linux/fs/btrfs/volumes.c

8106 lines
217 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/sched.h>
btrfs: fix lockdep splat in add_missing_dev Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-31 14:52:42 +00:00
#include <linux/sched/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
#include <linux/semaphore.h>
#include <linux/uuid.h>
#include <linux/list_sort.h>
#include <linux/namei.h>
#include "misc.h"
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
#include "raid56.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "sysfs.h"
#include "tree-checker.h"
#include "space-info.h"
#include "block-group.h"
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
#include "discard.h"
#include "zoned.h"
#include "fs.h"
#include "accessors.h"
#include "uuid-tree.h"
#include "ioctl.h"
#include "relocation.h"
#include "scrub.h"
#include "super.h"
btrfs: don't check stripe length if the profile is not stripe based [BUG] When debugging calc_bio_boundaries(), I found that even for RAID1 metadata, we're following stripe length to calculate stripe boundary. # mkfs.btrfs -m raid1 -d raid1 /dev/test/scratch[12] # mount /dev/test/scratch /mnt/btrfs # xfs_io -f -c "pwrite 0 64K" /mnt/btrfs/file # umount Above very basic operations will make calc_bio_boundaries() to report the following result: submit_extent_page: r/i=1/1 file_offset=22036480 len_to_stripe_boundary=49152 submit_extent_page: r/i=1/1 file_offset=30474240 len_to_stripe_boundary=65536 ... submit_extent_page: r/i=1/1 file_offset=30523392 len_to_stripe_boundary=16384 submit_extent_page: r/i=1/1 file_offset=30457856 len_to_stripe_boundary=16384 submit_extent_page: r/i=5/257 file_offset=0 len_to_stripe_boundary=65536 submit_extent_page: r/i=5/257 file_offset=65536 len_to_stripe_boundary=65536 submit_extent_page: r/i=1/1 file_offset=30490624 len_to_stripe_boundary=49152 submit_extent_page: r/i=1/1 file_offset=30507008 len_to_stripe_boundary=32768 Where "r/i" is the rootid and inode, 1/1 means they metadata. The remaining names match the member used in kernel. Even all data/metadata are using RAID1, we're still following stripe length. [CAUSE] This behavior is caused by a wrong condition in btrfs_get_io_geometry(): if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { /* Fill using stripe_len */ len = min_t(u64, em->len - offset, max_len); } else { len = em->len - offset; } This means, only for SINGLE we will not follow stripe_len. However for profiles like RAID1*, DUP, they don't need to bother stripe_len. This can lead to unnecessary bio split for RAID1*/DUP profiles, and can even be a blockage for future zoned RAID support. [FIX] Introduce one single-use macro, BTRFS_BLOCK_GROUP_STRIPE_MASK, and change the condition to only calculate the length using stripe length for stripe based profiles. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-19 06:19:33 +00:00
#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
BTRFS_BLOCK_GROUP_RAID10 | \
BTRFS_BLOCK_GROUP_RAID56_MASK)
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
[BTRFS_RAID_RAID10] = {
.sub_stripes = 2,
.dev_stripes = 1,
.devs_max = 0, /* 0 == as many as possible */
btrfs: allow degenerate raid0/raid10 The data on raid0 and raid10 are supposed to be spread over multiple devices, so the minimum constraints are set to 2 and 4 respectively. This is an artificial limit and there's some interest to remove it. Change this to allow raid0 on one device and raid10 on two devices. This works as expected eg. when converting or removing devices. The only difference is when raid0 on two devices gets one device removed. Unpatched would silently create a single profile, while newly it would be raid0. The motivation is to allow to preserve the profile type as long as it possible for some intermediate state (device removal, conversion), or when there are disks of different size, with raid0 the otherwise unusable space of the last device will be used too. Similarly for raid10, though the two largest devices would need to be the same. Unpatched kernel will mount and use the degenerate profiles just fine but won't allow any operation that would not satisfy the stricter device number constraints, eg. not allowing to go from 3 to 2 devices for raid10 or various profile conversions. Example output: # btrfs fi us -T . Overall: Device size: 10.00GiB Device allocated: 1.01GiB Device unallocated: 8.99GiB Device missing: 0.00B Used: 200.61MiB Free (estimated): 9.79GiB (min: 9.79GiB) Free (statfs, df): 9.79GiB Data ratio: 1.00 Metadata ratio: 1.00 Global reserve: 3.25MiB (used: 0.00B) Multiple profiles: no Data Metadata System Id Path RAID0 single single Unallocated -- ---------- --------- --------- -------- ----------- 1 /dev/sda10 1.00GiB 8.00MiB 1.00MiB 8.99GiB -- ---------- --------- --------- -------- ----------- Total 1.00GiB 8.00MiB 1.00MiB 8.99GiB Used 200.25MiB 352.00KiB 16.00KiB # btrfs dev us . /dev/sda10, ID: 1 Device size: 10.00GiB Device slack: 0.00B Data,RAID0/1: 1.00GiB Metadata,single: 8.00MiB System,single: 1.00MiB Unallocated: 8.99GiB Note "Data,RAID0/1", with btrfs-progs 5.13+ the number of devices per profile is printed. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22 18:54:37 +00:00
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 2,
.ncopies = 2,
.nparity = 0,
.raid_name = "raid10",
.bg_flag = BTRFS_BLOCK_GROUP_RAID10,
.mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 2,
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 2,
.ncopies = 2,
.nparity = 0,
.raid_name = "raid1",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1,
.mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1C3] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 3,
.devs_min = 3,
.tolerated_failures = 2,
.devs_increment = 3,
.ncopies = 3,
.nparity = 0,
.raid_name = "raid1c3",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
.mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1C4] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 4,
.devs_min = 4,
.tolerated_failures = 3,
.devs_increment = 4,
.ncopies = 4,
.nparity = 0,
.raid_name = "raid1c4",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
.mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
},
[BTRFS_RAID_DUP] = {
.sub_stripes = 1,
.dev_stripes = 2,
.devs_max = 1,
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 2,
.nparity = 0,
.raid_name = "dup",
.bg_flag = BTRFS_BLOCK_GROUP_DUP,
.mindev_error = 0,
},
[BTRFS_RAID_RAID0] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
btrfs: allow degenerate raid0/raid10 The data on raid0 and raid10 are supposed to be spread over multiple devices, so the minimum constraints are set to 2 and 4 respectively. This is an artificial limit and there's some interest to remove it. Change this to allow raid0 on one device and raid10 on two devices. This works as expected eg. when converting or removing devices. The only difference is when raid0 on two devices gets one device removed. Unpatched would silently create a single profile, while newly it would be raid0. The motivation is to allow to preserve the profile type as long as it possible for some intermediate state (device removal, conversion), or when there are disks of different size, with raid0 the otherwise unusable space of the last device will be used too. Similarly for raid10, though the two largest devices would need to be the same. Unpatched kernel will mount and use the degenerate profiles just fine but won't allow any operation that would not satisfy the stricter device number constraints, eg. not allowing to go from 3 to 2 devices for raid10 or various profile conversions. Example output: # btrfs fi us -T . Overall: Device size: 10.00GiB Device allocated: 1.01GiB Device unallocated: 8.99GiB Device missing: 0.00B Used: 200.61MiB Free (estimated): 9.79GiB (min: 9.79GiB) Free (statfs, df): 9.79GiB Data ratio: 1.00 Metadata ratio: 1.00 Global reserve: 3.25MiB (used: 0.00B) Multiple profiles: no Data Metadata System Id Path RAID0 single single Unallocated -- ---------- --------- --------- -------- ----------- 1 /dev/sda10 1.00GiB 8.00MiB 1.00MiB 8.99GiB -- ---------- --------- --------- -------- ----------- Total 1.00GiB 8.00MiB 1.00MiB 8.99GiB Used 200.25MiB 352.00KiB 16.00KiB # btrfs dev us . /dev/sda10, ID: 1 Device size: 10.00GiB Device slack: 0.00B Data,RAID0/1: 1.00GiB Metadata,single: 8.00MiB System,single: 1.00MiB Unallocated: 8.99GiB Note "Data,RAID0/1", with btrfs-progs 5.13+ the number of devices per profile is printed. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-22 18:54:37 +00:00
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 1,
.nparity = 0,
.raid_name = "raid0",
.bg_flag = BTRFS_BLOCK_GROUP_RAID0,
.mindev_error = 0,
},
[BTRFS_RAID_SINGLE] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 1,
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 1,
.nparity = 0,
.raid_name = "single",
.bg_flag = 0,
.mindev_error = 0,
},
[BTRFS_RAID_RAID5] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 1,
.ncopies = 1,
.nparity = 1,
.raid_name = "raid5",
.bg_flag = BTRFS_BLOCK_GROUP_RAID5,
.mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
},
[BTRFS_RAID_RAID6] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
.devs_min = 3,
.tolerated_failures = 2,
.devs_increment = 1,
.ncopies = 1,
.nparity = 2,
.raid_name = "raid6",
.bg_flag = BTRFS_BLOCK_GROUP_RAID6,
.mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
},
};
/*
* Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
* can be used as index to access btrfs_raid_array[].
*/
enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
{
const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
if (!profile)
return BTRFS_RAID_SINGLE;
return BTRFS_BG_FLAG_TO_INDEX(profile);
}
const char *btrfs_bg_type_to_raid_name(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
if (index >= BTRFS_NR_RAID_TYPES)
return NULL;
return btrfs_raid_array[index].raid_name;
}
int btrfs_nr_parity_stripes(u64 type)
{
enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
return btrfs_raid_array[index].nparity;
}
/*
* Fill @buf with textual description of @bg_flags, no more than @size_buf
* bytes including terminating null byte.
*/
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
int i;
int ret;
char *bp = buf;
u64 flags = bg_flags;
u32 size_bp = size_buf;
if (!flags) {
strcpy(bp, "NONE");
return;
}
#define DESCRIBE_FLAG(flag, desc) \
do { \
if (flags & (flag)) { \
ret = snprintf(bp, size_bp, "%s|", (desc)); \
if (ret < 0 || ret >= size_bp) \
goto out_overflow; \
size_bp -= ret; \
bp += ret; \
flags &= ~(flag); \
} \
} while (0)
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG
if (flags) {
ret = snprintf(bp, size_bp, "0x%llx|", flags);
size_bp -= ret;
}
if (size_bp < size_buf)
buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
/*
* The text is trimmed, it's up to the caller to provide sufficiently
* large buffer
*/
out_overflow:;
}
static int init_first_rw_device(struct btrfs_trans_handle *trans);
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
/*
* Device locking
* ==============
*
* There are several mutexes that protect manipulation of devices and low-level
* structures like chunks but not block groups, extents or files
*
* uuid_mutex (global lock)
* ------------------------
* protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
* the SCAN_DEV ioctl registration or from mount either implicitly (the first
* device) or requested by the device= mount option
*
* the mutex can be very coarse and can cover long-running operations
*
* protects: updates to fs_devices counters like missing devices, rw devices,
* seeding, structure cloning, opening/closing devices at mount/umount time
*
* global::fs_devs - add, remove, updates to the global list
*
btrfs: open device without device_list_mutex There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-17 19:12:27 +00:00
* does not protect: manipulation of the fs_devices::devices list in general
* but in mount context it could be used to exclude list modifications by eg.
* scan ioctl
*
* btrfs_device::name - renames (write side), read is RCU
*
* fs_devices::device_list_mutex (per-fs, with RCU)
* ------------------------------------------------
* protects updates to fs_devices::devices, ie. adding and deleting
*
* simple list traversal with read-only actions can be done with RCU protection
*
* may be used to exclude some operations from running concurrently without any
* modifications to the list (see write_all_supers)
*
btrfs: open device without device_list_mutex There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-17 19:12:27 +00:00
* Is not required at mount and close times, because our device list is
* protected by the uuid_mutex at that point.
*
* balance_mutex
* -------------
* protects balance structures (status, state) and context accessed from
* several places (internally, ioctl)
*
* chunk_mutex
* -----------
* protects chunks, adding or removing during allocation, trim or when a new
* device is added/removed. Additionally it also protects post_commit_list of
* individual devices, since they can be added to the transaction's
* post_commit_list only with chunk_mutex held.
*
* cleaner_mutex
* -------------
* a big lock that is held by the cleaner thread and prevents running subvolume
* cleaning together with relocation or delayed iputs
*
*
* Lock nesting
* ============
*
* uuid_mutex
* device_list_mutex
* chunk_mutex
* balance_mutex
*
*
* Exclusive operations
* ====================
*
* Maintains the exclusivity of the following operations that apply to the
* whole filesystem and cannot run in parallel.
*
* - Balance (*)
* - Device add
* - Device remove
* - Device replace (*)
* - Resize
*
* The device operations (as above) can be in one of the following states:
*
* - Running state
* - Paused state
* - Completed state
*
* Only device operations marked with (*) can go into the Paused state for the
* following reasons:
*
* - ioctl (only Balance can be Paused through ioctl)
* - filesystem remounted as read-only
* - filesystem unmounted and mounted as read-only
* - system power-cycle and filesystem mounted as read-only
* - filesystem or device errors leading to forced read-only
*
* The status of exclusive operation is set and cleared atomically.
* During the course of Paused state, fs_info::exclusive_operation remains set.
* A device operation in Paused or Running state can be canceled or resumed
* either by ioctl (Balance only) or when remounted as read-write.
* The exclusive status is cleared when the device operation is canceled or
* completed.
*/
DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
{
return &fs_uuids;
}
/*
* alloc_fs_devices - allocate struct btrfs_fs_devices
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
* @fsid: if not NULL, copy the UUID to fs_devices::fsid
* @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
*
* Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
* The returned struct is not linked onto any lists and can be destroyed with
* kfree() right away.
*/
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
const u8 *metadata_fsid)
{
struct btrfs_fs_devices *fs_devs;
ASSERT(fsid || !metadata_fsid);
fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
if (!fs_devs)
return ERR_PTR(-ENOMEM);
mutex_init(&fs_devs->device_list_mutex);
INIT_LIST_HEAD(&fs_devs->devices);
INIT_LIST_HEAD(&fs_devs->alloc_list);
INIT_LIST_HEAD(&fs_devs->fs_list);
INIT_LIST_HEAD(&fs_devs->seed_list);
if (fsid) {
memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
memcpy(fs_devs->metadata_uuid,
metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
}
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
return fs_devs;
}
static void btrfs_free_device(struct btrfs_device *device)
{
WARN_ON(!list_empty(&device->post_commit_list));
rcu_string_free(device->name);
btrfs: fix leak of source device allocation state after device replace When a device replace finishes, the source device is freed by calling btrfs_free_device() at btrfs_rm_dev_replace_free_srcdev(), but the allocation state, tracked in the device's alloc_state io tree, is never freed. This is a regression recently introduced by commit f0bb5474cff0 ("btrfs: remove redundant release of btrfs_device::alloc_state"), which removed a call to extent_io_tree_release() from btrfs_free_device(), with the rationale that btrfs_close_one_device() already releases the allocation state from a device and btrfs_close_one_device() is always called before a device is freed with btrfs_free_device(). However that is not true for the device replace case, as btrfs_free_device() is called without any previous call to btrfs_close_one_device(). The issue is trivial to reproduce, for example, by running test btrfs/027 from fstests: $ ./check btrfs/027 $ rmmod btrfs $ dmesg (...) [84519.395485] BTRFS info (device sdc): dev_replace from <missing disk> (devid 2) to /dev/sdg started [84519.466224] BTRFS info (device sdc): dev_replace from <missing disk> (devid 2) to /dev/sdg finished [84519.552251] BTRFS info (device sdc): scrub: started on devid 1 [84519.552277] BTRFS info (device sdc): scrub: started on devid 2 [84519.552332] BTRFS info (device sdc): scrub: started on devid 3 [84519.552705] BTRFS info (device sdc): scrub: started on devid 4 [84519.604261] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0 [84519.609374] BTRFS info (device sdc): scrub: finished on devid 3 with status: 0 [84519.610818] BTRFS info (device sdc): scrub: finished on devid 1 with status: 0 [84519.610927] BTRFS info (device sdc): scrub: finished on devid 2 with status: 0 [84559.503795] BTRFS: state leak: start 1048576 end 1351614463 state 1 in tree 1 refs 1 [84559.506764] BTRFS: state leak: start 1048576 end 1347420159 state 1 in tree 1 refs 1 [84559.510294] BTRFS: state leak: start 1048576 end 1351614463 state 1 in tree 1 refs 1 So fix this by adding back the call to extent_io_tree_release() at btrfs_free_device(). Fixes: f0bb5474cff0 ("btrfs: remove redundant release of btrfs_device::alloc_state") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-26 17:13:00 +00:00
extent_io_tree_release(&device->alloc_state);
btrfs_destroy_dev_zone_info(device);
kfree(device);
}
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *device;
WARN_ON(fs_devices->opened);
while (!list_empty(&fs_devices->devices)) {
device = list_entry(fs_devices->devices.next,
struct btrfs_device, dev_list);
list_del(&device->dev_list);
btrfs_free_device(device);
}
kfree(fs_devices);
}
void __exit btrfs_cleanup_fs_uuids(void)
{
struct btrfs_fs_devices *fs_devices;
while (!list_empty(&fs_uuids)) {
fs_devices = list_entry(fs_uuids.next,
struct btrfs_fs_devices, fs_list);
list_del(&fs_devices->fs_list);
free_fs_devices(fs_devices);
}
}
static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
const u8 *fsid, const u8 *metadata_fsid)
{
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
return false;
if (!metadata_fsid)
return true;
if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
return false;
return true;
}
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
static noinline struct btrfs_fs_devices *find_fsid(
const u8 *fsid, const u8 *metadata_fsid)
{
struct btrfs_fs_devices *fs_devices;
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
ASSERT(fsid);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
/* Handle non-split brain cases */
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
return fs_devices;
}
return NULL;
}
/*
* First check if the metadata_uuid is different from the fsid in the given
* fs_devices. Then check if the given fsid is the same as the metadata_uuid
* in the fs_devices. If it is, return true; otherwise, return false.
*/
static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
const u8 *fsid)
{
return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
BTRFS_FSID_SIZE) != 0 &&
memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
}
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handle scanned device having completed its fsid change but
* belonging to a fs_devices that was created by first scanning
* a device which didn't have its fsid/metadata_uuid changed
* at all and the CHANGING_FSID_V2 flag set.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->fsid_change)
continue;
if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
fs_devices->fsid))
return fs_devices;
}
/*
* Handle scanned device having completed its fsid change but
* belonging to a fs_devices that was created by a device that
* has an outdated pair of fsid/metadata_uuid and
* CHANGING_FSID_V2 flag set.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->fsid_change)
continue;
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
return fs_devices;
}
return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}
static int
btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
int flush, struct block_device **bdev,
struct btrfs_super_block **disk_super)
{
int ret;
*bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
if (IS_ERR(*bdev)) {
ret = PTR_ERR(*bdev);
goto error;
}
if (flush)
sync_blockdev(*bdev);
ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
if (ret) {
blkdev_put(*bdev, holder);
goto error;
}
invalidate_bdev(*bdev);
*disk_super = btrfs_read_dev_super(*bdev);
if (IS_ERR(*disk_super)) {
ret = PTR_ERR(*disk_super);
blkdev_put(*bdev, holder);
goto error;
}
return 0;
error:
*bdev = NULL;
return ret;
}
/*
* Search and remove all stale devices (which are not mounted). When both
* inputs are NULL, it will search and release all stale devices.
*
* @devt: Optional. When provided will it release all unmounted devices
* matching this devt only.
* @skip_device: Optional. Will skip this device when searching for the stale
* devices.
*
* Return: 0 for success or if @devt is 0.
* -EBUSY if @devt is a mounted device.
* -ENOENT if @devt does not match any device in the list.
*/
static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
{
struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
struct btrfs_device *device, *tmp_device;
int ret = 0;
btrfs: fix lockdep warning while mounting sprout fs Following test case reproduces lockdep warning. Test case: $ mkfs.btrfs -f <dev1> $ btrfstune -S 1 <dev1> $ mount <dev1> <mnt> $ btrfs device add <dev2> <mnt> -f $ umount <mnt> $ mount <dev2> <mnt> $ umount <mnt> The warning claims a possible ABBA deadlock between the threads initiated by [#1] btrfs device add and [#0] the mount. [ 540.743122] WARNING: possible circular locking dependency detected [ 540.743129] 5.11.0-rc7+ #5 Not tainted [ 540.743135] ------------------------------------------------------ [ 540.743142] mount/2515 is trying to acquire lock: [ 540.743149] ffffa0c5544c2ce0 (&fs_devs->device_list_mutex){+.+.}-{4:4}, at: clone_fs_devices+0x6d/0x210 [btrfs] [ 540.743458] but task is already holding lock: [ 540.743461] ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743541] which lock already depends on the new lock. [ 540.743543] the existing dependency chain (in reverse order) is: [ 540.743546] -> #1 (btrfs-chunk-00){++++}-{4:4}: [ 540.743566] down_read_nested+0x48/0x2b0 [ 540.743585] __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743650] btrfs_read_lock_root_node+0x70/0x200 [btrfs] [ 540.743733] btrfs_search_slot+0x6c6/0xe00 [btrfs] [ 540.743785] btrfs_update_device+0x83/0x260 [btrfs] [ 540.743849] btrfs_finish_chunk_alloc+0x13f/0x660 [btrfs] <--- device_list_mutex [ 540.743911] btrfs_create_pending_block_groups+0x18d/0x3f0 [btrfs] [ 540.743982] btrfs_commit_transaction+0x86/0x1260 [btrfs] [ 540.744037] btrfs_init_new_device+0x1600/0x1dd0 [btrfs] [ 540.744101] btrfs_ioctl+0x1c77/0x24c0 [btrfs] [ 540.744166] __x64_sys_ioctl+0xe4/0x140 [ 540.744170] do_syscall_64+0x4b/0x80 [ 540.744174] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744180] -> #0 (&fs_devs->device_list_mutex){+.+.}-{4:4}: [ 540.744184] __lock_acquire+0x155f/0x2360 [ 540.744188] lock_acquire+0x10b/0x5c0 [ 540.744190] __mutex_lock+0xb1/0xf80 [ 540.744193] mutex_lock_nested+0x27/0x30 [ 540.744196] clone_fs_devices+0x6d/0x210 [btrfs] [ 540.744270] btrfs_read_chunk_tree+0x3c7/0xbb0 [btrfs] [ 540.744336] open_ctree+0xf6e/0x2074 [btrfs] [ 540.744406] btrfs_mount_root.cold.72+0x16/0x127 [btrfs] [ 540.744472] legacy_get_tree+0x38/0x90 [ 540.744475] vfs_get_tree+0x30/0x140 [ 540.744478] fc_mount+0x16/0x60 [ 540.744482] vfs_kern_mount+0x91/0x100 [ 540.744484] btrfs_mount+0x1e6/0x670 [btrfs] [ 540.744536] legacy_get_tree+0x38/0x90 [ 540.744537] vfs_get_tree+0x30/0x140 [ 540.744539] path_mount+0x8d8/0x1070 [ 540.744541] do_mount+0x8d/0xc0 [ 540.744543] __x64_sys_mount+0x125/0x160 [ 540.744545] do_syscall_64+0x4b/0x80 [ 540.744547] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744551] other info that might help us debug this: [ 540.744552] Possible unsafe locking scenario: [ 540.744553] CPU0 CPU1 [ 540.744554] ---- ---- [ 540.744555] lock(btrfs-chunk-00); [ 540.744557] lock(&fs_devs->device_list_mutex); [ 540.744560] lock(btrfs-chunk-00); [ 540.744562] lock(&fs_devs->device_list_mutex); [ 540.744564] *** DEADLOCK *** [ 540.744565] 3 locks held by mount/2515: [ 540.744567] #0: ffffa0c56bf7a0e0 (&type->s_umount_key#42/1){+.+.}-{4:4}, at: alloc_super.isra.16+0xdf/0x450 [ 540.744574] #1: ffffffffc05a9628 (uuid_mutex){+.+.}-{4:4}, at: btrfs_read_chunk_tree+0x63/0xbb0 [btrfs] [ 540.744640] #2: ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.744708] stack backtrace: [ 540.744712] CPU: 2 PID: 2515 Comm: mount Not tainted 5.11.0-rc7+ #5 But the device_list_mutex in clone_fs_devices() is redundant, as explained below. Two threads [1] and [2] (below) could lead to clone_fs_device(). [1] open_ctree <== mount sprout fs btrfs_read_chunk_tree() mutex_lock(&uuid_mutex) <== global lock read_one_dev() open_seed_devices() clone_fs_devices() <== seed fs_devices mutex_lock(&orig->device_list_mutex) <== seed fs_devices [2] btrfs_init_new_device() <== sprouting mutex_lock(&uuid_mutex); <== global lock btrfs_prepare_sprout() lockdep_assert_held(&uuid_mutex) clone_fs_devices(seed_fs_device) <== seed fs_devices Both of these threads hold uuid_mutex which is sufficient to protect getting the seed device(s) freed while we are trying to clone it for sprouting [2] or mounting a sprout [1] (as above). A mounted seed device can not free/write/replace because it is read-only. An unmounted seed device can be freed by btrfs_free_stale_devices(), but it needs uuid_mutex. So this patch removes the unnecessary device_list_mutex in clone_fs_devices(). And adds a lockdep_assert_held(&uuid_mutex) in clone_fs_devices(). Reported-by: Su Yue <l@damenly.su> Tested-by: Su Yue <l@damenly.su> Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-31 01:21:28 +00:00
lockdep_assert_held(&uuid_mutex);
if (devt)
ret = -ENOENT;
list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry_safe(device, tmp_device,
&fs_devices->devices, dev_list) {
if (skip_device && skip_device == device)
continue;
if (devt && devt != device->devt)
continue;
if (fs_devices->opened) {
/* for an already deleted device return 0 */
if (devt && ret != 0)
ret = -EBUSY;
break;
}
/* delete the stale device */
fs_devices->num_devices--;
list_del(&device->dev_list);
btrfs_free_device(device);
ret = 0;
}
mutex_unlock(&fs_devices->device_list_mutex);
if (fs_devices->num_devices == 0) {
btrfs_sysfs_remove_fsid(fs_devices);
list_del(&fs_devices->fs_list);
free_fs_devices(fs_devices);
}
}
return ret;
}
btrfs: open device without device_list_mutex There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-17 19:12:27 +00:00
/*
* This is only used on mount, and we are protected from competing things
* messing with our fs_devices by the uuid_mutex, thus we do not need the
* fs_devices->device_list_mutex here.
