to, s387, offsetof(struct swregs_state, st_space));
membuf_write(&to, space + offset, other);
membuf_write(&to, space, offset);
RE_ENTRANT_CHECK_ON;
return 0;
}