*/
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
struct btrfs_device *device, blk_mode_t flags,
void *holder)
{
struct block_device *bdev;
struct btrfs_super_block *disk_super;
u64 devid;
int ret;
if (device->bdev)
return -EINVAL;
if (!device->name)
return -EINVAL;
ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
&bdev, &disk_super);
if (ret)
return ret;
devid = btrfs_stack_device_id(&disk_super->dev_item);
if (devid != device->devid)
goto error_free_page;
if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
goto error_free_page;
device->generation = btrfs_super_generation(disk_super);
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
if (btrfs_super_incompat_flags(disk_super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
pr_err(
"BTRFS: Invalid seeding and uuid-changed device detected\n");
goto error_free_page;
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
}
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
fs_devices->seeding = true;
} else {
if (bdev_read_only(bdev))
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
else
set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
}
if (!bdev_nonrot(bdev))
fs_devices->rotating = true;
if (bdev_max_discard_sectors(bdev))
fs_devices->discardable = true;
device->bdev = bdev;
clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
device->holder = holder;
fs_devices->open_devices++;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
device->devid != BTRFS_DEV_REPLACE_DEVID) {
fs_devices->rw_devices++;
list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
}
btrfs_release_disk_super(disk_super);
return 0;
error_free_page:
btrfs_release_disk_super(disk_super);
blkdev_put(bdev, holder);
return -EINVAL;
}
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
/*
* Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
* being created with a disk that has already completed its fsid change. Such
* disk can belong to an fs which has its FSID changed or to one which doesn't.
* Handle both cases here.
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
*/
static struct btrfs_fs_devices *find_fsid_inprogress(
struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (fs_devices->fsid_change)
continue;
if (check_fsid_changed(fs_devices, disk_super->fsid))
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
return fs_devices;
}
return find_fsid(disk_super->fsid, NULL);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
}
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
static struct btrfs_fs_devices *find_fsid_changed(
struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handles the case where scanned device is part of an fs that had
* multiple successful changes of FSID but currently device didn't
* observe it. Meaning our fsid will be different than theirs. We need
* to handle two subcases :
* 1 - The fs still continues to have different METADATA/FSID uuids.
* 2 - The fs is switched back to its original FSID (METADATA/FSID
* are equal).
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
/* Changed UUIDs */
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
memcmp(fs_devices->fsid, disk_super->fsid,
BTRFS_FSID_SIZE) != 0)
return fs_devices;
/* Unchanged UUIDs */
if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
BTRFS_FSID_SIZE) == 0 &&
memcmp(fs_devices->fsid, disk_super->metadata_uuid,
BTRFS_FSID_SIZE) == 0)
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
return fs_devices;
}
return NULL;
}
static struct btrfs_fs_devices *find_fsid_reverted_metadata(
struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handle the case where the scanned device is part of an fs whose last
* metadata UUID change reverted it to the original FSID. At the same
* time fs_devices was first created by another constituent device
* which didn't fully observe the operation. This results in an
* btrfs_fs_devices created with metadata/fsid different AND
* btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
* fs_devices equal to the FSID of the disk.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->fsid_change)
continue;
if (check_fsid_changed(fs_devices, disk_super->fsid))
return fs_devices;
}
return NULL;
}
/*
* Add new device to list of registered devices
*
* Returns:
* device pointer which was just added or updated when successful
* error pointer when failed
*/
static noinline struct btrfs_device *device_list_add(const char *path,
struct btrfs_super_block *disk_super,
bool *new_device_added)
{
struct btrfs_device *device;
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
struct btrfs_fs_devices *fs_devices = NULL;
struct rcu_string *name;
u64 found_transid = btrfs_super_generation(disk_super);
u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
dev_t path_devt;
int error;
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
error = lookup_bdev(path, &path_devt);
if (error) {
btrfs_err(NULL, "failed to lookup block device for path %s: %d",
path, error);
return ERR_PTR(error);
}
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
if (fsid_change_in_progress) {
if (!has_metadata_uuid)
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
fs_devices = find_fsid_inprogress(disk_super);
else
btrfs: Handle final split-brain possibility during fsid change This patch lands the last case which needs to be handled by the fsid change code. Namely, this is the case where a multidisk filesystem has already undergone at least one successful fsid change i.e all disks have the METADATA_UUID incompat bit and power failure occurs as another fsid change is in progress. When such an event occurs, disks could be split in 2 groups. One of the groups will have both METADATA_UUID and CHANGING_FSID_V2 flags set coupled with old fsid/metadata_uuid pairs. The other group of disks will have only METADATA_UUID bit set and their fsid will be different than the one in disks in the first group. Here we look at the following cases: a) A disk from the first group is scanned first, so fs_devices is created with stale fsid/metdata_uuid. Then when a disk from the second group is scanned it needs to first check whether there exists such an fs_devices that has fsid_change set to true (because it was created with a disk having the CHANGING_FSID_V2 flag), the metadata_uuid and fsid of the fs_devices will be different (since it was created by a disk which already has had at least 1 successful fsid change) and finally the metadata_uuid of the fs_devices will equal that of the currently scanned disk (because metadata_uuid never really changes). When the correct fs_devices is found the information from the scanned disk will replace the current one in fs_devices since the scanned disk will have higher generation number. b) A disk from the second group is scanned so fs_devices is created as usual with differing fsid/metdata_uid. Then when a disk from the first group is scanned the code detects that it has both CHANGING_FSID_V2 and METADATA_UUID flags set and will search for fs_devices that has differing metadata_uuid/fsid and whose metadata_uuid is the same as that of the scanned device. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:28 +00:00
fs_devices = find_fsid_changed(disk_super);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
} else if (has_metadata_uuid) {
fs_devices = find_fsid_with_metadata_uuid(disk_super);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
} else {
fs_devices = find_fsid_reverted_metadata(disk_super);
if (!fs_devices)
fs_devices = find_fsid(disk_super->fsid, NULL);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
}
if (!fs_devices) {
fs_devices = alloc_fs_devices(disk_super->fsid,
has_metadata_uuid ? disk_super->metadata_uuid : NULL);
if (IS_ERR(fs_devices))
return ERR_CAST(fs_devices);
fs_devices->fsid_change = fsid_change_in_progress;
mutex_lock(&fs_devices->device_list_mutex);
list_add(&fs_devices->fs_list, &fs_uuids);
device = NULL;
} else {
struct btrfs_dev_lookup_args args = {
.devid = devid,
.uuid = disk_super->dev_item.uuid,
};
mutex_lock(&fs_devices->device_list_mutex);
device = btrfs_find_device(fs_devices, &args);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
/*
* If this disk has been pulled into an fs devices created by
* a device which had the CHANGING_FSID_V2 flag then replace the
* metadata_uuid/fsid values of the fs_devices.
*/
if (fs_devices->fsid_change &&
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
found_transid > fs_devices->latest_generation) {
memcpy(fs_devices->fsid, disk_super->fsid,
BTRFS_FSID_SIZE);
if (has_metadata_uuid)
memcpy(fs_devices->metadata_uuid,
disk_super->metadata_uuid,
BTRFS_FSID_SIZE);
else
memcpy(fs_devices->metadata_uuid,
disk_super->fsid, BTRFS_FSID_SIZE);
btrfs: Handle one more split-brain scenario during fsid change This commit continues hardening the scanning code to handle cases where power loss could have caused disks in a multi-disk filesystem to be in inconsistent state. Namely handle the situation that can occur when some of the disks in multi-disk fs have completed their fsid change i.e they have METADATA_UUID incompat flag set, have cleared the CHANGING_FSID_V2 flag and their fsid/metadata_uuid are different. At the same time the other half of the disks will have their fsid/metadata_uuid unchanged and will only have CHANGING_FSID_V2 flag. This is handled by introducing code in the scan path which: a) Handles the case when a device with CHANGING_FSID_V2 flag is scanned and as a result btrfs_fs_devices is created with matching fsid/metdata_uuid. Subsequently, when a device with completed fsid change is scanned it will detect this via the new code in find_fsid i.e that such an fs_devices exist that fsid_change flag is set to true, it's metadata_uuid/fsid match and the metadata_uuid of the scanned device matches that of the fs_devices. In this case, it's important to note that the devices which has its fsid change completed will have a higher generation number than the device with FSID_CHANGING_V2 flag set, so its superblock block will be used during mount. To prevent an assertion triggering because the sb used for mounting will have differing fsid/metadata_uuid than the ones in the fs_devices struct also add code in device_list_add which overwrites the values in fs_devices. b) Alternatively we can end up with a device that completed its fsid change be scanned first which will create the respective btrfs_fs_devices struct with differing fsid/metadata_uuid. In this case when a device with FSID_CHANGING_V2 flag set is scanned it will call the newly added find_fsid_inprogress function which will return the correct fs_devices. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:27 +00:00
fs_devices->fsid_change = false;
}
}
if (!device) {
unsigned int nofs_flag;
if (fs_devices->opened) {
btrfs_err(NULL,
"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
path, fs_devices->fsid, current->comm,
task_pid_nr(current));
mutex_unlock(&fs_devices->device_list_mutex);
return ERR_PTR(-EBUSY);
}
nofs_flag = memalloc_nofs_save();
device = btrfs_alloc_device(NULL, &devid,
disk_super->dev_item.uuid, path);
memalloc_nofs_restore(nofs_flag);
if (IS_ERR(device)) {
mutex_unlock(&fs_devices->device_list_mutex);
/* we can safely leave the fs_devices entry around */
return device;
}
device->devt = path_devt;
list_add_rcu(&device->dev_list, &fs_devices->devices);
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl The handler for the ioctl BTRFS_IOC_FS_INFO was reading the number of devices before acquiring the device list mutex. This could lead to inconsistent results because the update of the device list and the number of devices counter (amongst other counters related to the device list) are updated in volumes.c while holding the device list mutex - except for 2 places, one was volumes.c:btrfs_prepare_sprout() and the other was volumes.c:device_list_add(). For example, if we have 2 devices, with IDs 1 and 2 and then add a new device, with ID 3, and while adding the device is in progress an BTRFS_IOC_FS_INFO ioctl arrives, it could return a number of devices of 2 and a max dev id of 3. This would be incorrect. Also, this ioctl handler was reading the fsid while it can be updated concurrently. This can happen when while a new device is being added and the current filesystem is in seeding mode. Example: $ mkfs.btrfs -f /dev/sdb1 $ mkfs.btrfs -f /dev/sdb2 $ btrfstune -S 1 /dev/sdb1 $ mount /dev/sdb1 /mnt/test $ btrfs device add /dev/sdb2 /mnt/test If during the last step a BTRFS_IOC_FS_INFO ioctl was requested, it could read an fsid that was never valid (some bits part of the old fsid and others part of the new fsid). Also, it could read a number of devices that doesn't match the number of devices in the list and the max device id, as explained before. Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-12 19:56:58 +00:00
fs_devices->num_devices++;
device->fs_devices = fs_devices;
*new_device_added = true;
if (disk_super->label[0])
pr_info(
"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
disk_super->label, devid, found_transid, path,
current->comm, task_pid_nr(current));
else
pr_info(
"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
disk_super->fsid, devid, found_transid, path,
current->comm, task_pid_nr(current));
} else if (!device->name || strcmp(device->name->str, path)) {
Btrfs: device_list_add() should not update list when mounted device_list_add() is called when user runs btrfs dev scan, which would add any btrfs device into the btrfs_fs_devices list. Now think of a mounted btrfs. And a new device which contains the a SB from the mounted btrfs devices. In this situation when user runs btrfs dev scan, the current code would just replace existing device with the new device. Which is to note that old device is neither closed nor gracefully removed from the btrfs. The FS is still operational with the old bdev however the device name is the btrfs_device is new which is provided by the btrfs dev scan. reproducer: devmgt[1] detach /dev/sdc replace the missing disk /dev/sdc btrfs rep start -f 1 /dev/sde /btrfs Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120 Total devices 2 FS bytes used 32.00KiB devid 1 size 958.94MiB used 115.88MiB path /dev/sde devid 2 size 958.94MiB used 103.88MiB path /dev/sdd make /dev/sdc to reappear devmgt attach host2 btrfs dev scan btrfs fi show -m Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120^M Total devices 2 FS bytes used 32.00KiB^M devid 1 size 958.94MiB used 115.88MiB path /dev/sdc <- Wrong. devid 2 size 958.94MiB used 103.88MiB path /dev/sdd since /dev/sdc has been replaced with /dev/sde, the /dev/sdc shouldn't be part of the btrfs-fsid when it reappears. If user want it to be part of it then sys admin should be using btrfs device add instead. [1] github.com/anajain/devmgt.git Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-07-03 10:22:05 +00:00
/*
* When FS is already mounted.
* 1. If you are here and if the device->name is NULL that
* means this device was missing at time of FS mount.
* 2. If you are here and if the device->name is different
* from 'path' that means either
* a. The same device disappeared and reappeared with
* different name. or
* b. The missing-disk-which-was-replaced, has
* reappeared now.
*
* We must allow 1 and 2a above. But 2b would be a spurious
* and unintentional.
*
* Further in case of 1 and 2a above, the disk at 'path'
* would have missed some transaction when it was away and
* in case of 2a the stale bdev has to be updated as well.
* 2b must not be allowed at all time.
*/
/*
* For now, we do allow update to btrfs_fs_device through the
* btrfs dev scan cli after FS has been mounted. We're still
* tracking a problem where systems fail mount by subvolume id
* when we reject replacement on a mounted FS.
Btrfs: device_list_add() should not update list when mounted device_list_add() is called when user runs btrfs dev scan, which would add any btrfs device into the btrfs_fs_devices list. Now think of a mounted btrfs. And a new device which contains the a SB from the mounted btrfs devices. In this situation when user runs btrfs dev scan, the current code would just replace existing device with the new device. Which is to note that old device is neither closed nor gracefully removed from the btrfs. The FS is still operational with the old bdev however the device name is the btrfs_device is new which is provided by the btrfs dev scan. reproducer: devmgt[1] detach /dev/sdc replace the missing disk /dev/sdc btrfs rep start -f 1 /dev/sde /btrfs Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120 Total devices 2 FS bytes used 32.00KiB devid 1 size 958.94MiB used 115.88MiB path /dev/sde devid 2 size 958.94MiB used 103.88MiB path /dev/sdd make /dev/sdc to reappear devmgt attach host2 btrfs dev scan btrfs fi show -m Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120^M Total devices 2 FS bytes used 32.00KiB^M devid 1 size 958.94MiB used 115.88MiB path /dev/sdc <- Wrong. devid 2 size 958.94MiB used 103.88MiB path /dev/sdd since /dev/sdc has been replaced with /dev/sde, the /dev/sdc shouldn't be part of the btrfs-fsid when it reappears. If user want it to be part of it then sys admin should be using btrfs device add instead. [1] github.com/anajain/devmgt.git Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-07-03 10:22:05 +00:00
*/
if (!fs_devices->opened && found_transid < device->generation) {
/*
* That is if the FS is _not_ mounted and if you
* are here, that means there is more than one
* disk with same uuid and devid.We keep the one
* with larger generation number or the last-in if
* generation are equal.
*/
mutex_unlock(&fs_devices->device_list_mutex);
btrfs_err(NULL,
"device %s already registered with a higher generation, found %llu expect %llu",
path, found_transid, device->generation);
return ERR_PTR(-EEXIST);
}
Btrfs: device_list_add() should not update list when mounted device_list_add() is called when user runs btrfs dev scan, which would add any btrfs device into the btrfs_fs_devices list. Now think of a mounted btrfs. And a new device which contains the a SB from the mounted btrfs devices. In this situation when user runs btrfs dev scan, the current code would just replace existing device with the new device. Which is to note that old device is neither closed nor gracefully removed from the btrfs. The FS is still operational with the old bdev however the device name is the btrfs_device is new which is provided by the btrfs dev scan. reproducer: devmgt[1] detach /dev/sdc replace the missing disk /dev/sdc btrfs rep start -f 1 /dev/sde /btrfs Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120 Total devices 2 FS bytes used 32.00KiB devid 1 size 958.94MiB used 115.88MiB path /dev/sde devid 2 size 958.94MiB used 103.88MiB path /dev/sdd make /dev/sdc to reappear devmgt attach host2 btrfs dev scan btrfs fi show -m Label: none uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120^M Total devices 2 FS bytes used 32.00KiB^M devid 1 size 958.94MiB used 115.88MiB path /dev/sdc <- Wrong. devid 2 size 958.94MiB used 103.88MiB path /dev/sdd since /dev/sdc has been replaced with /dev/sde, the /dev/sdc shouldn't be part of the btrfs-fsid when it reappears. If user want it to be part of it then sys admin should be using btrfs device add instead. [1] github.com/anajain/devmgt.git Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-07-03 10:22:05 +00:00
btrfs: harden agaist duplicate fsid on scanned devices It's not that impossible to imagine that a device OR a btrfs image is copied just by using the dd or the cp command. Which in case both the copies of the btrfs will have the same fsid. If on the system with automount enabled, the copied FS gets scanned. We have a known bug in btrfs, that we let the device path be changed after the device has been mounted. So using this loop hole the new copied device would appears as if its mounted immediately after it's been copied. For example: Initially.. /dev/mmcblk0p4 is mounted as / $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part / |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4 Copy mmcblk0 to sda $ dd if=/dev/mmcblk0 of=/dev/sda And immediately after the copy completes the change in the device superblock is notified which the automount scans using btrfs device scan and the new device sda becomes the mounted root device. $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 1 14.9G 0 disk |-sda4 8:4 1 4G 0 part / |-sda2 8:2 1 500M 0 part |-sda3 8:3 1 256M 0 part `-sda1 8:1 1 256M 0 part mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show / Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/sda4 The bug is quite nasty that you can't either unmount /dev/sda4 or /dev/mmcblk0p4. And the problem does not get solved until you take sda out of the system on to another system to change its fsid using the 'btrfstune -u' command. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 02:45:17 +00:00
/*
* We are going to replace the device path for a given devid,
* make sure it's the same device if the device is mounted
*
* NOTE: the device->fs_info may not be reliable here so pass
* in a NULL to message helpers instead. This avoids a possible
* use-after-free when the fs_info and fs_info->sb are already
* torn down.
btrfs: harden agaist duplicate fsid on scanned devices It's not that impossible to imagine that a device OR a btrfs image is copied just by using the dd or the cp command. Which in case both the copies of the btrfs will have the same fsid. If on the system with automount enabled, the copied FS gets scanned. We have a known bug in btrfs, that we let the device path be changed after the device has been mounted. So using this loop hole the new copied device would appears as if its mounted immediately after it's been copied. For example: Initially.. /dev/mmcblk0p4 is mounted as / $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part / |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4 Copy mmcblk0 to sda $ dd if=/dev/mmcblk0 of=/dev/sda And immediately after the copy completes the change in the device superblock is notified which the automount scans using btrfs device scan and the new device sda becomes the mounted root device. $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 1 14.9G 0 disk |-sda4 8:4 1 4G 0 part / |-sda2 8:2 1 500M 0 part |-sda3 8:3 1 256M 0 part `-sda1 8:1 1 256M 0 part mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show / Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/sda4 The bug is quite nasty that you can't either unmount /dev/sda4 or /dev/mmcblk0p4. And the problem does not get solved until you take sda out of the system on to another system to change its fsid using the 'btrfstune -u' command. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 02:45:17 +00:00
*/
if (device->bdev) {
if (device->devt != path_devt) {
btrfs: harden agaist duplicate fsid on scanned devices It's not that impossible to imagine that a device OR a btrfs image is copied just by using the dd or the cp command. Which in case both the copies of the btrfs will have the same fsid. If on the system with automount enabled, the copied FS gets scanned. We have a known bug in btrfs, that we let the device path be changed after the device has been mounted. So using this loop hole the new copied device would appears as if its mounted immediately after it's been copied. For example: Initially.. /dev/mmcblk0p4 is mounted as / $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part / |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4 Copy mmcblk0 to sda $ dd if=/dev/mmcblk0 of=/dev/sda And immediately after the copy completes the change in the device superblock is notified which the automount scans using btrfs device scan and the new device sda becomes the mounted root device. $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 1 14.9G 0 disk |-sda4 8:4 1 4G 0 part / |-sda2 8:2 1 500M 0 part |-sda3 8:3 1 256M 0 part `-sda1 8:1 1 256M 0 part mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show / Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/sda4 The bug is quite nasty that you can't either unmount /dev/sda4 or /dev/mmcblk0p4. And the problem does not get solved until you take sda out of the system on to another system to change its fsid using the 'btrfstune -u' command. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 02:45:17 +00:00
mutex_unlock(&fs_devices->device_list_mutex);
btrfs: don't access possibly stale fs_info data for printing duplicate device Syzbot reported a possible use-after-free when printing a duplicate device warning device_list_add(). At this point it can happen that a btrfs_device::fs_info is not correctly setup yet, so we're accessing stale data, when printing the warning message using the btrfs_printk() wrappers. ================================================================== BUG: KASAN: use-after-free in btrfs_printk+0x3eb/0x435 fs/btrfs/super.c:245 Read of size 8 at addr ffff8880878e06a8 by task syz-executor225/7068 CPU: 1 PID: 7068 Comm: syz-executor225 Not tainted 5.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1d6/0x29e lib/dump_stack.c:118 print_address_description+0x66/0x620 mm/kasan/report.c:383 __kasan_report mm/kasan/report.c:513 [inline] kasan_report+0x132/0x1d0 mm/kasan/report.c:530 btrfs_printk+0x3eb/0x435 fs/btrfs/super.c:245 device_list_add+0x1a88/0x1d60 fs/btrfs/volumes.c:943 btrfs_scan_one_device+0x196/0x490 fs/btrfs/volumes.c:1359 btrfs_mount_root+0x48f/0xb60 fs/btrfs/super.c:1634 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x44840a RSP: 002b:00007ffedfffd608 EFLAGS: 00000293 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 00007ffedfffd670 RCX: 000000000044840a RDX: 0000000020000000 RSI: 0000000020000100 RDI: 00007ffedfffd630 RBP: 00007ffedfffd630 R08: 00007ffedfffd670 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 000000000000001a R13: 0000000000000004 R14: 0000000000000003 R15: 0000000000000003 Allocated by task 6945: kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track mm/kasan/common.c:56 [inline] __kasan_kmalloc+0x100/0x130 mm/kasan/common.c:461 kmalloc_node include/linux/slab.h:577 [inline] kvmalloc_node+0x81/0x110 mm/util.c:574 kvmalloc include/linux/mm.h:757 [inline] kvzalloc include/linux/mm.h:765 [inline] btrfs_mount_root+0xd0/0xb60 fs/btrfs/super.c:1613 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 6945: kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track+0x3d/0x70 mm/kasan/common.c:56 kasan_set_free_info+0x17/0x30 mm/kasan/generic.c:355 __kasan_slab_free+0xdd/0x110 mm/kasan/common.c:422 __cache_free mm/slab.c:3418 [inline] kfree+0x113/0x200 mm/slab.c:3756 deactivate_locked_super+0xa7/0xf0 fs/super.c:335 btrfs_mount_root+0x72b/0xb60 fs/btrfs/super.c:1678 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 fc_mount fs/namespace.c:978 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1008 btrfs_mount+0x33c/0xae0 fs/btrfs/super.c:1732 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x88/0x270 fs/super.c:1547 do_new_mount fs/namespace.c:2875 [inline] path_mount+0x179d/0x29e0 fs/namespace.c:3192 do_mount fs/namespace.c:3205 [inline] __do_sys_mount fs/namespace.c:3413 [inline] __se_sys_mount+0x126/0x180 fs/namespace.c:3390 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff8880878e0000 which belongs to the cache kmalloc-16k of size 16384 The buggy address is located 1704 bytes inside of 16384-byte region [ffff8880878e0000, ffff8880878e4000) The buggy address belongs to the page: page:0000000060704f30 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x878e0 head:0000000060704f30 order:3 compound_mapcount:0 compound_pincount:0 flags: 0xfffe0000010200(slab|head) raw: 00fffe0000010200 ffffea00028e9a08 ffffea00021e3608 ffff8880aa440b00 raw: 0000000000000000 ffff8880878e0000 0000000100000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880878e0580: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880878e0600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880878e0680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880878e0700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880878e0780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The syzkaller reproducer for this use-after-free crafts a filesystem image and loop mounts it twice in a loop. The mount will fail as the crafted image has an invalid chunk tree. When this happens btrfs_mount_root() will call deactivate_locked_super(), which then cleans up fs_info and fs_info::sb. If a second thread now adds the same block-device to the filesystem, it will get detected as a duplicate device and device_list_add() will reject the duplicate and print a warning. But as the fs_info pointer passed in is non-NULL this will result in a use-after-free. Instead of printing possibly uninitialized or already freed memory in btrfs_printk(), explicitly pass in a NULL fs_info so the printing of the device name will be skipped altogether. There was a slightly different approach discussed in https://lore.kernel.org/linux-btrfs/20200114060920.4527-1-anand.jain@oracle.com/t/#u Link: https://lore.kernel.org/linux-btrfs/000000000000c9e14b05afcc41ba@google.com Reported-by: syzbot+582e66e5edf36a22c7b0@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-18 09:03:26 +00:00
btrfs_warn_in_rcu(NULL,
"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
path, devid, found_transid,
current->comm,
task_pid_nr(current));
btrfs: harden agaist duplicate fsid on scanned devices It's not that impossible to imagine that a device OR a btrfs image is copied just by using the dd or the cp command. Which in case both the copies of the btrfs will have the same fsid. If on the system with automount enabled, the copied FS gets scanned. We have a known bug in btrfs, that we let the device path be changed after the device has been mounted. So using this loop hole the new copied device would appears as if its mounted immediately after it's been copied. For example: Initially.. /dev/mmcblk0p4 is mounted as / $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part / |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4 Copy mmcblk0 to sda $ dd if=/dev/mmcblk0 of=/dev/sda And immediately after the copy completes the change in the device superblock is notified which the automount scans using btrfs device scan and the new device sda becomes the mounted root device. $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 1 14.9G 0 disk |-sda4 8:4 1 4G 0 part / |-sda2 8:2 1 500M 0 part |-sda3 8:3 1 256M 0 part `-sda1 8:1 1 256M 0 part mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show / Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/sda4 The bug is quite nasty that you can't either unmount /dev/sda4 or /dev/mmcblk0p4. And the problem does not get solved until you take sda out of the system on to another system to change its fsid using the 'btrfstune -u' command. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 02:45:17 +00:00
return ERR_PTR(-EEXIST);
}
btrfs_info_in_rcu(NULL,
"devid %llu device path %s changed to %s scanned by %s (%d)",
devid, btrfs_dev_name(device),
path, current->comm,
task_pid_nr(current));
btrfs: harden agaist duplicate fsid on scanned devices It's not that impossible to imagine that a device OR a btrfs image is copied just by using the dd or the cp command. Which in case both the copies of the btrfs will have the same fsid. If on the system with automount enabled, the copied FS gets scanned. We have a known bug in btrfs, that we let the device path be changed after the device has been mounted. So using this loop hole the new copied device would appears as if its mounted immediately after it's been copied. For example: Initially.. /dev/mmcblk0p4 is mounted as / $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part / |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/mmcblk0p4 Copy mmcblk0 to sda $ dd if=/dev/mmcblk0 of=/dev/sda And immediately after the copy completes the change in the device superblock is notified which the automount scans using btrfs device scan and the new device sda becomes the mounted root device. $ lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 1 14.9G 0 disk |-sda4 8:4 1 4G 0 part / |-sda2 8:2 1 500M 0 part |-sda3 8:3 1 256M 0 part `-sda1 8:1 1 256M 0 part mmcblk0 179:0 0 29.2G 0 disk |-mmcblk0p4 179:4 0 4G 0 part |-mmcblk0p2 179:2 0 500M 0 part /boot |-mmcblk0p3 179:3 0 256M 0 part [SWAP] `-mmcblk0p1 179:1 0 256M 0 part /boot/efi $ btrfs fi show / Label: none uuid: 07892354-ddaa-4443-90ea-f76a06accaba Total devices 1 FS bytes used 1.40GiB devid 1 size 4.00GiB used 3.00GiB path /dev/sda4 The bug is quite nasty that you can't either unmount /dev/sda4 or /dev/mmcblk0p4. And the problem does not get solved until you take sda out of the system on to another system to change its fsid using the 'btrfstune -u' command. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15 02:45:17 +00:00
}
name = rcu_string_strdup(path, GFP_NOFS);
if (!name) {
mutex_unlock(&fs_devices->device_list_mutex);
return ERR_PTR(-ENOMEM);
}
rcu_string_free(device->name);
rcu_assign_pointer(device->name, name);
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
fs_devices->missing_devices--;
clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
}
device->devt = path_devt;
}
/*
* Unmount does not free the btrfs_device struct but would zero
* generation along with most of the other members. So just update
* it back. We need it to pick the disk with largest generation
* (as above).
*/
if (!fs_devices->opened) {
device->generation = found_transid;
fs_devices->latest_generation = max_t(u64, found_transid,
fs_devices->latest_generation);
}
fs_devices->total_devices = btrfs_super_num_devices(disk_super);
mutex_unlock(&fs_devices->device_list_mutex);
return device;
}
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
struct btrfs_fs_devices *fs_devices;
struct btrfs_device *device;
struct btrfs_device *orig_dev;
int ret = 0;
btrfs: fix lockdep warning while mounting sprout fs Following test case reproduces lockdep warning. Test case: $ mkfs.btrfs -f <dev1> $ btrfstune -S 1 <dev1> $ mount <dev1> <mnt> $ btrfs device add <dev2> <mnt> -f $ umount <mnt> $ mount <dev2> <mnt> $ umount <mnt> The warning claims a possible ABBA deadlock between the threads initiated by [#1] btrfs device add and [#0] the mount. [ 540.743122] WARNING: possible circular locking dependency detected [ 540.743129] 5.11.0-rc7+ #5 Not tainted [ 540.743135] ------------------------------------------------------ [ 540.743142] mount/2515 is trying to acquire lock: [ 540.743149] ffffa0c5544c2ce0 (&fs_devs->device_list_mutex){+.+.}-{4:4}, at: clone_fs_devices+0x6d/0x210 [btrfs] [ 540.743458] but task is already holding lock: [ 540.743461] ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743541] which lock already depends on the new lock. [ 540.743543] the existing dependency chain (in reverse order) is: [ 540.743546] -> #1 (btrfs-chunk-00){++++}-{4:4}: [ 540.743566] down_read_nested+0x48/0x2b0 [ 540.743585] __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.743650] btrfs_read_lock_root_node+0x70/0x200 [btrfs] [ 540.743733] btrfs_search_slot+0x6c6/0xe00 [btrfs] [ 540.743785] btrfs_update_device+0x83/0x260 [btrfs] [ 540.743849] btrfs_finish_chunk_alloc+0x13f/0x660 [btrfs] <--- device_list_mutex [ 540.743911] btrfs_create_pending_block_groups+0x18d/0x3f0 [btrfs] [ 540.743982] btrfs_commit_transaction+0x86/0x1260 [btrfs] [ 540.744037] btrfs_init_new_device+0x1600/0x1dd0 [btrfs] [ 540.744101] btrfs_ioctl+0x1c77/0x24c0 [btrfs] [ 540.744166] __x64_sys_ioctl+0xe4/0x140 [ 540.744170] do_syscall_64+0x4b/0x80 [ 540.744174] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744180] -> #0 (&fs_devs->device_list_mutex){+.+.}-{4:4}: [ 540.744184] __lock_acquire+0x155f/0x2360 [ 540.744188] lock_acquire+0x10b/0x5c0 [ 540.744190] __mutex_lock+0xb1/0xf80 [ 540.744193] mutex_lock_nested+0x27/0x30 [ 540.744196] clone_fs_devices+0x6d/0x210 [btrfs] [ 540.744270] btrfs_read_chunk_tree+0x3c7/0xbb0 [btrfs] [ 540.744336] open_ctree+0xf6e/0x2074 [btrfs] [ 540.744406] btrfs_mount_root.cold.72+0x16/0x127 [btrfs] [ 540.744472] legacy_get_tree+0x38/0x90 [ 540.744475] vfs_get_tree+0x30/0x140 [ 540.744478] fc_mount+0x16/0x60 [ 540.744482] vfs_kern_mount+0x91/0x100 [ 540.744484] btrfs_mount+0x1e6/0x670 [btrfs] [ 540.744536] legacy_get_tree+0x38/0x90 [ 540.744537] vfs_get_tree+0x30/0x140 [ 540.744539] path_mount+0x8d8/0x1070 [ 540.744541] do_mount+0x8d/0xc0 [ 540.744543] __x64_sys_mount+0x125/0x160 [ 540.744545] do_syscall_64+0x4b/0x80 [ 540.744547] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 540.744551] other info that might help us debug this: [ 540.744552] Possible unsafe locking scenario: [ 540.744553] CPU0 CPU1 [ 540.744554] ---- ---- [ 540.744555] lock(btrfs-chunk-00); [ 540.744557] lock(&fs_devs->device_list_mutex); [ 540.744560] lock(btrfs-chunk-00); [ 540.744562] lock(&fs_devs->device_list_mutex); [ 540.744564] *** DEADLOCK *** [ 540.744565] 3 locks held by mount/2515: [ 540.744567] #0: ffffa0c56bf7a0e0 (&type->s_umount_key#42/1){+.+.}-{4:4}, at: alloc_super.isra.16+0xdf/0x450 [ 540.744574] #1: ffffffffc05a9628 (uuid_mutex){+.+.}-{4:4}, at: btrfs_read_chunk_tree+0x63/0xbb0 [btrfs] [ 540.744640] #2: ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs] [ 540.744708] stack backtrace: [ 540.744712] CPU: 2 PID: 2515 Comm: mount Not tainted 5.11.0-rc7+ #5 But the device_list_mutex in clone_fs_devices() is redundant, as explained below. Two threads [1] and [2] (below) could lead to clone_fs_device(). [1] open_ctree <== mount sprout fs btrfs_read_chunk_tree() mutex_lock(&uuid_mutex) <== global lock read_one_dev() open_seed_devices() clone_fs_devices() <== seed fs_devices mutex_lock(&orig->device_list_mutex) <== seed fs_devices [2] btrfs_init_new_device() <== sprouting mutex_lock(&uuid_mutex); <== global lock btrfs_prepare_sprout() lockdep_assert_held(&uuid_mutex) clone_fs_devices(seed_fs_device) <== seed fs_devices Both of these threads hold uuid_mutex which is sufficient to protect getting the seed device(s) freed while we are trying to clone it for sprouting [2] or mounting a sprout [1] (as above). A mounted seed device can not free/write/replace because it is read-only. An unmounted seed device can be freed by btrfs_free_stale_devices(), but it needs uuid_mutex. So this patch removes the unnecessary device_list_mutex in clone_fs_devices(). And adds a lockdep_assert_held(&uuid_mutex) in clone_fs_devices(). Reported-by: Su Yue <l@damenly.su> Tested-by: Su Yue <l@damenly.su> Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-31 01:21:28 +00:00
lockdep_assert_held(&uuid_mutex);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
fs_devices = alloc_fs_devices(orig->fsid, NULL);
if (IS_ERR(fs_devices))
return fs_devices;
fs_devices->total_devices = orig->total_devices;
list_for_each_entry(orig_dev, &orig->devices, dev_list) {
const char *dev_path = NULL;
/*
* This is ok to do without RCU read locked because we hold the
* uuid mutex so nothing we touch in here is going to disappear.
*/
if (orig_dev->name)
dev_path = orig_dev->name->str;
device = btrfs_alloc_device(NULL, &orig_dev->devid,
orig_dev->uuid, dev_path);
if (IS_ERR(device)) {
ret = PTR_ERR(device);
goto error;
}
if (orig_dev->zone_info) {
struct btrfs_zoned_device_info *zone_info;
zone_info = btrfs_clone_dev_zone_info(orig_dev);
if (!zone_info) {
btrfs_free_device(device);
ret = -ENOMEM;
goto error;
}
device->zone_info = zone_info;
}
list_add(&device->dev_list, &fs_devices->devices);
device->fs_devices = fs_devices;
fs_devices->num_devices++;
}
return fs_devices;
error:
free_fs_devices(fs_devices);
return ERR_PTR(ret);
}
static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
struct btrfs_device **latest_dev)
{
struct btrfs_device *device, *next;
/* This is the initialized path, it is safe to release the devices. */
list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
&device->dev_state) &&
btrfs: include non-missing as a qualifier for the latest_bdev btrfs_free_extra_devids() updates fs_devices::latest_bdev to point to the bdev with greatest device::generation number. For a typical-missing device the generation number is zero so fs_devices::latest_bdev will never point to it. But if the missing device is due to alienation [1], then device::generation is not zero and if it is greater or equal to the rest of device generations in the list, then fs_devices::latest_bdev ends up pointing to the missing device and reports the error like [2]. [1] We maintain devices of a fsid (as in fs_device::fsid) in the fs_devices::devices list, a device is considered as an alien device if its fsid does not match with the fs_device::fsid Consider a working filesystem with raid1: $ mkfs.btrfs -f -d raid1 -m raid1 /dev/sda /dev/sdb $ mount /dev/sda /mnt-raid1 $ umount /mnt-raid1 While mnt-raid1 was unmounted the user force-adds one of its devices to another btrfs filesystem: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt-single $ btrfs dev add -f /dev/sda /mnt-single Now the original mnt-raid1 fails to mount in degraded mode, because fs_devices::latest_bdev is pointing to the alien device. $ mount -o degraded /dev/sdb /mnt-raid1 [2] mount: wrong fs type, bad option, bad superblock on /dev/sdb, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so. kernel: BTRFS warning (device sdb): devid 1 uuid 072a0192-675b-4d5a-8640-a5cf2b2c704d is missing kernel: BTRFS error (device sdb): failed to read devices kernel: BTRFS error (device sdb): open_ctree failed Fix the root cause by checking if the device is not missing before it can be considered for the fs_devices::latest_bdev. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-04 18:58:25 +00:00
!test_bit(BTRFS_DEV_STATE_MISSING,
&device->dev_state) &&
(!*latest_dev ||
device->generation > (*latest_dev)->generation)) {
*latest_dev = device;
}
continue;
}
btrfs: dev-replace: fail mount if we don't have replace item with target device If there is a device BTRFS_DEV_REPLACE_DEVID without the device replace item, then it means the filesystem is inconsistent state. This is either corruption or a crafted image. Fail the mount as this needs a closer look what is actually wrong. As of now if BTRFS_DEV_REPLACE_DEVID is present without the replace item, in __btrfs_free_extra_devids() we determine that there is an extra device, and free those extra devices but continue to mount the device. However, we were wrong in keeping tack of the rw_devices so the syzbot testcase failed: WARNING: CPU: 1 PID: 3612 at fs/btrfs/volumes.c:1166 close_fs_devices.part.0+0x607/0x800 fs/btrfs/volumes.c:1166 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 3612 Comm: syz-executor.2 Not tainted 5.9.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x198/0x1fd lib/dump_stack.c:118 panic+0x347/0x7c0 kernel/panic.c:231 __warn.cold+0x20/0x46 kernel/panic.c:600 report_bug+0x1bd/0x210 lib/bug.c:198 handle_bug+0x38/0x90 arch/x86/kernel/traps.c:234 exc_invalid_op+0x14/0x40 arch/x86/kernel/traps.c:254 asm_exc_invalid_op+0x12/0x20 arch/x86/include/asm/idtentry.h:536 RIP: 0010:close_fs_devices.part.0+0x607/0x800 fs/btrfs/volumes.c:1166 RSP: 0018:ffffc900091777e0 EFLAGS: 00010246 RAX: 0000000000040000 RBX: ffffffffffffffff RCX: ffffc9000c8b7000 RDX: 0000000000040000 RSI: ffffffff83097f47 RDI: 0000000000000007 RBP: dffffc0000000000 R08: 0000000000000001 R09: ffff8880988a187f R10: 0000000000000000 R11: 0000000000000001 R12: ffff88809593a130 R13: ffff88809593a1ec R14: ffff8880988a1908 R15: ffff88809593a050 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 open_ctree+0x4984/0x4a2d fs/btrfs/disk-io.c:3434 btrfs_fill_super fs/btrfs/super.c:1316 [inline] btrfs_mount_root.cold+0x14/0x165 fs/btrfs/super.c:1672 The fix here is, when we determine that there isn't a replace item then fail the mount if there is a replace target device (devid 0). CC: stable@vger.kernel.org # 4.19+ Reported-by: syzbot+4cfe71a4da060be47502@syzkaller.appspotmail.com Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-29 22:53:56 +00:00
/*
* We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
* in btrfs_init_dev_replace() so just continue.
*/
if (device->devid == BTRFS_DEV_REPLACE_DEVID)
continue;
if (device->bdev) {
blkdev_put(device->bdev, device->holder);
device->bdev = NULL;
fs_devices->open_devices--;
}
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
list_del_init(&device->dev_alloc_list);
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
btrfs: fix rw device counting in __btrfs_free_extra_devids When removing a writeable device in __btrfs_free_extra_devids, the rw device count should be decremented. This error was caught by Syzbot which reported a warning in close_fs_devices: WARNING: CPU: 1 PID: 9355 at fs/btrfs/volumes.c:1168 close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168 Modules linked in: CPU: 0 PID: 9355 Comm: syz-executor552 Not tainted 5.13.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168 RSP: 0018:ffffc9000333f2f0 EFLAGS: 00010293 RAX: ffffffff8365f5c3 RBX: 0000000000000001 RCX: ffff888029afd4c0 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88802846f508 R08: ffffffff8365f525 R09: ffffed100337d128 R10: ffffed100337d128 R11: 0000000000000000 R12: dffffc0000000000 R13: ffff888019be8868 R14: 1ffff1100337d10d R15: 1ffff1100337d10a FS: 00007f6f53828700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000047c410 CR3: 00000000302a6000 CR4: 00000000001506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_close_devices+0xc9/0x450 fs/btrfs/volumes.c:1180 open_ctree+0x8e1/0x3968 fs/btrfs/disk-io.c:3693 btrfs_fill_super fs/btrfs/super.c:1382 [inline] btrfs_mount_root+0xac5/0xc60 fs/btrfs/super.c:1749 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1498 fc_mount fs/namespace.c:993 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1023 btrfs_mount+0x3d3/0xb50 fs/btrfs/super.c:1809 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1498 do_new_mount fs/namespace.c:2905 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3235 do_mount fs/namespace.c:3248 [inline] __do_sys_mount fs/namespace.c:3456 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433 do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae Because fs_devices->rw_devices was not 0 after closing all devices. Here is the call trace that was observed: btrfs_mount_root(): btrfs_scan_one_device(): device_list_add(); <---------------- device added btrfs_open_devices(): open_fs_devices(): btrfs_open_one_device(); <-------- writable device opened, rw device count ++ btrfs_fill_super(): open_ctree(): btrfs_free_extra_devids(): __btrfs_free_extra_devids(); <--- writable device removed, rw device count not decremented fail_tree_roots: btrfs_close_devices(): close_fs_devices(); <------- rw device count off by 1 As a note, prior to commit cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device"), rw_devices was decremented on removing a writable device in __btrfs_free_extra_devids only if the BTRFS_DEV_STATE_REPLACE_TGT bit was not set for the device. However, this check does not need to be reinstated as it is now redundant and incorrect. In __btrfs_free_extra_devids, we skip removing the device if it is the target for replacement. This is done by checking whether device->devid == BTRFS_DEV_REPLACE_DEVID. Since BTRFS_DEV_STATE_REPLACE_TGT is set only on the device with devid BTRFS_DEV_REPLACE_DEVID, no devices should have the BTRFS_DEV_STATE_REPLACE_TGT bit set after the check, and so it's redundant to test for that bit. Additionally, following commit 82372bc816d7 ("Btrfs: make the logic of source device removing more clear"), rw_devices is incremented whenever a writeable device is added to the alloc list (including the target device in btrfs_dev_replace_finishing), so all removals of writable devices from the alloc list should also be accompanied by a decrement to rw_devices. Reported-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com Fixes: cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device") CC: stable@vger.kernel.org # 5.10+ Tested-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 07:13:03 +00:00
fs_devices->rw_devices--;
}
list_del_init(&device->dev_list);
fs_devices->num_devices--;
btrfs_free_device(device);
}
}
/*
* After we have read the system tree and know devids belonging to this
* filesystem, remove the device which does not belong there.
*/
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *latest_dev = NULL;
struct btrfs_fs_devices *seed_dev;
mutex_lock(&uuid_mutex);
__btrfs_free_extra_devids(fs_devices, &latest_dev);
list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
__btrfs_free_extra_devids(seed_dev, &latest_dev);
fs_devices->latest_dev = latest_dev;
mutex_unlock(&uuid_mutex);
}
static void btrfs_close_bdev(struct btrfs_device *device)
{
if (!device->bdev)
return;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
sync_blockdev(device->bdev);
invalidate_bdev(device->bdev);
}
blkdev_put(device->bdev, device->holder);
}
static void btrfs_close_one_device(struct btrfs_device *device)
{
struct btrfs_fs_devices *fs_devices = device->fs_devices;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
device->devid != BTRFS_DEV_REPLACE_DEVID) {
list_del_init(&device->dev_alloc_list);
fs_devices->rw_devices--;
}
btrfs: reset replace target device to allocation state on close This crash was observed with a failed assertion on device close: BTRFS: Transaction aborted (error -28) WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs] Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs] RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs] RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388 R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c FS: 0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0 Call Trace: flush_space+0x197/0x2f0 [btrfs] btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs] process_one_work+0x262/0x5e0 worker_thread+0x4c/0x320 ? process_one_work+0x5e0/0x5e0 kthread+0x144/0x170 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x1f/0x30 irq event stamp: 19334989 hardirqs last enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400 hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400 softirqs last enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574 softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140 ---[ end trace 45939e308e0dd3c7 ]--- BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left BTRFS info (device vdd): forced readonly BTRFS warning (device vdd): failed setting block group ro: -30 BTRFS info (device vdd): suspending dev_replace for unmount assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3431! invalid opcode: 0000 [#1] PREEMPT SMP CPU: 1 PID: 3982 Comm: umount Tainted: G W 5.14.0-rc5-default+ #1532 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs] RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246 RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18 R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003 FS: 00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0 Call Trace: btrfs_close_one_device.cold+0x11/0x55 [btrfs] close_fs_devices+0x44/0xb0 [btrfs] btrfs_close_devices+0x48/0x160 [btrfs] generic_shutdown_super+0x69/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x2c/0xa0 cleanup_mnt+0x144/0x1b0 task_work_run+0x59/0xa0 exit_to_user_mode_loop+0xe7/0xf0 exit_to_user_mode_prepare+0xaf/0xf0 syscall_exit_to_user_mode+0x19/0x50 do_syscall_64+0x4a/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae This happens when close_ctree is called while a dev_replace hasn't completed. In close_ctree, we suspend the dev_replace, but keep the replace target around so that we can resume the dev_replace procedure when we mount the root again. This is the call trace: close_ctree(): btrfs_dev_replace_suspend_for_unmount(); btrfs_close_devices(): btrfs_close_fs_devices(): btrfs_close_one_device(): ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); However, since the replace target sticks around, there is a device with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the assertion in btrfs_close_one_device. To fix this, if we come across the replace target device when closing, we should properly reset it back to allocation state. This fix also ensures that if a non-target device has a corrupted state and has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still catch the error. Reported-by: David Sterba <dsterba@suse.com> Fixes: b2a616676839 ("btrfs: fix rw device counting in __btrfs_free_extra_devids") CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-20 17:50:40 +00:00
if (device->devid == BTRFS_DEV_REPLACE_DEVID)
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
btrfs: clear MISSING device status bit in btrfs_close_one_device Reported bug: https://github.com/kdave/btrfs-progs/issues/389 There's a problem with scrub reporting aborted status but returning error code 0, on a filesystem with missing and readded device. Roughly these steps: - mkfs -d raid1 dev1 dev2 - fill with data - unmount - make dev1 disappear - mount -o degraded - copy more data - make dev1 appear again Running scrub afterwards reports that the command was aborted, but the system log message says the exit code was 0. It seems that the cause of the error is decrementing fs_devices->missing_devices but not clearing device->dev_state. Every time we umount filesystem, it would call close_ctree, And it would eventually involve btrfs_close_one_device to close the device, but it only decrements fs_devices->missing_devices but does not clear the device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer Overflow, because every time umount, fs_devices->missing_devices will decrease. If fs_devices->missing_devices value hit 0, it would overflow. With added debugging: loop1: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311) loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615 If fs_devices->missing_devices is 0, next time it would be 18446744073709551615 After apply this patch, the fs_devices->missing_devices seems to be right: $ truncate -s 10g test1 $ truncate -s 10g test2 $ losetup /dev/loop1 test1 $ losetup /dev/loop2 test2 $ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f $ losetup -d /dev/loop2 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ dmesg loop1: detected capacity change from 0 to 20971520 loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863) BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): checking UUID tree BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Li Zhang <zhanglikernel@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-04 17:15:33 +00:00
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
fs_devices->missing_devices--;
btrfs: clear MISSING device status bit in btrfs_close_one_device Reported bug: https://github.com/kdave/btrfs-progs/issues/389 There's a problem with scrub reporting aborted status but returning error code 0, on a filesystem with missing and readded device. Roughly these steps: - mkfs -d raid1 dev1 dev2 - fill with data - unmount - make dev1 disappear - mount -o degraded - copy more data - make dev1 appear again Running scrub afterwards reports that the command was aborted, but the system log message says the exit code was 0. It seems that the cause of the error is decrementing fs_devices->missing_devices but not clearing device->dev_state. Every time we umount filesystem, it would call close_ctree, And it would eventually involve btrfs_close_one_device to close the device, but it only decrements fs_devices->missing_devices but does not clear the device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer Overflow, because every time umount, fs_devices->missing_devices will decrease. If fs_devices->missing_devices value hit 0, it would overflow. With added debugging: loop1: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311) loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615 If fs_devices->missing_devices is 0, next time it would be 18446744073709551615 After apply this patch, the fs_devices->missing_devices seems to be right: $ truncate -s 10g test1 $ truncate -s 10g test2 $ losetup /dev/loop1 test1 $ losetup /dev/loop2 test2 $ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f $ losetup -d /dev/loop2 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ dmesg loop1: detected capacity change from 0 to 20971520 loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863) BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): checking UUID tree BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Li Zhang <zhanglikernel@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-04 17:15:33 +00:00
}
btrfs_close_bdev(device);
if (device->bdev) {
fs_devices->open_devices--;
device->bdev = NULL;
}
clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
btrfs_destroy_dev_zone_info(device);
device->fs_info = NULL;
atomic_set(&device->dev_stats_ccnt, 0);
extent_io_tree_release(&device->alloc_state);
btrfs: fix mount failure due to past and transient device flush error When we get an error flushing one device, during a super block commit, we record the error in the device structure, in the field 'last_flush_error'. This is used to later check if we should error out the super block commit, depending on whether the number of flush errors is greater than or equals to the maximum tolerated device failures for a raid profile. However if we get a transient device flush error, unmount the filesystem and later try to mount it, we can fail the mount because we treat that past error as critical and consider the device is missing. Even if it's very likely that the error will happen again, as it's probably due to a hardware related problem, there may be cases where the error might not happen again. One example is during testing, and a test case like the new generic/648 from fstests always triggers this. The test cases generic/019 and generic/475 also trigger this scenario, but very sporadically. When this happens we get an error like this: $ mount /dev/sdc /mnt mount: /mnt wrong fs type, bad option, bad superblock on /dev/sdc, missing codepage or helper program, or other error. $ dmesg (...) [12918.886926] BTRFS warning (device sdc): chunk 13631488 missing 1 devices, max tolerance is 0 for writable mount [12918.888293] BTRFS warning (device sdc): writable mount is not allowed due to too many missing devices [12918.890853] BTRFS error (device sdc): open_ctree failed The failure happens because when btrfs_check_rw_degradable() is called at mount time, or at remount from RO to RW time, is sees a non zero value in a device's ->last_flush_error attribute, and therefore considers that the device is 'missing'. Fix this by setting a device's ->last_flush_error to zero when we close a device, making sure the error is not seen on the next mount attempt. We only need to track flush errors during the current mount, so that we never commit a super block if such errors happened. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-09-08 18:05:44 +00:00
/*
* Reset the flush error record. We might have a transient flush error
* in this mount, and if so we aborted the current transaction and set
* the fs to an error state, guaranteeing no super blocks can be further
* committed. However that error might be transient and if we unmount the
* filesystem and mount it again, we should allow the mount to succeed
* (btrfs_check_rw_degradable() should not fail) - if after mounting the
* filesystem again we still get flush errors, then we will again abort
* any transaction and set the error state, guaranteeing no commits of
* unsafe super blocks.
*/
device->last_flush_error = 0;
/* Verify the device is back in a pristine state */
WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
WARN_ON(!list_empty(&device->dev_alloc_list));
WARN_ON(!list_empty(&device->post_commit_list));
}
static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *device, *tmp;
btrfs: do not hold device_list_mutex when closing devices The following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00169-g87212851a027-dirty #929 Not tainted ------------------------------------------------------ fsstress/8739 is trying to acquire lock: ffff88bfd0eb0c90 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x43/0x70 but task is already holding lock: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #10 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x129/0x210 btrfs_page_mkwrite+0x6a/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 -> #9 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #8 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #7 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #6 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x39/0xb0 kmem_cache_create_usercopy+0x28/0x230 kmem_cache_create+0x12/0x20 bioset_init+0x15e/0x2b0 init_bio+0xa3/0xaa do_one_initcall+0x5a/0x2e0 kernel_init_freeable+0x1f4/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #5 (bio_slab_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 bioset_init+0xbc/0x2b0 __blk_alloc_queue+0x6f/0x2d0 blk_mq_init_queue_data+0x1b/0x70 loop_add+0x110/0x290 [loop] fq_codel_tcf_block+0x12/0x20 [sch_fq_codel] do_one_initcall+0x5a/0x2e0 do_init_module+0x5a/0x220 load_module+0x2459/0x26e0 __do_sys_finit_module+0xba/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 lo_open+0x18/0x50 [loop] __blkdev_get+0xec/0x570 blkdev_get+0xe8/0x150 do_dentry_open+0x167/0x410 path_openat+0x7c9/0xa80 do_filp_open+0x93/0x100 do_sys_openat2+0x22a/0x2e0 do_sys_open+0x4b/0x80 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 blkdev_put+0x1d/0x120 close_fs_devices.part.31+0x84/0x130 btrfs_close_devices+0x44/0xb0 close_ctree+0x296/0x2b2 generic_shutdown_super+0x69/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by fsstress/8739: #0: ffff88bee66eeb68 (&mm->mmap_lock#2){++++}-{3:3}, at: exc_page_fault+0x173/0x660 #1: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 #2: ffff88bfbd16e630 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3da/0x5d0 stack backtrace: CPU: 17 PID: 8739 Comm: fsstress Kdump: loaded Not tainted 5.8.0-rc7-00169-g87212851a027-dirty #929 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 ? btrfs_get_alloc_profile+0x150/0x210 lock_acquire+0x9e/0x360 ? btrfs_record_root_in_trans+0x43/0x70 __mutex_lock+0x9f/0x930 ? btrfs_record_root_in_trans+0x43/0x70 ? lock_acquire+0x9e/0x360 ? join_transaction+0x5d/0x450 ? find_held_lock+0x2d/0x90 ? btrfs_record_root_in_trans+0x43/0x70 ? join_transaction+0x3d5/0x450 ? btrfs_record_root_in_trans+0x43/0x70 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 ? handle_mm_fault+0x5e/0x1730 do_page_mkwrite+0x4d/0xc0 ? __do_fault+0x32/0x150 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7faa6c9969c4 Was seen in testing. The fix is similar to that of btrfs: open device without device_list_mutex where we're holding the device_list_mutex and then grab the bd_mutex, which pulls in a bunch of dependencies under the bd_mutex. We only ever call btrfs_close_devices() on mount failure or unmount, so we're save to not have the device_list_mutex here. We're already holding the uuid_mutex which keeps us safe from any external modification of the fs_devices. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 15:42:28 +00:00
lockdep_assert_held(&uuid_mutex);
if (--fs_devices->opened > 0)
return;
btrfs: do not hold device_list_mutex when closing devices The following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00169-g87212851a027-dirty #929 Not tainted ------------------------------------------------------ fsstress/8739 is trying to acquire lock: ffff88bfd0eb0c90 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x43/0x70 but task is already holding lock: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #10 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x129/0x210 btrfs_page_mkwrite+0x6a/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 -> #9 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #8 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #7 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #6 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x39/0xb0 kmem_cache_create_usercopy+0x28/0x230 kmem_cache_create+0x12/0x20 bioset_init+0x15e/0x2b0 init_bio+0xa3/0xaa do_one_initcall+0x5a/0x2e0 kernel_init_freeable+0x1f4/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #5 (bio_slab_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 bioset_init+0xbc/0x2b0 __blk_alloc_queue+0x6f/0x2d0 blk_mq_init_queue_data+0x1b/0x70 loop_add+0x110/0x290 [loop] fq_codel_tcf_block+0x12/0x20 [sch_fq_codel] do_one_initcall+0x5a/0x2e0 do_init_module+0x5a/0x220 load_module+0x2459/0x26e0 __do_sys_finit_module+0xba/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 lo_open+0x18/0x50 [loop] __blkdev_get+0xec/0x570 blkdev_get+0xe8/0x150 do_dentry_open+0x167/0x410 path_openat+0x7c9/0xa80 do_filp_open+0x93/0x100 do_sys_openat2+0x22a/0x2e0 do_sys_open+0x4b/0x80 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 blkdev_put+0x1d/0x120 close_fs_devices.part.31+0x84/0x130 btrfs_close_devices+0x44/0xb0 close_ctree+0x296/0x2b2 generic_shutdown_super+0x69/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by fsstress/8739: #0: ffff88bee66eeb68 (&mm->mmap_lock#2){++++}-{3:3}, at: exc_page_fault+0x173/0x660 #1: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 #2: ffff88bfbd16e630 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3da/0x5d0 stack backtrace: CPU: 17 PID: 8739 Comm: fsstress Kdump: loaded Not tainted 5.8.0-rc7-00169-g87212851a027-dirty #929 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 ? btrfs_get_alloc_profile+0x150/0x210 lock_acquire+0x9e/0x360 ? btrfs_record_root_in_trans+0x43/0x70 __mutex_lock+0x9f/0x930 ? btrfs_record_root_in_trans+0x43/0x70 ? lock_acquire+0x9e/0x360 ? join_transaction+0x5d/0x450 ? find_held_lock+0x2d/0x90 ? btrfs_record_root_in_trans+0x43/0x70 ? join_transaction+0x3d5/0x450 ? btrfs_record_root_in_trans+0x43/0x70 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 ? handle_mm_fault+0x5e/0x1730 do_page_mkwrite+0x4d/0xc0 ? __do_fault+0x32/0x150 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7faa6c9969c4 Was seen in testing. The fix is similar to that of btrfs: open device without device_list_mutex where we're holding the device_list_mutex and then grab the bd_mutex, which pulls in a bunch of dependencies under the bd_mutex. We only ever call btrfs_close_devices() on mount failure or unmount, so we're save to not have the device_list_mutex here. We're already holding the uuid_mutex which keeps us safe from any external modification of the fs_devices. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 15:42:28 +00:00
list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
btrfs_close_one_device(device);
WARN_ON(fs_devices->open_devices);
WARN_ON(fs_devices->rw_devices);
fs_devices->opened = 0;
fs_devices->seeding = false;
fs_devices->fs_info = NULL;
}
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
LIST_HEAD(list);
struct btrfs_fs_devices *tmp;
mutex_lock(&uuid_mutex);
close_fs_devices(fs_devices);
if (!fs_devices->opened) {
list_splice_init(&fs_devices->seed_list, &list);
/*
* If the struct btrfs_fs_devices is not assembled with any
* other device, it can be re-initialized during the next mount
* without the needing device-scan step. Therefore, it can be
* fully freed.
*/
if (fs_devices->num_devices == 1) {
list_del(&fs_devices->fs_list);
free_fs_devices(fs_devices);
}
}
list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
close_fs_devices(fs_devices);
list_del(&fs_devices->seed_list);
free_fs_devices(fs_devices);
}
btrfs: do not hold device_list_mutex when closing devices The following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00169-g87212851a027-dirty #929 Not tainted ------------------------------------------------------ fsstress/8739 is trying to acquire lock: ffff88bfd0eb0c90 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x43/0x70 but task is already holding lock: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #10 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x129/0x210 btrfs_page_mkwrite+0x6a/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 -> #9 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #8 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #7 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #6 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x39/0xb0 kmem_cache_create_usercopy+0x28/0x230 kmem_cache_create+0x12/0x20 bioset_init+0x15e/0x2b0 init_bio+0xa3/0xaa do_one_initcall+0x5a/0x2e0 kernel_init_freeable+0x1f4/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #5 (bio_slab_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 bioset_init+0xbc/0x2b0 __blk_alloc_queue+0x6f/0x2d0 blk_mq_init_queue_data+0x1b/0x70 loop_add+0x110/0x290 [loop] fq_codel_tcf_block+0x12/0x20 [sch_fq_codel] do_one_initcall+0x5a/0x2e0 do_init_module+0x5a/0x220 load_module+0x2459/0x26e0 __do_sys_finit_module+0xba/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 lo_open+0x18/0x50 [loop] __blkdev_get+0xec/0x570 blkdev_get+0xe8/0x150 do_dentry_open+0x167/0x410 path_openat+0x7c9/0xa80 do_filp_open+0x93/0x100 do_sys_openat2+0x22a/0x2e0 do_sys_open+0x4b/0x80 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 blkdev_put+0x1d/0x120 close_fs_devices.part.31+0x84/0x130 btrfs_close_devices+0x44/0xb0 close_ctree+0x296/0x2b2 generic_shutdown_super+0x69/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 do_page_mkwrite+0x4d/0xc0 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by fsstress/8739: #0: ffff88bee66eeb68 (&mm->mmap_lock#2){++++}-{3:3}, at: exc_page_fault+0x173/0x660 #1: ffff88bfbd16e538 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x6a/0x4a0 #2: ffff88bfbd16e630 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3da/0x5d0 stack backtrace: CPU: 17 PID: 8739 Comm: fsstress Kdump: loaded Not tainted 5.8.0-rc7-00169-g87212851a027-dirty #929 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 ? btrfs_get_alloc_profile+0x150/0x210 lock_acquire+0x9e/0x360 ? btrfs_record_root_in_trans+0x43/0x70 __mutex_lock+0x9f/0x930 ? btrfs_record_root_in_trans+0x43/0x70 ? lock_acquire+0x9e/0x360 ? join_transaction+0x5d/0x450 ? find_held_lock+0x2d/0x90 ? btrfs_record_root_in_trans+0x43/0x70 ? join_transaction+0x3d5/0x450 ? btrfs_record_root_in_trans+0x43/0x70 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 file_update_time+0xc8/0x110 btrfs_page_mkwrite+0x10c/0x4a0 ? handle_mm_fault+0x5e/0x1730 do_page_mkwrite+0x4d/0xc0 ? __do_fault+0x32/0x150 handle_mm_fault+0x103c/0x1730 exc_page_fault+0x340/0x660 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7faa6c9969c4 Was seen in testing. The fix is similar to that of btrfs: open device without device_list_mutex where we're holding the device_list_mutex and then grab the bd_mutex, which pulls in a bunch of dependencies under the bd_mutex. We only ever call btrfs_close_devices() on mount failure or unmount, so we're save to not have the device_list_mutex here. We're already holding the uuid_mutex which keeps us safe from any external modification of the fs_devices. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 15:42:28 +00:00
mutex_unlock(&uuid_mutex);
}
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
blk_mode_t flags, void *holder)
{
struct btrfs_device *device;
struct btrfs_device *latest_dev = NULL;
struct btrfs_device *tmp_device;
list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
dev_list) {
int ret;
ret = btrfs_open_one_device(fs_devices, device, flags, holder);
if (ret == 0 &&
(!latest_dev || device->generation > latest_dev->generation)) {
latest_dev = device;
} else if (ret == -ENODATA) {
fs_devices->num_devices--;
list_del(&device->dev_list);
btrfs_free_device(device);
}
}
if (fs_devices->open_devices == 0)
return -EINVAL;
fs_devices->opened = 1;
fs_devices->latest_dev = latest_dev;
fs_devices->total_rw_bytes = 0;
fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
fs_devices->read_policy = BTRFS_READ_POLICY_PID;
return 0;
}
static int devid_cmp(void *priv, const struct list_head *a,
const struct list_head *b)
{
const struct btrfs_device *dev1, *dev2;
dev1 = list_entry(a, struct btrfs_device, dev_list);
dev2 = list_entry(b, struct btrfs_device, dev_list);
if (dev1->devid < dev2->devid)
return -1;
else if (dev1->devid > dev2->devid)
return 1;
return 0;
}
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
blk_mode_t flags, void *holder)
{
int ret;
lockdep_assert_held(&uuid_mutex);
btrfs: open device without device_list_mutex There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-17 19:12:27 +00:00
/*
* The device_list_mutex cannot be taken here in case opening the
* underlying device takes further locks like open_mutex.
btrfs: open device without device_list_mutex There's long existed a lockdep splat because we open our bdev's under the ->device_list_mutex at mount time, which acquires the bd_mutex. Usually this goes unnoticed, but if you do loopback devices at all suddenly the bd_mutex comes with a whole host of other dependencies, which results in the splat when you mount a btrfs file system. ====================================================== WARNING: possible circular locking dependency detected 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Not tainted ------------------------------------------------------ systemd-journal/509 is trying to acquire lock: ffff970831f84db0 (&fs_info->reloc_mutex){+.+.}-{3:3}, at: btrfs_record_root_in_trans+0x44/0x70 [btrfs] but task is already holding lock: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #6 (sb_pagefaults){.+.+}-{0:0}: __sb_start_write+0x13e/0x220 btrfs_page_mkwrite+0x59/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 -> #5 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x60/0x80 _copy_from_user+0x20/0xb0 get_sg_io_hdr+0x9a/0xb0 scsi_cmd_ioctl+0x1ea/0x2f0 cdrom_ioctl+0x3c/0x12b4 sr_block_ioctl+0xa4/0xd0 block_ioctl+0x3f/0x50 ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&cd->lock){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 sr_block_open+0xa2/0x180 __blkdev_get+0xdd/0x550 blkdev_get+0x38/0x150 do_dentry_open+0x16b/0x3e0 path_openat+0x3c9/0xa00 do_filp_open+0x75/0x100 do_sys_openat2+0x8a/0x140 __x64_sys_openat+0x46/0x70 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&bdev->bd_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 __blkdev_get+0x6a/0x550 blkdev_get+0x85/0x150 blkdev_get_by_path+0x2c/0x70 btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] open_fs_devices+0x88/0x240 [btrfs] btrfs_open_devices+0x92/0xa0 [btrfs] btrfs_mount_root+0x250/0x490 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x119/0x380 [btrfs] legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 do_mount+0x8c6/0xca0 __x64_sys_mount+0x8e/0xd0 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_run_dev_stats+0x36/0x420 [btrfs] commit_cowonly_roots+0x91/0x2d0 [btrfs] btrfs_commit_transaction+0x4e6/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x7b/0x820 btrfs_commit_transaction+0x48e/0x9f0 [btrfs] btrfs_sync_file+0x38a/0x480 [btrfs] __x64_sys_fdatasync+0x47/0x80 do_syscall_64+0x52/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->reloc_mutex){+.+.}-{3:3}: __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 __mutex_lock+0x7b/0x820 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 asm_exc_page_fault+0x1e/0x30 other info that might help us debug this: Chain exists of: &fs_info->reloc_mutex --> &mm->mmap_lock#2 --> sb_pagefaults Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sb_pagefaults); lock(&mm->mmap_lock#2); lock(sb_pagefaults); lock(&fs_info->reloc_mutex); *** DEADLOCK *** 3 locks held by systemd-journal/509: #0: ffff97083bdec8b8 (&mm->mmap_lock#2){++++}-{3:3}, at: do_user_addr_fault+0x12e/0x4b0 #1: ffff97083144d598 (sb_pagefaults){.+.+}-{0:0}, at: btrfs_page_mkwrite+0x59/0x560 [btrfs] #2: ffff97083144d6a8 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x3f8/0x500 [btrfs] stack backtrace: CPU: 0 PID: 509 Comm: systemd-journal Not tainted 5.8.0-0.rc3.1.fc33.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x134/0x150 __lock_acquire+0x1241/0x20c0 lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? lock_acquire+0xb0/0x400 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] __mutex_lock+0x7b/0x820 ? btrfs_record_root_in_trans+0x44/0x70 [btrfs] ? kvm_sched_clock_read+0x14/0x30 ? sched_clock+0x5/0x10 ? sched_clock_cpu+0xc/0xb0 btrfs_record_root_in_trans+0x44/0x70 [btrfs] start_transaction+0xd2/0x500 [btrfs] btrfs_dirty_inode+0x44/0xd0 [btrfs] file_update_time+0xc6/0x120 btrfs_page_mkwrite+0xda/0x560 [btrfs] ? sched_clock+0x5/0x10 do_page_mkwrite+0x4f/0x130 do_wp_page+0x3b0/0x4f0 handle_mm_fault+0xf47/0x1850 do_user_addr_fault+0x1fc/0x4b0 exc_page_fault+0x88/0x300 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fa3972fdbfe Code: Bad RIP value. Fix this by not holding the ->device_list_mutex at this point. The device_list_mutex exists to protect us from modifying the device list while the file system is running. However it can also be modified by doing a scan on a device. But this action is specifically protected by the uuid_mutex, which we are holding here. We cannot race with opening at this point because we have the ->s_mount lock held during the mount. Not having the ->device_list_mutex here is perfectly safe as we're not going to change the devices at this point. CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add some comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-17 19:12:27 +00:00
*
* We also don't need the lock here as this is called during mount and
* exclusion is provided by uuid_mutex
*/
if (fs_devices->opened) {
fs_devices->opened++;
ret = 0;
} else {
list_sort(NULL, &fs_devices->devices, devid_cmp);
ret = open_fs_devices(fs_devices, flags, holder);
}
return ret;
}
void btrfs_release_disk_super(struct btrfs_super_block *super)
{
struct page *page = virt_to_page(super);
put_page(page);
}
static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
u64 bytenr, u64 bytenr_orig)
{
struct btrfs_super_block *disk_super;
struct page *page;
void *p;
pgoff_t index;
/* make sure our super fits in the device */
if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
return ERR_PTR(-EINVAL);
/* make sure our super fits in the page */
if (sizeof(*disk_super) > PAGE_SIZE)
return ERR_PTR(-EINVAL);
/* make sure our super doesn't straddle pages on disk */
index = bytenr >> PAGE_SHIFT;
if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
return ERR_PTR(-EINVAL);
/* pull in the page with our super */
page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
if (IS_ERR(page))
return ERR_CAST(page);
p = page_address(page);
/* align our pointer to the offset of the super block */
disk_super = p + offset_in_page(bytenr);
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
btrfs_release_disk_super(p);
return ERR_PTR(-EINVAL);
}
if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
return disk_super;
}
int btrfs_forget_devices(dev_t devt)
{
int ret;
mutex_lock(&uuid_mutex);
ret = btrfs_free_stale_devices(devt, NULL);
mutex_unlock(&uuid_mutex);
return ret;
}
/*
* Look for a btrfs signature on a device. This may be called out of the mount path
* and we are not allowed to call set_blocksize during the scan. The superblock
* is read via pagecache
*/
struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
{
struct btrfs_super_block *disk_super;
bool new_device_added = false;
struct btrfs_device *device = NULL;
struct block_device *bdev;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
u64 bytenr, bytenr_orig;
int ret;
lockdep_assert_held(&uuid_mutex);
/*
* we would like to check all the supers, but that would make
* a btrfs mount succeed after a mkfs from a different FS.
* So, we need to add a special mount option to scan for
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
*/
btrfs: scan device in non-exclusive mode This fixes mkfs/mount/check failures due to race with systemd-udevd scan. During the device scan initiated by systemd-udevd, other user space EXCL operations such as mkfs, mount, or check may get blocked and result in a "Device or resource busy" error. This is because the device scan process opens the device with the EXCL flag in the kernel. Two reports were received: - btrfs/179 test case, where the fsck command failed with the -EBUSY error - LTP pwritev03 test case, where mkfs.vfs failed with the -EBUSY error, when mkfs.vfs tried to overwrite old btrfs filesystem on the device. In both cases, fsck and mkfs (respectively) were racing with a systemd-udevd device scan, and systemd-udevd won, resulting in the -EBUSY error for fsck and mkfs. Reproducing the problem has been difficult because there is a very small window during which these userspace threads can race to acquire the exclusive device open. Even on the system where the problem was observed, the problem occurrences were anywhere between 10 to 400 iterations and chances of reproducing decreases with debug printk()s. However, an exclusive device open is unnecessary for the scan process, as there are no write operations on the device during scan. Furthermore, during the mount process, the superblock is re-read in the below function call chain: btrfs_mount_root btrfs_open_devices open_fs_devices btrfs_open_one_device btrfs_get_bdev_and_sb So, to fix this issue, removes the FMODE_EXCL flag from the scan operation, and add a comment. The case where mkfs may still write to the device and a scan is running, the btrfs signature is not written at that time so scan will not recognize such device. Reported-by: Sherry Yang <sherry.yang@oracle.com> Reported-by: kernel test robot <oliver.sang@intel.com> Link: https://lore.kernel.org/oe-lkp/202303170839.fdf23068-oliver.sang@intel.com CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-23 07:56:48 +00:00
/*
* Avoid an exclusive open here, as the systemd-udev may initiate the
* device scan which may race with the user's mount or mkfs command,
* resulting in failure.
* Since the device scan is solely for reading purposes, there is no
* need for an exclusive open. Additionally, the devices are read again
btrfs: scan device in non-exclusive mode This fixes mkfs/mount/check failures due to race with systemd-udevd scan. During the device scan initiated by systemd-udevd, other user space EXCL operations such as mkfs, mount, or check may get blocked and result in a "Device or resource busy" error. This is because the device scan process opens the device with the EXCL flag in the kernel. Two reports were received: - btrfs/179 test case, where the fsck command failed with the -EBUSY error - LTP pwritev03 test case, where mkfs.vfs failed with the -EBUSY error, when mkfs.vfs tried to overwrite old btrfs filesystem on the device. In both cases, fsck and mkfs (respectively) were racing with a systemd-udevd device scan, and systemd-udevd won, resulting in the -EBUSY error for fsck and mkfs. Reproducing the problem has been difficult because there is a very small window during which these userspace threads can race to acquire the exclusive device open. Even on the system where the problem was observed, the problem occurrences were anywhere between 10 to 400 iterations and chances of reproducing decreases with debug printk()s. However, an exclusive device open is unnecessary for the scan process, as there are no write operations on the device during scan. Furthermore, during the mount process, the superblock is re-read in the below function call chain: btrfs_mount_root btrfs_open_devices open_fs_devices btrfs_open_one_device btrfs_get_bdev_and_sb So, to fix this issue, removes the FMODE_EXCL flag from the scan operation, and add a comment. The case where mkfs may still write to the device and a scan is running, the btrfs signature is not written at that time so scan will not recognize such device. Reported-by: Sherry Yang <sherry.yang@oracle.com> Reported-by: kernel test robot <oliver.sang@intel.com> Link: https://lore.kernel.org/oe-lkp/202303170839.fdf23068-oliver.sang@intel.com CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-23 07:56:48 +00:00
* during the mount process. It is ok to get some inconsistent
* values temporarily, as the device paths of the fsid are the only
* required information for assembling the volume.
*/
bdev = blkdev_get_by_path(path, flags, NULL, NULL);
if (IS_ERR(bdev))
return ERR_CAST(bdev);
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
bytenr_orig = btrfs_sb_offset(0);
ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
if (ret) {
device = ERR_PTR(ret);
goto error_bdev_put;
}
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
if (IS_ERR(disk_super)) {
device = ERR_CAST(disk_super);
goto error_bdev_put;
}
device = device_list_add(path, disk_super, &new_device_added);
if (!IS_ERR(device) && new_device_added)
btrfs_free_stale_devices(device->devt, device);
btrfs_release_disk_super(disk_super);
error_bdev_put:
blkdev_put(bdev, NULL);
return device;
}
/*
* Try to find a chunk that intersects [start, start + len] range and when one
* such is found, record the end of it in *start
*/
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
u64 len)
{
u64 physical_start, physical_end;
lockdep_assert_held(&device->fs_info->chunk_mutex);
if (find_first_extent_bit(&device->alloc_state, *start,
&physical_start, &physical_end,
CHUNK_ALLOCATED, NULL)) {
Btrfs: fix chunk allocation regression leading to transaction abort With commit 1b9845081633 ("Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole") introduced in the kernel 4.1 merge window, we end up using part of a device hole for which there are already pending chunks or pinned chunks. Before that commit we didn't use the hole and would just move on to the next hole in the device. However when we adjust the start offset for the chunk allocation and we have pinned chunks, we set it blindly to the end offset of the pinned chunk we are currently processing, which is dangerous because we can have a pending chunk that has a start offset that matches the end offset of our pinned chunk - leading us to a case where we end up getting two pending chunks that start at the same physical device offset, which makes us later abort the current transaction with -EEXIST when finishing the chunk allocation at btrfs_create_pending_block_groups(): [194737.659017] ------------[ cut here ]------------ [194737.660192] WARNING: CPU: 15 PID: 31111 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x52/0x106 [btrfs]() [194737.662209] BTRFS: Transaction aborted (error -17) [194737.663175] Modules linked in: btrfs dm_snapshot dm_bufio dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse [194737.674015] CPU: 15 PID: 31111 Comm: xfs_io Tainted: G W 4.0.0-rc5-btrfs-next-9+ #2 [194737.675986] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [194737.682999] 0000000000000009 ffff8800564c7a98 ffffffff8142fa46 ffffffff8108b6a2 [194737.684540] ffff8800564c7ae8 ffff8800564c7ad8 ffffffff81045ea5 ffff8800564c7b78 [194737.686017] ffffffffa0383aa7 00000000ffffffef ffff88000c7ba000 ffff8801a1f66f40 [194737.687509] Call Trace: [194737.688068] [<ffffffff8142fa46>] dump_stack+0x4f/0x7b [194737.689027] [<ffffffff8108b6a2>] ? console_unlock+0x361/0x3ad [194737.690095] [<ffffffff81045ea5>] warn_slowpath_common+0xa1/0xbb [194737.691198] [<ffffffffa0383aa7>] ? __btrfs_abort_transaction+0x52/0x106 [btrfs] [194737.693789] [<ffffffff81045f05>] warn_slowpath_fmt+0x46/0x48 [194737.695065] [<ffffffffa0383aa7>] __btrfs_abort_transaction+0x52/0x106 [btrfs] [194737.696806] [<ffffffffa039a3bd>] btrfs_create_pending_block_groups+0x101/0x130 [btrfs] [194737.698683] [<ffffffffa03aa433>] __btrfs_end_transaction+0x84/0x366 [btrfs] [194737.700329] [<ffffffffa03aa725>] btrfs_end_transaction+0x10/0x12 [btrfs] [194737.701924] [<ffffffffa0394b51>] btrfs_check_data_free_space+0x11f/0x27c [btrfs] [194737.703675] [<ffffffffa03b8ba4>] __btrfs_buffered_write+0x16a/0x4c8 [btrfs] [194737.705417] [<ffffffffa03bb502>] ? btrfs_file_write_iter+0x19a/0x431 [btrfs] [194737.707058] [<ffffffffa03bb511>] ? btrfs_file_write_iter+0x1a9/0x431 [btrfs] [194737.708560] [<ffffffffa03bb68d>] btrfs_file_write_iter+0x325/0x431 [btrfs] [194737.710673] [<ffffffff81067d85>] ? get_parent_ip+0xe/0x3e [194737.712076] [<ffffffff811534c3>] new_sync_write+0x7c/0xa0 [194737.713293] [<ffffffff81153b58>] vfs_write+0xb2/0x117 [194737.714443] [<ffffffff81154424>] SyS_pwrite64+0x64/0x82 [194737.715646] [<ffffffff81435b32>] system_call_fastpath+0x12/0x17 [194737.717175] ---[ end trace f2d5dc04e56d7e48 ]--- [194737.718170] BTRFS: error (device sdc) in btrfs_create_pending_block_groups:9524: errno=-17 Object already exists The -EEXIST failure comes from btrfs_finish_chunk_alloc(), called by btrfs_create_pending_block_groups(), when it attempts to insert a duplicated device extent item via btrfs_alloc_dev_extent(). This issue was reproducible with fstests generic/038 running in a loop for several hours (it's very hard to hit) and using MOUNT_OPTIONS="-o discard". Applying Jeff's recent patch titled "btrfs: add missing discards when unpinning extents with -o discard" makes the issue much easier to reproduce (usually within 4 to 5 hours), since it pins chunks for longer periods of time when an unused block group is deleted by the cleaner kthread. Fix this by making sure that we never adjust the start offset to a lower value than it currently has. Fixes: 1b9845081633 ("Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole" Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-05-14 09:46:03 +00:00
if (in_range(physical_start, *start, len) ||
in_range(*start, physical_start,
physical_end - physical_start)) {
*start = physical_end + 1;
return true;
}
}
return false;
}
static u64 dev_extent_search_start(struct btrfs_device *device)
{
switch (device->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
return BTRFS_DEVICE_RANGE_RESERVED;
2021-02-04 10:21:48 +00:00
case BTRFS_CHUNK_ALLOC_ZONED:
/*
* We don't care about the starting region like regular
* allocator, because we anyway use/reserve the first two zones
* for superblock logging.
*/
return 0;
default:
BUG();
}
}
2021-02-04 10:21:48 +00:00
static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
u64 *hole_start, u64 *hole_size,
u64 num_bytes)
{
u64 zone_size = device->zone_info->zone_size;
u64 pos;
int ret;
bool changed = false;
ASSERT(IS_ALIGNED(*hole_start, zone_size));
while (*hole_size > 0) {
pos = btrfs_find_allocatable_zones(device, *hole_start,
*hole_start + *hole_size,
num_bytes);
if (pos != *hole_start) {
*hole_size = *hole_start + *hole_size - pos;
*hole_start = pos;
changed = true;
if (*hole_size < num_bytes)
break;
}
ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
/* Range is ensured to be empty */
if (!ret)
return changed;
/* Given hole range was invalid (outside of device) */
if (ret == -ERANGE) {
*hole_start += *hole_size;
*hole_size = 0;
return true;
2021-02-04 10:21:48 +00:00
}
*hole_start += zone_size;
*hole_size -= zone_size;
changed = true;
}
return changed;
}
/*
* Check if specified hole is suitable for allocation.
*
* @device: the device which we have the hole
* @hole_start: starting position of the hole
* @hole_size: the size of the hole
* @num_bytes: the size of the free space that we need
*
2021-02-04 10:21:48 +00:00
* This function may modify @hole_start and @hole_size to reflect the suitable
* position for allocation. Returns 1 if hole position is updated, 0 otherwise.
*/
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
u64 *hole_size, u64 num_bytes)
{
bool changed = false;
u64 hole_end = *hole_start + *hole_size;
2021-02-04 10:21:48 +00:00
for (;;) {
/*
* Check before we set max_hole_start, otherwise we could end up
* sending back this offset anyway.
*/
if (contains_pending_extent(device, hole_start, *hole_size)) {
if (hole_end >= *hole_start)
*hole_size = hole_end - *hole_start;
else
*hole_size = 0;
changed = true;
}
switch (device->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
/* No extra check */
break;
case BTRFS_CHUNK_ALLOC_ZONED:
if (dev_extent_hole_check_zoned(device, hole_start,
hole_size, num_bytes)) {
changed = true;
/*
* The changed hole can contain pending extent.
* Loop again to check that.
*/
continue;
}
break;
default:
BUG();
}
break;
}
return changed;
}
/*
* Find free space in the specified device.
*
2015-06-15 13:41:17 +00:00
* @device: the device which we search the free space in
* @num_bytes: the size of the free space that we need
* @search_start: the position from which to begin the search
* @start: store the start of the free space.
* @len: the size of the free space. that we find, or the size
* of the max free space if we don't find suitable free space
*
* This does a pretty simple search, the expectation is that it is called very
* infrequently and that a given device has a small number of extents.
*
* @start is used to store the start of the free space if we find. But if we
* don't find suitable free space, it will be used to store the start position
* of the max free space.
*
* @len is used to store the size of the free space that we find.
* But if we don't find suitable free space, it is used to store the size of
* the max free space.
*
* NOTE: This function will search *commit* root of device tree, and does extra
* check to ensure dev extents are not double allocated.
* This makes the function safe to allocate dev extents but may not report
* correct usable device space, as device extent freed in current transaction
* is not reported as available.
*/
static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
u64 *start, u64 *len)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_key key;
struct btrfs_dev_extent *dev_extent;
struct btrfs_path *path;
u64 search_start;
u64 hole_size;
u64 max_hole_start;
u64 max_hole_size;
u64 extent_end;
u64 search_end = device->total_bytes;
int ret;
int slot;
struct extent_buffer *l;
Btrfs: fix fitrim discarding device area reserved for boot loader's use As of the 4.3 kernel release, the fitrim ioctl can now discard any region of a disk that is not allocated to any chunk/block group, including the first megabyte which is used for our primary superblock and by the boot loader (grub for example). Fix this by not allowing to trim/discard any region in the device starting with an offset not greater than min(alloc_start_mount_option, 1Mb), just as it was not possible before 4.3. A reproducer test case for xfstests follows. seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { cd / rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 # Write to the [0, 64Kb[ and [68Kb, 1Mb[ ranges of the device. These ranges are # reserved for a boot loader to use (GRUB for example) and btrfs should never # use them - neither for allocating metadata/data nor should trim/discard them. # The range [64Kb, 68Kb[ is used for the primary superblock of the filesystem. $XFS_IO_PROG -c "pwrite -S 0xfd 0 64K" $SCRATCH_DEV | _filter_xfs_io $XFS_IO_PROG -c "pwrite -S 0xfd 68K 956K" $SCRATCH_DEV | _filter_xfs_io # Now mount the filesystem and perform a fitrim against it. _scratch_mount _require_batched_discard $SCRATCH_MNT $FSTRIM_PROG $SCRATCH_MNT # Now unmount the filesystem and verify the content of the ranges was not # modified (no trim/discard happened on them). _scratch_unmount echo "Content of the ranges [0, 64Kb] and [68Kb, 1Mb[ after fitrim:" od -t x1 -N $((64 * 1024)) $SCRATCH_DEV od -t x1 -j $((68 * 1024)) -N $((956 * 1024)) $SCRATCH_DEV status=0 exit Reported-by: Vincent Petry <PVince81@yahoo.fr> Reported-by: Andrei Borzenkov <arvidjaar@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=109341 Fixes: 499f377f49f0 (btrfs: iterate over unused chunk space in FITRIM) Cc: stable@vger.kernel.org # 4.3+ Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-01-06 22:42:35 +00:00
search_start = dev_extent_search_start(device);
2021-02-04 10:21:48 +00:00
WARN_ON(device->zone_info &&
!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
max_hole_start = search_start;
max_hole_size = 0;
again:
if (search_start >= search_end ||
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
ret = -ENOSPC;
goto out;
}
path->reada = READA_FORWARD;
path->search_commit_root = 1;
path->skip_locking = 1;
key.objectid = device->devid;
key.offset = search_start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_search_backwards(root, &key, path);
if (ret < 0)
goto out;
while (search_start < search_end) {
l = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(l)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(l, &key, slot);
if (key.objectid < device->devid)
goto next;
if (key.objectid > device->devid)
break;
if (key.type != BTRFS_DEV_EXTENT_KEY)
goto next;
if (key.offset > search_end)
break;
if (key.offset > search_start) {
hole_size = key.offset - search_start;
dev_extent_hole_check(device, &search_start, &hole_size,
num_bytes);
if (hole_size > max_hole_size) {
max_hole_start = search_start;
max_hole_size = hole_size;
}
/*
* If this free space is greater than which we need,
* it must be the max free space that we have found
* until now, so max_hole_start must point to the start
* of this free space and the length of this free space
* is stored in max_hole_size. Thus, we return
* max_hole_start and max_hole_size and go back to the
* caller.
*/
if (hole_size >= num_bytes) {
ret = 0;
goto out;
}
}
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
extent_end = key.offset + btrfs_dev_extent_length(l,
dev_extent);
if (extent_end > search_start)
search_start = extent_end;
next:
path->slots[0]++;
cond_resched();
}
/*
* At this point, search_start should be the end of
* allocated dev extents, and when shrinking the device,
* search_end may be smaller than search_start.
*/
if (search_end > search_start) {
hole_size = search_end - search_start;
if (dev_extent_hole_check(device, &search_start, &hole_size,
num_bytes)) {
btrfs_release_path(path);
goto again;
}
if (hole_size > max_hole_size) {
max_hole_start = search_start;
max_hole_size = hole_size;
}
}
/* See above. */
if (max_hole_size < num_bytes)
ret = -ENOSPC;
else
ret = 0;
ASSERT(max_hole_start + max_hole_size <= search_end);
out:
btrfs_free_path(path);
*start = max_hole_start;
if (len)
*len = max_hole_size;
return ret;
}
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 start, u64 *dev_extent_len)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_root *root = fs_info->dev_root;
int ret;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf = NULL;
struct btrfs_dev_extent *extent = NULL;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.offset = start;
key.type = BTRFS_DEV_EXTENT_KEY;
again:
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0) {
ret = btrfs_previous_item(root, path, key.objectid,
BTRFS_DEV_EXTENT_KEY);
if (ret)
goto out;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
BUG_ON(found_key.offset > start || found_key.offset +
btrfs_dev_extent_length(leaf, extent) < start);
key = found_key;
btrfs_release_path(path);
goto again;
} else if (ret == 0) {
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
} else {
goto out;
}
*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
ret = btrfs_del_item(trans, root, path);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (ret == 0)
set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
out:
btrfs_free_path(path);
return ret;
}
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
{
struct extent_map_tree *em_tree;
struct extent_map *em;
struct rb_node *n;
u64 ret = 0;
em_tree = &fs_info->mapping_tree;
read_lock(&em_tree->lock);
n = rb_last(&em_tree->map.rb_root);
if (n) {
em = rb_entry(n, struct extent_map, rb_node);
ret = em->start + em->len;
}
read_unlock(&em_tree->lock);
return ret;
}
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
u64 *devid_ret)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
if (ret < 0)
goto error;
if (ret == 0) {
/* Corruption */
btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
ret = -EUCLEAN;
goto error;
}
ret = btrfs_previous_item(fs_info->chunk_root, path,
BTRFS_DEV_ITEMS_OBJECTID,
BTRFS_DEV_ITEM_KEY);
if (ret) {
*devid_ret = 1;
} else {
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
*devid_ret = found_key.offset + 1;
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
/*
* the device information is stored in the chunk root
* the btrfs_device struct should be fully filled in
*/
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
unsigned long ptr;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_reserve_chunk_metadata(trans, true);
ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
&key, sizeof(*dev_item));
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_trans_release_chunk_metadata(trans);
if (ret)
goto out;
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_generation(leaf, dev_item, 0);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item,
btrfs_device_get_disk_total_bytes(device));
btrfs_set_device_bytes_used(leaf, dev_item,
btrfs_device_get_bytes_used(device));
btrfs_set_device_group(leaf, dev_item, 0);
btrfs_set_device_seek_speed(leaf, dev_item, 0);
btrfs_set_device_bandwidth(leaf, dev_item, 0);
btrfs_set_device_start_offset(leaf, dev_item, 0);
ptr = btrfs_device_uuid(dev_item);
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
ptr = btrfs_device_fsid(dev_item);
write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
ptr, BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(leaf);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
/*
* Function to update ctime/mtime for a given device path.
* Mainly used for ctime/mtime based probe like libblkid.
*
* We don't care about errors here, this is just to be kind to userspace.
*/
static void update_dev_time(const char *device_path)
{
struct path path;
btrfs: update the bdev time directly when closing We update the ctime/mtime of a block device when we remove it so that blkid knows the device changed. However we do this by re-opening the block device and calling filp_update_time. This is more correct because it'll call the inode->i_op->update_time if it exists, but the block dev inodes do not do this. Instead call generic_update_time() on the bd_inode in order to avoid the blkdev_open path and get rid of the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #406 Not tainted ------------------------------------------------------ losetup/11596 is trying to acquire lock: ffff939640d2f538 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 file_open_name+0xc7/0x170 filp_open+0x2c/0x50 btrfs_scratch_superblocks.part.0+0x10f/0x170 btrfs_rm_device.cold+0xe8/0xed btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11596: #0: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 1 PID: 11596 Comm: losetup Not tainted 5.14.0-rc2+ #406 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:16 +00:00
struct timespec64 now;
int ret;
ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
if (ret)
return;
btrfs: update the bdev time directly when closing We update the ctime/mtime of a block device when we remove it so that blkid knows the device changed. However we do this by re-opening the block device and calling filp_update_time. This is more correct because it'll call the inode->i_op->update_time if it exists, but the block dev inodes do not do this. Instead call generic_update_time() on the bd_inode in order to avoid the blkdev_open path and get rid of the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #406 Not tainted ------------------------------------------------------ losetup/11596 is trying to acquire lock: ffff939640d2f538 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 file_open_name+0xc7/0x170 filp_open+0x2c/0x50 btrfs_scratch_superblocks.part.0+0x10f/0x170 btrfs_rm_device.cold+0xe8/0xed btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11596: #0: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 1 PID: 11596 Comm: losetup Not tainted 5.14.0-rc2+ #406 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:16 +00:00
now = current_time(d_inode(path.dentry));
inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME | S_VERSION);
path_put(&path);
}
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
struct btrfs_root *root = device->fs_info->chunk_root;
int ret;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_reserve_chunk_metadata(trans, false);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_trans_release_chunk_metadata(trans);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
return ret;
}
/*
* Verify that @num_devices satisfies the RAID profile constraints in the whole
* filesystem. It's up to the caller to adjust that number regarding eg. device
* replace.
*/
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
u64 num_devices)
{
u64 all_avail;
unsigned seq;
int i;
do {
seq = read_seqbegin(&fs_info->profiles_lock);
all_avail = fs_info->avail_data_alloc_bits |
fs_info->avail_system_alloc_bits |
fs_info->avail_metadata_alloc_bits;
} while (read_seqretry(&fs_info->profiles_lock, seq));
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
if (!(all_avail & btrfs_raid_array[i].bg_flag))
continue;
if (num_devices < btrfs_raid_array[i].devs_min)
return btrfs_raid_array[i].mindev_error;
}
return 0;
}
static struct btrfs_device * btrfs_find_next_active_device(
struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
{
struct btrfs_device *next_device;
list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
if (next_device != device &&
!test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
&& next_device->bdev)
return next_device;
}
return NULL;
}
/*
* Helper function to check if the given device is part of s_bdev / latest_dev
* and replace it with the provided or the next active device, in the context
* where this function called, there should be always be another device (or
* this_dev) which is active.
*/
void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
struct btrfs_device *next_device)
{
struct btrfs_fs_info *fs_info = device->fs_info;
if (!next_device)
next_device = btrfs_find_next_active_device(fs_info->fs_devices,
device);
ASSERT(next_device);
if (fs_info->sb->s_bdev &&
(fs_info->sb->s_bdev == device->bdev))
fs_info->sb->s_bdev = next_device->bdev;
if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
fs_info->fs_devices->latest_dev = next_device;
}
/*
* Return btrfs_fs_devices::num_devices excluding the device that's being
* currently replaced.
*/
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
u64 num_devices = fs_info->fs_devices->num_devices;
down_read(&fs_info->dev_replace.rwsem);
if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
ASSERT(num_devices > 1);
num_devices--;
}
up_read(&fs_info->dev_replace.rwsem);
return num_devices;
}
static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
struct block_device *bdev, int copy_num)
{
struct btrfs_super_block *disk_super;
const size_t len = sizeof(disk_super->magic);
const u64 bytenr = btrfs_sb_offset(copy_num);
int ret;
disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
if (IS_ERR(disk_super))
return;
memset(&disk_super->magic, 0, len);
folio_mark_dirty(virt_to_folio(disk_super));
btrfs_release_disk_super(disk_super);
ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
if (ret)
btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
copy_num, ret);
}
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
struct block_device *bdev,
const char *device_path)
{
int copy_num;
if (!bdev)
return;
for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
if (bdev_is_zoned(bdev))
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
btrfs_reset_sb_log_zones(bdev, copy_num);
else
btrfs_scratch_superblock(fs_info, bdev, copy_num);
}
/* Notify udev that device has changed */
btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
/* Update ctime/mtime for device path for libblkid */
update_dev_time(device_path);
}
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 20:12:44 +00:00
int btrfs_rm_device(struct btrfs_fs_info *fs_info,
struct btrfs_dev_lookup_args *args,
struct block_device **bdev, void **holder)
{
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
struct btrfs_trans_handle *trans;
struct btrfs_device *device;
struct btrfs_fs_devices *cur_devices;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u64 num_devices;
int ret = 0;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
return -EINVAL;
}
btrfs: do not take the uuid_mutex in btrfs_rm_device We got the following lockdep splat while running fstests (specifically btrfs/003 and btrfs/020 in a row) with the new rc. This was uncovered by 87579e9b7d8d ("loop: use worker per cgroup instead of kworker") which converted loop to using workqueues, which comes with lockdep annotations that don't exist with kworkers. The lockdep splat is as follows: WARNING: possible circular locking dependency detected 5.14.0-rc2-custom+ #34 Not tainted ------------------------------------------------------ losetup/156417 is trying to acquire lock: ffff9c7645b02d38 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x84/0x600 but task is already holding lock: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x28/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x163/0x3a0 path_openat+0x74d/0xa40 do_filp_open+0x9c/0x140 do_sys_openat2+0xb1/0x170 __x64_sys_openat+0x54/0x90 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #4 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 blkdev_get_by_dev.part.0+0xd1/0x3c0 blkdev_get_by_path+0xc0/0xd0 btrfs_scan_one_device+0x52/0x1f0 [btrfs] btrfs_control_ioctl+0xac/0x170 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (uuid_mutex){+.+.}-{3:3}: __mutex_lock+0xba/0x7c0 btrfs_rm_device+0x48/0x6a0 [btrfs] btrfs_ioctl+0x2d1c/0x3110 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#11){.+.+}-{0:0}: lo_write_bvec+0x112/0x290 [loop] loop_process_work+0x25f/0xcb0 [loop] process_one_work+0x28f/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x266/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x1130/0x1dc0 lock_acquire+0xf5/0x320 flush_workqueue+0xae/0x600 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x650 [loop] lo_ioctl+0x29d/0x780 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/156417: #0: ffff9c7647395468 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x650 [loop] stack backtrace: CPU: 8 PID: 156417 Comm: losetup Not tainted 5.14.0-rc2-custom+ #34 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0x10a/0x120 __lock_acquire+0x1130/0x1dc0 lock_acquire+0xf5/0x320 ? flush_workqueue+0x84/0x600 flush_workqueue+0xae/0x600 ? flush_workqueue+0x84/0x600 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x650 [loop] lo_ioctl+0x29d/0x780 [loop] ? __lock_acquire+0x3a0/0x1dc0 ? update_dl_rq_load_avg+0x152/0x360 ? lock_is_held_type+0xa5/0x120 ? find_held_lock.constprop.0+0x2b/0x80 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f645884de6b Usually the uuid_mutex exists to protect the fs_devices that map together all of the devices that match a specific uuid. In rm_device we're messing with the uuid of a device, so it makes sense to protect that here. However in doing that it pulls in a whole host of lockdep dependencies, as we call mnt_may_write() on the sb before we grab the uuid_mutex, thus we end up with the dependency chain under the uuid_mutex being added under the normal sb write dependency chain, which causes problems with loop devices. We don't need the uuid mutex here however. If we call btrfs_scan_one_device() before we scratch the super block we will find the fs_devices and not find the device itself and return EBUSY because the fs_devices is open. If we call it after the scratch happens it will not appear to be a valid btrfs file system. We do not need to worry about other fs_devices modifying operations here because we're protected by the exclusive operations locking. So drop the uuid_mutex here in order to fix the lockdep splat. A more detailed explanation from the discussion: We are worried about rm and scan racing with each other, before this change we'll zero the device out under the UUID mutex so when scan does run it'll make sure that it can go through the whole device scan thing without rm messing with us. We aren't worried if the scratch happens first, because the result is we don't think this is a btrfs device and we bail out. The only case we are concerned with is we scratch _after_ scan is able to read the superblock and gets a seemingly valid super block, so lets consider this case. Scan will call device_list_add() with the device we're removing. We'll call find_fsid_with_metadata_uuid() and get our fs_devices for this UUID. At this point we lock the fs_devices->device_list_mutex. This is what protects us in this case, but we have two cases here. 1. We aren't to the device removal part of the RM. We found our device, and device name matches our path, we go down and we set total_devices to our super number of devices, which doesn't affect anything because we haven't done the remove yet. 2. We are past the device removal part, which is protected by the device_list_mutex. Scan doesn't find the device, it goes down and does the if (fs_devices->opened) return -EBUSY; check and we bail out. Nothing about this situation is ideal, but the lockdep splat is real, and the fix is safe, tho admittedly a bit scary looking. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copy more from the discussion ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:14 +00:00
/*
* The device list in fs_devices is accessed without locks (neither
* uuid_mutex nor device_list_mutex) as it won't change on a mounted
* filesystem and another device rm cannot run.
*/
num_devices = btrfs_num_devices(fs_info);
ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
if (ret)
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
return ret;
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 20:12:44 +00:00
device = btrfs_find_device(fs_info->fs_devices, args);
if (!device) {
if (args->missing)
ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
else
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-05 20:12:44 +00:00
ret = -ENOENT;
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
return ret;
}
if (btrfs_pinned_by_swapfile(fs_info, device)) {
btrfs_warn_in_rcu(fs_info,
"cannot remove device %s (devid %llu) due to active swapfile",
btrfs_dev_name(device), device->devid);
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
return -ETXTBSY;
}
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
return BTRFS_ERROR_DEV_TGT_REPLACE;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
fs_info->fs_devices->rw_devices == 1)
return BTRFS_ERROR_DEV_ONLY_WRITABLE;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
mutex_lock(&fs_info->chunk_mutex);
list_del_init(&device->dev_alloc_list);
device->fs_devices->rw_devices--;
mutex_unlock(&fs_info->chunk_mutex);
}
ret = btrfs_shrink_device(device, 0);
if (ret)
goto error_undo;
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
trans = btrfs_start_transaction(fs_info->chunk_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto error_undo;
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
}
ret = btrfs_rm_dev_item(trans, device);
if (ret) {
/* Any error in dev item removal is critical */
btrfs_crit(fs_info,
"failed to remove device item for devid %llu: %d",
device->devid, ret);
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
return ret;
}
clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
btrfs_scrub_cancel_dev(device);
/*
* the device list mutex makes sure that we don't change
* the device list while someone else is writing out all
Btrfs: fix race between removing a dev and writing sbs This change fixes an issue when removing a device and writing all super blocks run simultaneously. Here's the steps necessary for the issue to happen: 1) disk-io.c:write_all_supers() gets a number of N devices from the super_copy, so it will not panic if it fails to write super blocks for N - 1 devices; 2) Then it tries to acquire the device_list_mutex, but blocks because volumes.c:btrfs_rm_device() got it first; 3) btrfs_rm_device() removes the device from the list, then unlocks the mutex and after the unlock it updates the number of devices in super_copy to N - 1. 4) write_all_supers() finally acquires the mutex, iterates over all the devices in the list and gets N - 1 errors, that is, it failed to write super blocks to all the devices; 5) Because write_all_supers() thinks there are a total of N devices, it considers N - 1 errors to be ok, and therefore won't panic. So this change just makes sure that write_all_supers() reads the number of devices from super_copy after it acquires the device_list_mutex. Conversely, it changes btrfs_rm_device() to update the number of devices in super_copy before it releases the device list mutex. The code path to add a new device (volumes.c:btrfs_init_new_device), already has the right behaviour: it updates the number of devices in super_copy while holding the device_list_mutex. The only code path that doesn't lock the device list mutex before updating the number of devices in the super copy is disk-io.c:next_root_backup(), called by open_ctree() during mount time where concurrency issues can't happen. Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-09 14:41:36 +00:00
* the device supers. Whoever is writing all supers, should
* lock the device list mutex before getting the number of
* devices in the super block (super_copy). Conversely,
* whoever updates the number of devices in the super block
* (super_copy) should hold the device list mutex.
*/
/*
* In normal cases the cur_devices == fs_devices. But in case
* of deleting a seed device, the cur_devices should point to
* its own fs_devices listed under the fs_devices->seed_list.
*/
cur_devices = device->fs_devices;
mutex_lock(&fs_devices->device_list_mutex);
list_del_rcu(&device->dev_list);
cur_devices->num_devices--;
cur_devices->total_devices--;
/* Update total_devices of the parent fs_devices if it's seed */
if (cur_devices != fs_devices)
fs_devices->total_devices--;
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
cur_devices->missing_devices--;
btrfs_assign_next_active_device(device, NULL);
if (device->bdev) {
cur_devices->open_devices--;
/* remove sysfs entry */
btrfs_sysfs_remove_device(device);
}
num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
mutex_unlock(&fs_devices->device_list_mutex);
/*
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:17 +00:00
* At this point, the device is zero sized and detached from the
* devices list. All that's left is to zero out the old supers and
* free the device.
*
* We cannot call btrfs_close_bdev() here because we're holding the sb
* write lock, and blkdev_put() will pull in the ->open_mutex on the
* block device and it's dependencies. Instead just flush the device
* and let the caller do the final blkdev_put.
*/
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:17 +00:00
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
btrfs_scratch_superblocks(fs_info, device->bdev,
device->name->str);
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:17 +00:00
if (device->bdev) {
sync_blockdev(device->bdev);
invalidate_bdev(device->bdev);
}
}
btrfs: delay blkdev_put until after the device remove When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-27 21:01:17 +00:00
*bdev = device->bdev;
*holder = device->holder;
synchronize_rcu();
btrfs_free_device(device);
/*
* This can happen if cur_devices is the private seed devices list. We
* cannot call close_fs_devices() here because it expects the uuid_mutex
* to be held, but in fact we don't need that for the private
* seed_devices, we can simply decrement cur_devices->opened and then
* remove it from our list and free the fs_devices.
*/
if (cur_devices->num_devices == 0) {
list_del_init(&cur_devices->seed_list);
ASSERT(cur_devices->opened == 1);
cur_devices->opened--;
free_fs_devices(cur_devices);
}
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
ret = btrfs_commit_transaction(trans);
return ret;
error_undo:
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
mutex_lock(&fs_info->chunk_mutex);
list_add(&device->dev_alloc_list,
&fs_devices->alloc_list);
device->fs_devices->rw_devices++;
mutex_unlock(&fs_info->chunk_mutex);
}
btrfs: remove device item and update super block in the same transaction [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. [FIX] Instead of starting and committing a transaction inside btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and pass it to btrfs_rm_dev_item(). And only commit the transaction after everything is done. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-08 05:36:38 +00:00
return ret;
}
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
{
struct btrfs_fs_devices *fs_devices;
lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
/*
* in case of fs with no seed, srcdev->fs_devices will point
* to fs_devices of fs_info. However when the dev being replaced is
* a seed dev it will point to the seed's local fs_devices. In short
* srcdev will have its correct fs_devices in both the cases.
*/
fs_devices = srcdev->fs_devices;
list_del_rcu(&srcdev->dev_list);
list_del(&srcdev->dev_alloc_list);
fs_devices->num_devices--;
if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
fs_devices->missing_devices--;
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
fs_devices->rw_devices--;
if (srcdev->bdev)
fs_devices->open_devices--;
btrfs: Fix a lockdep warning when running xfstest. The following lockdep warning is triggered during xfstests: [ 1702.980872] ========================================================= [ 1702.981181] [ INFO: possible irq lock inversion dependency detected ] [ 1702.981482] 3.18.0-rc1 #27 Not tainted [ 1702.981781] --------------------------------------------------------- [ 1702.982095] kswapd0/77 just changed the state of lock: [ 1702.982415] (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs] [ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past: [ 1702.983160] (&fs_info->dev_replace.lock){+.+.+.} and interrupts could create inverse lock ordering between them. [ 1702.984675] other info that might help us debug this: [ 1702.985524] Chain exists of: &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock [ 1702.986799] Possible interrupt unsafe locking scenario: [ 1702.987681] CPU0 CPU1 [ 1702.988137] ---- ---- [ 1702.988598] lock(&fs_info->dev_replace.lock); [ 1702.989069] local_irq_disable(); [ 1702.989534] lock(&delayed_node->mutex); [ 1702.990038] lock(&found->groups_sem); [ 1702.990494] <Interrupt> [ 1702.990938] lock(&delayed_node->mutex); [ 1702.991407] *** DEADLOCK *** It is because the btrfs_kobj_{add/rm}_device() will call memory allocation with GFP_KERNEL, which may flush fs page cache to free space, waiting for it self to do the commit, causing the deadlock. To solve the problem, move btrfs_kobj_{add/rm}_device() out of the dev_replace lock range, also involing split the btrfs_rm_dev_replace_srcdev() function into remove and free parts. Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are called out of the lock range. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-30 08:52:31 +00:00
}
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
btrfs: Fix a lockdep warning when running xfstest. The following lockdep warning is triggered during xfstests: [ 1702.980872] ========================================================= [ 1702.981181] [ INFO: possible irq lock inversion dependency detected ] [ 1702.981482] 3.18.0-rc1 #27 Not tainted [ 1702.981781] --------------------------------------------------------- [ 1702.982095] kswapd0/77 just changed the state of lock: [ 1702.982415] (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs] [ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past: [ 1702.983160] (&fs_info->dev_replace.lock){+.+.+.} and interrupts could create inverse lock ordering between them. [ 1702.984675] other info that might help us debug this: [ 1702.985524] Chain exists of: &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock [ 1702.986799] Possible interrupt unsafe locking scenario: [ 1702.987681] CPU0 CPU1 [ 1702.988137] ---- ---- [ 1702.988598] lock(&fs_info->dev_replace.lock); [ 1702.989069] local_irq_disable(); [ 1702.989534] lock(&delayed_node->mutex); [ 1702.990038] lock(&found->groups_sem); [ 1702.990494] <Interrupt> [ 1702.990938] lock(&delayed_node->mutex); [ 1702.991407] *** DEADLOCK *** It is because the btrfs_kobj_{add/rm}_device() will call memory allocation with GFP_KERNEL, which may flush fs page cache to free space, waiting for it self to do the commit, causing the deadlock. To solve the problem, move btrfs_kobj_{add/rm}_device() out of the dev_replace lock range, also involing split the btrfs_rm_dev_replace_srcdev() function into remove and free parts. Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are called out of the lock range. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-30 08:52:31 +00:00
{
struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
btrfs: move btrfs_rm_dev_replace_free_srcdev outside of all locks When closing and freeing the source device we could end up doing our final blkdev_put() on the bdev, which will grab the bd_mutex. As such we want to be holding as few locks as possible, so move this call outside of the dev_replace->lock_finishing_cancel_unmount lock. Since we're modifying the fs_devices we need to make sure we're holding the uuid_mutex here, so take that as well. There's a report from syzbot probably hitting one of the cases where the bd_mutex and device_list_mutex are taken in the wrong order, however it's not with device replace, like this patch fixes. As there's no reproducer available so far, we can't verify the fix. https://lore.kernel.org/lkml/000000000000fc04d105afcf86d7@google.com/ dashboard link: https://syzkaller.appspot.com/bug?extid=84a0634dc5d21d488419 WARNING: possible circular locking dependency detected 5.9.0-rc5-syzkaller #0 Not tainted ------------------------------------------------------ syz-executor.0/6878 is trying to acquire lock: ffff88804c17d780 (&bdev->bd_mutex){+.+.}-{3:3}, at: blkdev_put+0x30/0x520 fs/block_dev.c:1804 but task is already holding lock: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 btrfs_finish_chunk_alloc+0x281/0xf90 fs/btrfs/volumes.c:5255 btrfs_create_pending_block_groups+0x2f3/0x700 fs/btrfs/block-group.c:2109 __btrfs_end_transaction+0xf5/0x690 fs/btrfs/transaction.c:916 find_free_extent_update_loop fs/btrfs/extent-tree.c:3807 [inline] find_free_extent+0x23b7/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #3 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write+0x234/0x470 fs/super.c:1672 sb_start_intwrite include/linux/fs.h:1690 [inline] start_transaction+0xbe7/0x1170 fs/btrfs/transaction.c:624 find_free_extent_update_loop fs/btrfs/extent-tree.c:3789 [inline] find_free_extent+0x25e1/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #2 ((work_completion)(&(&wb->dwork)->work)){+.+.}-{0:0}: __flush_work+0x60e/0xac0 kernel/workqueue.c:3041 wb_shutdown+0x180/0x220 mm/backing-dev.c:355 bdi_unregister+0x174/0x590 mm/backing-dev.c:872 del_gendisk+0x820/0xa10 block/genhd.c:933 loop_remove drivers/block/loop.c:2192 [inline] loop_control_ioctl drivers/block/loop.c:2291 [inline] loop_control_ioctl+0x3b1/0x480 drivers/block/loop.c:2257 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 lo_open+0x19/0xd0 drivers/block/loop.c:1893 __blkdev_get+0x759/0x1aa0 fs/block_dev.c:1507 blkdev_get fs/block_dev.c:1639 [inline] blkdev_open+0x227/0x300 fs/block_dev.c:1753 do_dentry_open+0x4b9/0x11b0 fs/open.c:817 do_open fs/namei.c:3251 [inline] path_openat+0x1b9a/0x2730 fs/namei.c:3368 do_filp_open+0x17e/0x3c0 fs/namei.c:3395 do_sys_openat2+0x16d/0x420 fs/open.c:1168 do_sys_open fs/open.c:1184 [inline] __do_sys_open fs/open.c:1192 [inline] __se_sys_open fs/open.c:1188 [inline] __x64_sys_open+0x119/0x1c0 fs/open.c:1188 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&bdev->bd_mutex){+.+.}-{3:3}: check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &bdev->bd_mutex --> sb_internal#2 --> &fs_devs->device_list_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_devs->device_list_mutex); lock(sb_internal#2); lock(&fs_devs->device_list_mutex); lock(&bdev->bd_mutex); *** DEADLOCK *** 3 locks held by syz-executor.0/6878: #0: ffff88809070c0e0 (&type->s_umount_key#70){++++}-{3:3}, at: deactivate_super+0xa5/0xd0 fs/super.c:365 #1: ffffffff8a5b37a8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_close_devices+0x23/0x1f0 fs/btrfs/volumes.c:1178 #2: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 stack backtrace: CPU: 0 PID: 6878 Comm: syz-executor.0 Not tainted 5.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x198/0x1fd lib/dump_stack.c:118 check_noncircular+0x324/0x3e0 kernel/locking/lockdep.c:1827 check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x460027 RSP: 002b:00007fff59216328 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 0000000000076035 RCX: 0000000000460027 RDX: 0000000000403188 RSI: 0000000000000002 RDI: 00007fff592163d0 RBP: 0000000000000333 R08: 0000000000000000 R09: 000000000000000b R10: 0000000000000005 R11: 0000000000000246 R12: 00007fff59217460 R13: 0000000002df2a60 R14: 0000000000000000 R15: 00007fff59217460 Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add syzbot reference ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-20 15:18:27 +00:00
mutex_lock(&uuid_mutex);
btrfs_close_bdev(srcdev);
synchronize_rcu();
btrfs_free_device(srcdev);
/* if this is no devs we rather delete the fs_devices */
if (!fs_devices->num_devices) {
/*
* On a mounted FS, num_devices can't be zero unless it's a
* seed. In case of a seed device being replaced, the replace
* target added to the sprout FS, so there will be no more
* device left under the seed FS.
*/
ASSERT(fs_devices->seeding);
list_del_init(&fs_devices->seed_list);
close_fs_devices(fs_devices);
free_fs_devices(fs_devices);
}
btrfs: move btrfs_rm_dev_replace_free_srcdev outside of all locks When closing and freeing the source device we could end up doing our final blkdev_put() on the bdev, which will grab the bd_mutex. As such we want to be holding as few locks as possible, so move this call outside of the dev_replace->lock_finishing_cancel_unmount lock. Since we're modifying the fs_devices we need to make sure we're holding the uuid_mutex here, so take that as well. There's a report from syzbot probably hitting one of the cases where the bd_mutex and device_list_mutex are taken in the wrong order, however it's not with device replace, like this patch fixes. As there's no reproducer available so far, we can't verify the fix. https://lore.kernel.org/lkml/000000000000fc04d105afcf86d7@google.com/ dashboard link: https://syzkaller.appspot.com/bug?extid=84a0634dc5d21d488419 WARNING: possible circular locking dependency detected 5.9.0-rc5-syzkaller #0 Not tainted ------------------------------------------------------ syz-executor.0/6878 is trying to acquire lock: ffff88804c17d780 (&bdev->bd_mutex){+.+.}-{3:3}, at: blkdev_put+0x30/0x520 fs/block_dev.c:1804 but task is already holding lock: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 btrfs_finish_chunk_alloc+0x281/0xf90 fs/btrfs/volumes.c:5255 btrfs_create_pending_block_groups+0x2f3/0x700 fs/btrfs/block-group.c:2109 __btrfs_end_transaction+0xf5/0x690 fs/btrfs/transaction.c:916 find_free_extent_update_loop fs/btrfs/extent-tree.c:3807 [inline] find_free_extent+0x23b7/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #3 (sb_internal#2){.+.+}-{0:0}: percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write+0x234/0x470 fs/super.c:1672 sb_start_intwrite include/linux/fs.h:1690 [inline] start_transaction+0xbe7/0x1170 fs/btrfs/transaction.c:624 find_free_extent_update_loop fs/btrfs/extent-tree.c:3789 [inline] find_free_extent+0x25e1/0x2e60 fs/btrfs/extent-tree.c:4127 btrfs_reserve_extent+0x166/0x460 fs/btrfs/extent-tree.c:4206 cow_file_range+0x3de/0x9b0 fs/btrfs/inode.c:1063 btrfs_run_delalloc_range+0x2cf/0x1410 fs/btrfs/inode.c:1838 writepage_delalloc+0x150/0x460 fs/btrfs/extent_io.c:3439 __extent_writepage+0x441/0xd00 fs/btrfs/extent_io.c:3653 extent_write_cache_pages.constprop.0+0x69d/0x1040 fs/btrfs/extent_io.c:4249 extent_writepages+0xcd/0x2b0 fs/btrfs/extent_io.c:4370 do_writepages+0xec/0x290 mm/page-writeback.c:2352 __writeback_single_inode+0x125/0x1400 fs/fs-writeback.c:1461 writeback_sb_inodes+0x53d/0xf40 fs/fs-writeback.c:1721 wb_writeback+0x2ad/0xd40 fs/fs-writeback.c:1894 wb_do_writeback fs/fs-writeback.c:2039 [inline] wb_workfn+0x2dc/0x13e0 fs/fs-writeback.c:2080 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 -> #2 ((work_completion)(&(&wb->dwork)->work)){+.+.}-{0:0}: __flush_work+0x60e/0xac0 kernel/workqueue.c:3041 wb_shutdown+0x180/0x220 mm/backing-dev.c:355 bdi_unregister+0x174/0x590 mm/backing-dev.c:872 del_gendisk+0x820/0xa10 block/genhd.c:933 loop_remove drivers/block/loop.c:2192 [inline] loop_control_ioctl drivers/block/loop.c:2291 [inline] loop_control_ioctl+0x3b1/0x480 drivers/block/loop.c:2257 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (loop_ctl_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 lo_open+0x19/0xd0 drivers/block/loop.c:1893 __blkdev_get+0x759/0x1aa0 fs/block_dev.c:1507 blkdev_get fs/block_dev.c:1639 [inline] blkdev_open+0x227/0x300 fs/block_dev.c:1753 do_dentry_open+0x4b9/0x11b0 fs/open.c:817 do_open fs/namei.c:3251 [inline] path_openat+0x1b9a/0x2730 fs/namei.c:3368 do_filp_open+0x17e/0x3c0 fs/namei.c:3395 do_sys_openat2+0x16d/0x420 fs/open.c:1168 do_sys_open fs/open.c:1184 [inline] __do_sys_open fs/open.c:1192 [inline] __se_sys_open fs/open.c:1188 [inline] __x64_sys_open+0x119/0x1c0 fs/open.c:1188 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&bdev->bd_mutex){+.+.}-{3:3}: check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &bdev->bd_mutex --> sb_internal#2 --> &fs_devs->device_list_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_devs->device_list_mutex); lock(sb_internal#2); lock(&fs_devs->device_list_mutex); lock(&bdev->bd_mutex); *** DEADLOCK *** 3 locks held by syz-executor.0/6878: #0: ffff88809070c0e0 (&type->s_umount_key#70){++++}-{3:3}, at: deactivate_super+0xa5/0xd0 fs/super.c:365 #1: ffffffff8a5b37a8 (uuid_mutex){+.+.}-{3:3}, at: btrfs_close_devices+0x23/0x1f0 fs/btrfs/volumes.c:1178 #2: ffff8880908cfce0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: close_fs_devices.part.0+0x2e/0x800 fs/btrfs/volumes.c:1159 stack backtrace: CPU: 0 PID: 6878 Comm: syz-executor.0 Not tainted 5.9.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x198/0x1fd lib/dump_stack.c:118 check_noncircular+0x324/0x3e0 kernel/locking/lockdep.c:1827 check_prev_add kernel/locking/lockdep.c:2496 [inline] check_prevs_add kernel/locking/lockdep.c:2601 [inline] validate_chain kernel/locking/lockdep.c:3218 [inline] __lock_acquire+0x2a96/0x5780 kernel/locking/lockdep.c:4426 lock_acquire+0x1f3/0xae0 kernel/locking/lockdep.c:5006 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x134/0x10e0 kernel/locking/mutex.c:1103 blkdev_put+0x30/0x520 fs/block_dev.c:1804 btrfs_close_bdev fs/btrfs/volumes.c:1117 [inline] btrfs_close_bdev fs/btrfs/volumes.c:1107 [inline] btrfs_close_one_device fs/btrfs/volumes.c:1133 [inline] close_fs_devices.part.0+0x1a4/0x800 fs/btrfs/volumes.c:1161 close_fs_devices fs/btrfs/volumes.c:1193 [inline] btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179 close_ctree+0x688/0x6cb fs/btrfs/disk-io.c:4149 generic_shutdown_super+0x144/0x370 fs/super.c:464 kill_anon_super+0x36/0x60 fs/super.c:1108 btrfs_kill_super+0x38/0x50 fs/btrfs/super.c:2265 deactivate_locked_super+0x94/0x160 fs/super.c:335 deactivate_super+0xad/0xd0 fs/super.c:366 cleanup_mnt+0x3a3/0x530 fs/namespace.c:1118 task_work_run+0xdd/0x190 kernel/task_work.c:141 tracehook_notify_resume include/linux/tracehook.h:188 [inline] exit_to_user_mode_loop kernel/entry/common.c:163 [inline] exit_to_user_mode_prepare+0x1e1/0x200 kernel/entry/common.c:190 syscall_exit_to_user_mode+0x7e/0x2e0 kernel/entry/common.c:265 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x460027 RSP: 002b:00007fff59216328 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 0000000000076035 RCX: 0000000000460027 RDX: 0000000000403188 RSI: 0000000000000002 RDI: 00007fff592163d0 RBP: 0000000000000333 R08: 0000000000000000 R09: 000000000000000b R10: 0000000000000005 R11: 0000000000000246 R12: 00007fff59217460 R13: 0000000002df2a60 R14: 0000000000000000 R15: 00007fff59217460 Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add syzbot reference ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-20 15:18:27 +00:00
mutex_unlock(&uuid_mutex);
}
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
{
struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
mutex_lock(&fs_devices->device_list_mutex);
btrfs_sysfs_remove_device(tgtdev);
btrfs: fix lock dep warning, move scratch dev out of device_list_mutex and uuid_mutex When the replace target fails, the target device will be taken out of fs device list, scratch + update_dev_time and freed. However we could do the scratch + update_dev_time and free part after the device has been taken out of device list, so that we don't have to hold the device_list_mutex and uuid_mutex locks. Reported issue: [ 5375.718845] ====================================================== [ 5375.718846] [ INFO: possible circular locking dependency detected ] [ 5375.718849] 4.4.5-scst31x-debug-11+ #40 Not tainted [ 5375.718849] ------------------------------------------------------- [ 5375.718851] btrfs-health/4662 is trying to acquire lock: [ 5375.718861] (sb_writers){.+.+.+}, at: [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.718862] [ 5375.718862] but task is already holding lock: [ 5375.718907] (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.718907] [ 5375.718907] which lock already depends on the new lock. [ 5375.718907] [ 5375.718908] [ 5375.718908] the existing dependency chain (in reverse order) is: [ 5375.718911] [ 5375.718911] -> #3 (&fs_devs->device_list_mutex){+.+.+.}: [ 5375.718917] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718921] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.718940] [<ffffffffa0219bf6>] btrfs_show_devname+0x36/0x210 [btrfs] [ 5375.718945] [<ffffffff81267079>] show_vfsmnt+0x49/0x150 [ 5375.718948] [<ffffffff81240b07>] m_show+0x17/0x20 [ 5375.718951] [<ffffffff81246868>] seq_read+0x2d8/0x3b0 [ 5375.718955] [<ffffffff8121df28>] __vfs_read+0x28/0xd0 [ 5375.718959] [<ffffffff8121e806>] vfs_read+0x86/0x130 [ 5375.718962] [<ffffffff8121f4c9>] SyS_read+0x49/0xa0 [ 5375.718966] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718968] [ 5375.718968] -> #2 (namespace_sem){+++++.}: [ 5375.718971] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718974] [<ffffffff81635199>] down_write+0x49/0x80 [ 5375.718977] [<ffffffff81243593>] lock_mount+0x43/0x1c0 [ 5375.718979] [<ffffffff81243c13>] do_add_mount+0x23/0xd0 [ 5375.718982] [<ffffffff81244afb>] do_mount+0x27b/0xe30 [ 5375.718985] [<ffffffff812459dc>] SyS_mount+0x8c/0xd0 [ 5375.718988] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718991] [ 5375.718991] -> #1 (&sb->s_type->i_mutex_key#5){+.+.+.}: [ 5375.718994] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718996] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.719001] [<ffffffff8122d608>] path_openat+0x468/0x1360 [ 5375.719004] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719007] [<ffffffff8121da7b>] do_sys_open+0x12b/0x210 [ 5375.719010] [<ffffffff8121db7e>] SyS_open+0x1e/0x20 [ 5375.719013] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.719015] [ 5375.719015] -> #0 (sb_writers){.+.+.+}: [ 5375.719018] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719021] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719026] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719028] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719031] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719035] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719037] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719040] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719043] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719073] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719099] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719123] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719150] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719175] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719199] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719222] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719225] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719229] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719230] [ 5375.719230] other info that might help us debug this: [ 5375.719230] [ 5375.719233] Chain exists of: [ 5375.719233] sb_writers --> namespace_sem --> &fs_devs->device_list_mutex [ 5375.719233] [ 5375.719234] Possible unsafe locking scenario: [ 5375.719234] [ 5375.719234] CPU0 CPU1 [ 5375.719235] ---- ---- [ 5375.719236] lock(&fs_devs->device_list_mutex); [ 5375.719238] lock(namespace_sem); [ 5375.719239] lock(&fs_devs->device_list_mutex); [ 5375.719241] lock(sb_writers); [ 5375.719241] [ 5375.719241] *** DEADLOCK *** [ 5375.719241] [ 5375.719243] 4 locks held by btrfs-health/4662: [ 5375.719266] #0: (&fs_info->health_mutex){+.+.+.}, at: [<ffffffffa0246303>] health_kthread+0x63/0x490 [btrfs] [ 5375.719293] #1: (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.+.}, at: [<ffffffffa02c6611>] btrfs_dev_replace_finishing+0x41/0x990 [btrfs] [ 5375.719319] #2: (uuid_mutex){+.+.+.}, at: [<ffffffffa0282620>] btrfs_destroy_dev_replace_tgtdev+0x20/0x150 [btrfs] [ 5375.719343] #3: (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.719343] [ 5375.719343] stack backtrace: [ 5375.719347] CPU: 2 PID: 4662 Comm: btrfs-health Not tainted 4.4.5-scst31x-debug-11+ #40 [ 5375.719348] Hardware name: Supermicro SYS-6018R-WTRT/X10DRW-iT, BIOS 1.0c 01/07/2015 [ 5375.719352] 0000000000000000 ffff880856f73880 ffffffff813529e3 ffffffff826182a0 [ 5375.719354] ffffffff8260c090 ffff880856f738c0 ffffffff810d667c ffff880856f73930 [ 5375.719357] ffff880861f32b40 ffff880861f32b68 0000000000000003 0000000000000004 [ 5375.719357] Call Trace: [ 5375.719363] [<ffffffff813529e3>] dump_stack+0x85/0xc2 [ 5375.719366] [<ffffffff810d667c>] print_circular_bug+0x1ec/0x260 [ 5375.719369] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719373] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719376] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719378] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719383] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719385] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719387] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719389] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719393] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719415] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719418] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719420] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719423] [<ffffffff810f615d>] ? rcu_read_lock_sched_held+0x6d/0x80 [ 5375.719426] [<ffffffff81201a9b>] ? kmem_cache_alloc+0x26b/0x5d0 [ 5375.719430] [<ffffffff8122e7d4>] ? getname_kernel+0x34/0x120 [ 5375.719433] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719436] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719462] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719485] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719506] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719530] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719554] [<ffffffffa02c6b23>] ? btrfs_dev_replace_finishing+0x553/0x990 [btrfs] [ 5375.719576] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719598] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719621] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719641] [<ffffffffa02463d8>] ? health_kthread+0x138/0x490 [btrfs] [ 5375.719661] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719663] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719666] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719669] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719672] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719697] ------------[ cut here ]------------ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reported-by: Yauhen Kharuzhy <yauhen.kharuzhy@zavadatar.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-18 08:51:23 +00:00
if (tgtdev->bdev)
fs_devices->open_devices--;
btrfs: fix lock dep warning, move scratch dev out of device_list_mutex and uuid_mutex When the replace target fails, the target device will be taken out of fs device list, scratch + update_dev_time and freed. However we could do the scratch + update_dev_time and free part after the device has been taken out of device list, so that we don't have to hold the device_list_mutex and uuid_mutex locks. Reported issue: [ 5375.718845] ====================================================== [ 5375.718846] [ INFO: possible circular locking dependency detected ] [ 5375.718849] 4.4.5-scst31x-debug-11+ #40 Not tainted [ 5375.718849] ------------------------------------------------------- [ 5375.718851] btrfs-health/4662 is trying to acquire lock: [ 5375.718861] (sb_writers){.+.+.+}, at: [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.718862] [ 5375.718862] but task is already holding lock: [ 5375.718907] (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.718907] [ 5375.718907] which lock already depends on the new lock. [ 5375.718907] [ 5375.718908] [ 5375.718908] the existing dependency chain (in reverse order) is: [ 5375.718911] [ 5375.718911] -> #3 (&fs_devs->device_list_mutex){+.+.+.}: [ 5375.718917] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718921] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.718940] [<ffffffffa0219bf6>] btrfs_show_devname+0x36/0x210 [btrfs] [ 5375.718945] [<ffffffff81267079>] show_vfsmnt+0x49/0x150 [ 5375.718948] [<ffffffff81240b07>] m_show+0x17/0x20 [ 5375.718951] [<ffffffff81246868>] seq_read+0x2d8/0x3b0 [ 5375.718955] [<ffffffff8121df28>] __vfs_read+0x28/0xd0 [ 5375.718959] [<ffffffff8121e806>] vfs_read+0x86/0x130 [ 5375.718962] [<ffffffff8121f4c9>] SyS_read+0x49/0xa0 [ 5375.718966] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718968] [ 5375.718968] -> #2 (namespace_sem){+++++.}: [ 5375.718971] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718974] [<ffffffff81635199>] down_write+0x49/0x80 [ 5375.718977] [<ffffffff81243593>] lock_mount+0x43/0x1c0 [ 5375.718979] [<ffffffff81243c13>] do_add_mount+0x23/0xd0 [ 5375.718982] [<ffffffff81244afb>] do_mount+0x27b/0xe30 [ 5375.718985] [<ffffffff812459dc>] SyS_mount+0x8c/0xd0 [ 5375.718988] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718991] [ 5375.718991] -> #1 (&sb->s_type->i_mutex_key#5){+.+.+.}: [ 5375.718994] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718996] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.719001] [<ffffffff8122d608>] path_openat+0x468/0x1360 [ 5375.719004] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719007] [<ffffffff8121da7b>] do_sys_open+0x12b/0x210 [ 5375.719010] [<ffffffff8121db7e>] SyS_open+0x1e/0x20 [ 5375.719013] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.719015] [ 5375.719015] -> #0 (sb_writers){.+.+.+}: [ 5375.719018] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719021] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719026] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719028] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719031] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719035] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719037] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719040] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719043] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719073] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719099] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719123] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719150] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719175] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719199] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719222] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719225] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719229] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719230] [ 5375.719230] other info that might help us debug this: [ 5375.719230] [ 5375.719233] Chain exists of: [ 5375.719233] sb_writers --> namespace_sem --> &fs_devs->device_list_mutex [ 5375.719233] [ 5375.719234] Possible unsafe locking scenario: [ 5375.719234] [ 5375.719234] CPU0 CPU1 [ 5375.719235] ---- ---- [ 5375.719236] lock(&fs_devs->device_list_mutex); [ 5375.719238] lock(namespace_sem); [ 5375.719239] lock(&fs_devs->device_list_mutex); [ 5375.719241] lock(sb_writers); [ 5375.719241] [ 5375.719241] *** DEADLOCK *** [ 5375.719241] [ 5375.719243] 4 locks held by btrfs-health/4662: [ 5375.719266] #0: (&fs_info->health_mutex){+.+.+.}, at: [<ffffffffa0246303>] health_kthread+0x63/0x490 [btrfs] [ 5375.719293] #1: (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.+.}, at: [<ffffffffa02c6611>] btrfs_dev_replace_finishing+0x41/0x990 [btrfs] [ 5375.719319] #2: (uuid_mutex){+.+.+.}, at: [<ffffffffa0282620>] btrfs_destroy_dev_replace_tgtdev+0x20/0x150 [btrfs] [ 5375.719343] #3: (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.719343] [ 5375.719343] stack backtrace: [ 5375.719347] CPU: 2 PID: 4662 Comm: btrfs-health Not tainted 4.4.5-scst31x-debug-11+ #40 [ 5375.719348] Hardware name: Supermicro SYS-6018R-WTRT/X10DRW-iT, BIOS 1.0c 01/07/2015 [ 5375.719352] 0000000000000000 ffff880856f73880 ffffffff813529e3 ffffffff826182a0 [ 5375.719354] ffffffff8260c090 ffff880856f738c0 ffffffff810d667c ffff880856f73930 [ 5375.719357] ffff880861f32b40 ffff880861f32b68 0000000000000003 0000000000000004 [ 5375.719357] Call Trace: [ 5375.719363] [<ffffffff813529e3>] dump_stack+0x85/0xc2 [ 5375.719366] [<ffffffff810d667c>] print_circular_bug+0x1ec/0x260 [ 5375.719369] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719373] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719376] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719378] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719383] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719385] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719387] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719389] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719393] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719415] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719418] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719420] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719423] [<ffffffff810f615d>] ? rcu_read_lock_sched_held+0x6d/0x80 [ 5375.719426] [<ffffffff81201a9b>] ? kmem_cache_alloc+0x26b/0x5d0 [ 5375.719430] [<ffffffff8122e7d4>] ? getname_kernel+0x34/0x120 [ 5375.719433] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719436] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719462] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719485] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719506] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719530] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719554] [<ffffffffa02c6b23>] ? btrfs_dev_replace_finishing+0x553/0x990 [btrfs] [ 5375.719576] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719598] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719621] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719641] [<ffffffffa02463d8>] ? health_kthread+0x138/0x490 [btrfs] [ 5375.719661] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719663] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719666] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719669] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719672] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719697] ------------[ cut here ]------------ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reported-by: Yauhen Kharuzhy <yauhen.kharuzhy@zavadatar.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-18 08:51:23 +00:00
fs_devices->num_devices--;
btrfs_assign_next_active_device(tgtdev, NULL);
list_del_rcu(&tgtdev->dev_list);
mutex_unlock(&fs_devices->device_list_mutex);
btrfs: fix lock dep warning, move scratch dev out of device_list_mutex and uuid_mutex When the replace target fails, the target device will be taken out of fs device list, scratch + update_dev_time and freed. However we could do the scratch + update_dev_time and free part after the device has been taken out of device list, so that we don't have to hold the device_list_mutex and uuid_mutex locks. Reported issue: [ 5375.718845] ====================================================== [ 5375.718846] [ INFO: possible circular locking dependency detected ] [ 5375.718849] 4.4.5-scst31x-debug-11+ #40 Not tainted [ 5375.718849] ------------------------------------------------------- [ 5375.718851] btrfs-health/4662 is trying to acquire lock: [ 5375.718861] (sb_writers){.+.+.+}, at: [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.718862] [ 5375.718862] but task is already holding lock: [ 5375.718907] (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.718907] [ 5375.718907] which lock already depends on the new lock. [ 5375.718907] [ 5375.718908] [ 5375.718908] the existing dependency chain (in reverse order) is: [ 5375.718911] [ 5375.718911] -> #3 (&fs_devs->device_list_mutex){+.+.+.}: [ 5375.718917] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718921] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.718940] [<ffffffffa0219bf6>] btrfs_show_devname+0x36/0x210 [btrfs] [ 5375.718945] [<ffffffff81267079>] show_vfsmnt+0x49/0x150 [ 5375.718948] [<ffffffff81240b07>] m_show+0x17/0x20 [ 5375.718951] [<ffffffff81246868>] seq_read+0x2d8/0x3b0 [ 5375.718955] [<ffffffff8121df28>] __vfs_read+0x28/0xd0 [ 5375.718959] [<ffffffff8121e806>] vfs_read+0x86/0x130 [ 5375.718962] [<ffffffff8121f4c9>] SyS_read+0x49/0xa0 [ 5375.718966] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718968] [ 5375.718968] -> #2 (namespace_sem){+++++.}: [ 5375.718971] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718974] [<ffffffff81635199>] down_write+0x49/0x80 [ 5375.718977] [<ffffffff81243593>] lock_mount+0x43/0x1c0 [ 5375.718979] [<ffffffff81243c13>] do_add_mount+0x23/0xd0 [ 5375.718982] [<ffffffff81244afb>] do_mount+0x27b/0xe30 [ 5375.718985] [<ffffffff812459dc>] SyS_mount+0x8c/0xd0 [ 5375.718988] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.718991] [ 5375.718991] -> #1 (&sb->s_type->i_mutex_key#5){+.+.+.}: [ 5375.718994] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.718996] [<ffffffff81633949>] mutex_lock_nested+0x69/0x3c0 [ 5375.719001] [<ffffffff8122d608>] path_openat+0x468/0x1360 [ 5375.719004] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719007] [<ffffffff8121da7b>] do_sys_open+0x12b/0x210 [ 5375.719010] [<ffffffff8121db7e>] SyS_open+0x1e/0x20 [ 5375.719013] [<ffffffff81637976>] entry_SYSCALL_64_fastpath+0x16/0x7a [ 5375.719015] [ 5375.719015] -> #0 (sb_writers){.+.+.+}: [ 5375.719018] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719021] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719026] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719028] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719031] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719035] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719037] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719040] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719043] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719073] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719099] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719123] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719150] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719175] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719199] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719222] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719225] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719229] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719230] [ 5375.719230] other info that might help us debug this: [ 5375.719230] [ 5375.719233] Chain exists of: [ 5375.719233] sb_writers --> namespace_sem --> &fs_devs->device_list_mutex [ 5375.719233] [ 5375.719234] Possible unsafe locking scenario: [ 5375.719234] [ 5375.719234] CPU0 CPU1 [ 5375.719235] ---- ---- [ 5375.719236] lock(&fs_devs->device_list_mutex); [ 5375.719238] lock(namespace_sem); [ 5375.719239] lock(&fs_devs->device_list_mutex); [ 5375.719241] lock(sb_writers); [ 5375.719241] [ 5375.719241] *** DEADLOCK *** [ 5375.719241] [ 5375.719243] 4 locks held by btrfs-health/4662: [ 5375.719266] #0: (&fs_info->health_mutex){+.+.+.}, at: [<ffffffffa0246303>] health_kthread+0x63/0x490 [btrfs] [ 5375.719293] #1: (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.+.}, at: [<ffffffffa02c6611>] btrfs_dev_replace_finishing+0x41/0x990 [btrfs] [ 5375.719319] #2: (uuid_mutex){+.+.+.}, at: [<ffffffffa0282620>] btrfs_destroy_dev_replace_tgtdev+0x20/0x150 [btrfs] [ 5375.719343] #3: (&fs_devs->device_list_mutex){+.+.+.}, at: [<ffffffffa028263c>] btrfs_destroy_dev_replace_tgtdev+0x3c/0x150 [btrfs] [ 5375.719343] [ 5375.719343] stack backtrace: [ 5375.719347] CPU: 2 PID: 4662 Comm: btrfs-health Not tainted 4.4.5-scst31x-debug-11+ #40 [ 5375.719348] Hardware name: Supermicro SYS-6018R-WTRT/X10DRW-iT, BIOS 1.0c 01/07/2015 [ 5375.719352] 0000000000000000 ffff880856f73880 ffffffff813529e3 ffffffff826182a0 [ 5375.719354] ffffffff8260c090 ffff880856f738c0 ffffffff810d667c ffff880856f73930 [ 5375.719357] ffff880861f32b40 ffff880861f32b68 0000000000000003 0000000000000004 [ 5375.719357] Call Trace: [ 5375.719363] [<ffffffff813529e3>] dump_stack+0x85/0xc2 [ 5375.719366] [<ffffffff810d667c>] print_circular_bug+0x1ec/0x260 [ 5375.719369] [<ffffffff810d97ca>] __lock_acquire+0x17ba/0x1ae0 [ 5375.719373] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719376] [<ffffffff810da4be>] lock_acquire+0xce/0x1e0 [ 5375.719378] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719383] [<ffffffff810d3bef>] percpu_down_read+0x4f/0xa0 [ 5375.719385] [<ffffffff812214f7>] ? __sb_start_write+0xb7/0xf0 [ 5375.719387] [<ffffffff812214f7>] __sb_start_write+0xb7/0xf0 [ 5375.719389] [<ffffffff81242eb4>] mnt_want_write+0x24/0x50 [ 5375.719393] [<ffffffff8122ded2>] path_openat+0xd32/0x1360 [ 5375.719415] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719418] [<ffffffff810f606d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 5375.719420] [<ffffffff8122f86e>] do_filp_open+0x7e/0xe0 [ 5375.719423] [<ffffffff810f615d>] ? rcu_read_lock_sched_held+0x6d/0x80 [ 5375.719426] [<ffffffff81201a9b>] ? kmem_cache_alloc+0x26b/0x5d0 [ 5375.719430] [<ffffffff8122e7d4>] ? getname_kernel+0x34/0x120 [ 5375.719433] [<ffffffff8121d8a4>] file_open_name+0xe4/0x130 [ 5375.719436] [<ffffffff8121d923>] filp_open+0x33/0x60 [ 5375.719462] [<ffffffffa02776a6>] update_dev_time+0x16/0x40 [btrfs] [ 5375.719485] [<ffffffffa02825be>] btrfs_scratch_superblocks+0x4e/0x90 [btrfs] [ 5375.719506] [<ffffffffa0282665>] btrfs_destroy_dev_replace_tgtdev+0x65/0x150 [btrfs] [ 5375.719530] [<ffffffffa02c6c80>] btrfs_dev_replace_finishing+0x6b0/0x990 [btrfs] [ 5375.719554] [<ffffffffa02c6b23>] ? btrfs_dev_replace_finishing+0x553/0x990 [btrfs] [ 5375.719576] [<ffffffffa02c729e>] btrfs_dev_replace_start+0x33e/0x540 [btrfs] [ 5375.719598] [<ffffffffa02c7f58>] btrfs_auto_replace_start+0xf8/0x140 [btrfs] [ 5375.719621] [<ffffffffa02464e6>] health_kthread+0x246/0x490 [btrfs] [ 5375.719641] [<ffffffffa02463d8>] ? health_kthread+0x138/0x490 [btrfs] [ 5375.719661] [<ffffffffa02462a0>] ? btrfs_congested_fn+0x180/0x180 [btrfs] [ 5375.719663] [<ffffffff810a70df>] kthread+0xef/0x110 [ 5375.719666] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719669] [<ffffffff81637d2f>] ret_from_fork+0x3f/0x70 [ 5375.719672] [<ffffffff810a6ff0>] ? kthread_create_on_node+0x200/0x200 [ 5375.719697] ------------[ cut here ]------------ Signed-off-by: Anand Jain <anand.jain@oracle.com> Reported-by: Yauhen Kharuzhy <yauhen.kharuzhy@zavadatar.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-18 08:51:23 +00:00
btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
tgtdev->name->str);
btrfs_close_bdev(tgtdev);
synchronize_rcu();
btrfs_free_device(tgtdev);
}
/*
* Populate args from device at path.
*
* @fs_info: the filesystem
* @args: the args to populate
* @path: the path to the device
*
* This will read the super block of the device at @path and populate @args with
* the devid, fsid, and uuid. This is meant to be used for ioctls that need to
* lookup a device to operate on, but need to do it before we take any locks.
* This properly handles the special case of "missing" that a user may pass in,
* and does some basic sanity checks. The caller must make sure that @path is
* properly NUL terminated before calling in, and must call
* btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
* uuid buffers.
*
* Return: 0 for success, -errno for failure
*/
int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
struct btrfs_dev_lookup_args *args,
const char *path)
{
struct btrfs_super_block *disk_super;
struct block_device *bdev;
int ret;
if (!path || !path[0])
return -EINVAL;
if (!strcmp(path, "missing")) {
args->missing = true;
return 0;
}
args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
if (!args->uuid || !args->fsid) {
btrfs_put_dev_args_from_path(args);
return -ENOMEM;
}
ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
&bdev, &disk_super);
if (ret) {
btrfs_put_dev_args_from_path(args);
return ret;
}
args->devid = btrfs_stack_device_id(&disk_super->dev_item);
memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
if (btrfs_fs_incompat(fs_info, METADATA_UUID))
memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
else
memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
btrfs_release_disk_super(disk_super);
blkdev_put(bdev, NULL);
return 0;
}
/*
* Only use this jointly with btrfs_get_dev_args_from_path() because we will
* allocate our ->uuid and ->fsid pointers, everybody else uses local variables
* that don't need to be freed.
*/
void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
{
kfree(args->uuid);
kfree(args->fsid);
args->uuid = NULL;
args->fsid = NULL;
}
struct btrfs_device *btrfs_find_device_by_devspec(
struct btrfs_fs_info *fs_info, u64 devid,
const char *device_path)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_device *device;
int ret;
if (devid) {
args.devid = devid;
device = btrfs_find_device(fs_info->fs_devices, &args);
if (!device)
return ERR_PTR(-ENOENT);
return device;
}
ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
if (ret)
return ERR_PTR(ret);
device = btrfs_find_device(fs_info->fs_devices, &args);
btrfs_put_dev_args_from_path(&args);
if (!device)
return ERR_PTR(-ENOENT);
return device;
}
static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
struct btrfs_fs_devices *old_devices;
struct btrfs_fs_devices *seed_devices;
lockdep_assert_held(&uuid_mutex);
if (!fs_devices->seeding)
return ERR_PTR(-EINVAL);
/*
* Private copy of the seed devices, anchored at
* fs_info->fs_devices->seed_list
*/
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
seed_devices = alloc_fs_devices(NULL, NULL);
if (IS_ERR(seed_devices))
return seed_devices;
/*
* It's necessary to retain a copy of the original seed fs_devices in
* fs_uuids so that filesystems which have been seeded can successfully
* reference the seed device from open_seed_devices. This also supports
* multiple fs seed.
*/
old_devices = clone_fs_devices(fs_devices);
if (IS_ERR(old_devices)) {
kfree(seed_devices);
return old_devices;
}
list_add(&old_devices->fs_list, &fs_uuids);
memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
seed_devices->opened = 1;
INIT_LIST_HEAD(&seed_devices->devices);
INIT_LIST_HEAD(&seed_devices->alloc_list);
mutex_init(&seed_devices->device_list_mutex);
return seed_devices;
}
/*
* Splice seed devices into the sprout fs_devices.
* Generate a new fsid for the sprouted read-write filesystem.
*/
static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *seed_devices)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
struct btrfs_super_block *disk_super = fs_info->super_copy;
struct btrfs_device *device;
u64 super_flags;
/*
* We are updating the fsid, the thread leading to device_list_add()
* could race, so uuid_mutex is needed.
*/
lockdep_assert_held(&uuid_mutex);
/*
* The threads listed below may traverse dev_list but can do that without
* device_list_mutex:
* - All device ops and balance - as we are in btrfs_exclop_start.
* - Various dev_list readers - are using RCU.
* - btrfs_ioctl_fitrim() - is using RCU.
*
* For-read threads as below are using device_list_mutex:
* - Readonly scrub btrfs_scrub_dev()
* - Readonly scrub btrfs_scrub_progress()
* - btrfs_get_dev_stats()
*/
lockdep_assert_held(&fs_devices->device_list_mutex);
list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
synchronize_rcu);
list_for_each_entry(device, &seed_devices->devices, dev_list)
device->fs_devices = seed_devices;
fs_devices->seeding = false;
fs_devices->num_devices = 0;
fs_devices->open_devices = 0;
fs_devices->missing_devices = 0;
fs_devices->rotating = false;
list_add(&seed_devices->seed_list, &fs_devices->seed_list);
generate_random_uuid(fs_devices->fsid);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl The handler for the ioctl BTRFS_IOC_FS_INFO was reading the number of devices before acquiring the device list mutex. This could lead to inconsistent results because the update of the device list and the number of devices counter (amongst other counters related to the device list) are updated in volumes.c while holding the device list mutex - except for 2 places, one was volumes.c:btrfs_prepare_sprout() and the other was volumes.c:device_list_add(). For example, if we have 2 devices, with IDs 1 and 2 and then add a new device, with ID 3, and while adding the device is in progress an BTRFS_IOC_FS_INFO ioctl arrives, it could return a number of devices of 2 and a max dev id of 3. This would be incorrect. Also, this ioctl handler was reading the fsid while it can be updated concurrently. This can happen when while a new device is being added and the current filesystem is in seeding mode. Example: $ mkfs.btrfs -f /dev/sdb1 $ mkfs.btrfs -f /dev/sdb2 $ btrfstune -S 1 /dev/sdb1 $ mount /dev/sdb1 /mnt/test $ btrfs device add /dev/sdb2 /mnt/test If during the last step a BTRFS_IOC_FS_INFO ioctl was requested, it could read an fsid that was never valid (some bits part of the old fsid and others part of the new fsid). Also, it could read a number of devices that doesn't match the number of devices in the list and the max device id, as explained before. Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-12 19:56:58 +00:00
super_flags = btrfs_super_flags(disk_super) &
~BTRFS_SUPER_FLAG_SEEDING;
btrfs_set_super_flags(disk_super, super_flags);
}
/*
* Store the expected generation for seed devices in device items.
*/
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_dev_item *dev_item;
struct btrfs_device *device;
struct btrfs_key key;
u8 fs_uuid[BTRFS_FSID_SIZE];
u8 dev_uuid[BTRFS_UUID_SIZE];
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.offset = 0;
key.type = BTRFS_DEV_ITEM_KEY;
while (1) {
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_reserve_chunk_metadata(trans, false);
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_trans_release_chunk_metadata(trans);
if (ret < 0)
goto error;
leaf = path->nodes[0];
next_slot:
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret > 0)
break;
if (ret < 0)
goto error;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
btrfs_release_path(path);
continue;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
key.type != BTRFS_DEV_ITEM_KEY)
break;
dev_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_item);
args.devid = btrfs_device_id(leaf, dev_item);
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
BTRFS_FSID_SIZE);
args.uuid = dev_uuid;
args.fsid = fs_uuid;
device = btrfs_find_device(fs_info->fs_devices, &args);
BUG_ON(!device); /* Logic error */
if (device->fs_devices->seeding) {
btrfs_set_device_generation(leaf, dev_item,
device->generation);
btrfs_mark_buffer_dirty(leaf);
}
path->slots[0]++;
goto next_slot;
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
{
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_trans_handle *trans;
struct btrfs_device *device;
struct block_device *bdev;
struct super_block *sb = fs_info->sb;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
struct btrfs_fs_devices *seed_devices = NULL;
u64 orig_super_total_bytes;
u64 orig_super_num_devices;
int ret = 0;
bool seeding_dev = false;
bool locked = false;
if (sb_rdonly(sb) && !fs_devices->seeding)
return -EROFS;
bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
fs_info->bdev_holder, NULL);
if (IS_ERR(bdev))
return PTR_ERR(bdev);
if (!btrfs_check_device_zone_type(fs_info, bdev)) {
ret = -EINVAL;
goto error;
}
if (fs_devices->seeding) {
seeding_dev = true;
down_write(&sb->s_umount);
mutex_lock(&uuid_mutex);
locked = true;
}
sync_blockdev(bdev);
rcu_read_lock();
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
if (device->bdev == bdev) {
ret = -EEXIST;
rcu_read_unlock();
goto error;
}
}
rcu_read_unlock();
device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
if (IS_ERR(device)) {
/* we can safely leave the fs_devices entry around */
ret = PTR_ERR(device);
goto error;
}
device->fs_info = fs_info;
device->bdev = bdev;
ret = lookup_bdev(device_path, &device->devt);
if (ret)
goto error_free_device;
ret = btrfs_get_dev_zone_info(device, false);
if (ret)
goto error_free_device;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto error_free_zone;
}
set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
device->generation = trans->transid;
device->io_width = fs_info->sectorsize;
device->io_align = fs_info->sectorsize;
device->sector_size = fs_info->sectorsize;
device->total_bytes =
round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
device->disk_total_bytes = device->total_bytes;
device->commit_total_bytes = device->total_bytes;
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
device->holder = fs_info->bdev_holder;
device->dev_stats_valid = 1;
set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
if (seeding_dev) {
btrfs: fix race between RO remount and the cleaner task When we are remounting a filesystem in RO mode we can race with the cleaner task and result in leaking a transaction if the filesystem is unmounted shortly after, before the transaction kthread had a chance to commit that transaction. That also results in a crash during unmount, due to a use-after-free, if hardware acceleration is not available for crc32c. The following sequence of steps explains how the race happens. 1) The filesystem is mounted in RW mode and the cleaner task is running. This means that currently BTRFS_FS_CLEANER_RUNNING is set at fs_info->flags; 2) The cleaner task is currently running delayed iputs for example; 3) A filesystem RO remount operation starts; 4) The RO remount task calls btrfs_commit_super(), which commits any currently open transaction, and it finishes; 5) At this point the cleaner task is still running and it creates a new transaction by doing one of the following things: * When running the delayed iput() for an inode with a 0 link count, in which case at btrfs_evict_inode() we start a transaction through the call to evict_refill_and_join(), use it and then release its handle through btrfs_end_transaction(); * When deleting a dead root through btrfs_clean_one_deleted_snapshot(), a transaction is started at btrfs_drop_snapshot() and then its handle is released through a call to btrfs_end_transaction_throttle(); * When the remount task was still running, and before the remount task called btrfs_delete_unused_bgs(), the cleaner task also called btrfs_delete_unused_bgs() and it picked and removed one block group from the list of unused block groups. Before the cleaner task started a transaction, through btrfs_start_trans_remove_block_group() at btrfs_delete_unused_bgs(), the remount task had already called btrfs_commit_super(); 6) So at this point the filesystem is in RO mode and we have an open transaction that was started by the cleaner task; 7) Shortly after a filesystem unmount operation starts. At close_ctree() we stop the transaction kthread before it had a chance to commit the transaction, since less than 30 seconds (the default commit interval) have elapsed since the last transaction was committed; 8) We end up calling iput() against the btree inode at close_ctree() while there is an open transaction, and since that transaction was used to update btrees by the cleaner, we have dirty pages in the btree inode due to COW operations on metadata extents, and therefore writeback is triggered for the btree inode. So btree_write_cache_pages() is invoked to flush those dirty pages during the final iput() on the btree inode. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 So fix this by making the remount path to wait for the cleaner task before calling btrfs_commit_super(). The remount path now waits for the bit BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling btrfs_commit_super() and this ensures the cleaner can not start a transaction after that, because it sleeps when the filesystem is in RO mode and we have already flagged the filesystem as RO before waiting for BTRFS_FS_CLEANER_RUNNING to be cleared. This also introduces a new flag BTRFS_FS_STATE_RO to be used for fs_info->fs_state when the filesystem is in RO mode. This is because we were doing the RO check using the flags of the superblock and setting the RO mode simply by ORing into the superblock's flags - those operations are not atomic and could result in the cleaner not seeing the update from the remount task after it clears BTRFS_FS_CLEANER_RUNNING. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:47 +00:00
btrfs_clear_sb_rdonly(sb);
/* GFP_KERNEL allocation must not be under device_list_mutex */
seed_devices = btrfs_init_sprout(fs_info);
if (IS_ERR(seed_devices)) {
ret = PTR_ERR(seed_devices);
btrfs_abort_transaction(trans, ret);
goto error_trans;
}
}
mutex_lock(&fs_devices->device_list_mutex);
if (seeding_dev) {
btrfs_setup_sprout(fs_info, seed_devices);
btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
device);
}
device->fs_devices = fs_devices;
mutex_lock(&fs_info->chunk_mutex);
list_add_rcu(&device->dev_list, &fs_devices->devices);
list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
fs_devices->num_devices++;
fs_devices->open_devices++;
fs_devices->rw_devices++;
fs_devices->total_devices++;
fs_devices->total_rw_bytes += device->total_bytes;
atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
if (!bdev_nonrot(bdev))
fs_devices->rotating = true;
orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
btrfs_set_super_total_bytes(fs_info->super_copy,
round_down(orig_super_total_bytes + device->total_bytes,
fs_info->sectorsize));
orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
btrfs_set_super_num_devices(fs_info->super_copy,
orig_super_num_devices + 1);
/*
* we've got more storage, clear any full flags on the space
* infos
*/
btrfs_clear_space_info_full(fs_info);
mutex_unlock(&fs_info->chunk_mutex);
btrfs: sysfs: init devices outside of the chunk_mutex While running btrfs/061, btrfs/073, btrfs/078, or btrfs/178 we hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ #4 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff96ecc22ef4a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_link+0x63/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x81/0x130 btrfs_init_new_device+0x67f/0x1250 btrfs_ioctl+0x1ef/0x2e20 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_insert_delayed_items+0x90/0x4f0 btrfs_commit_inode_delayed_items+0x93/0x140 btrfs_log_inode+0x5de/0x2020 btrfs_log_inode_parent+0x429/0xc90 btrfs_log_new_name+0x95/0x9b btrfs_rename2+0xbb9/0x1800 vfs_rename+0x64f/0x9f0 do_renameat2+0x320/0x4e0 __x64_sys_rename+0x1f/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff8dd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff96ed2ade30e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 0 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ #4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because we are holding the chunk_mutex at the time of adding in a new device. However we only need to hold the device_list_mutex, as we're going to iterate over the fs_devices devices. Move the sysfs init stuff outside of the chunk_mutex to get rid of this lockdep splat. CC: stable@vger.kernel.org # 4.4.x: f3cd2c58110dad14e: btrfs: sysfs, rename device_link add/remove functions CC: stable@vger.kernel.org # 4.4.x Reported-by: David Sterba <dsterba@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-09-01 12:09:01 +00:00
/* Add sysfs device entry */
btrfs_sysfs_add_device(device);
btrfs: sysfs: init devices outside of the chunk_mutex While running btrfs/061, btrfs/073, btrfs/078, or btrfs/178 we hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ #4 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff96ecc22ef4a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_link+0x63/0xa0 sysfs_do_create_link_sd+0x5e/0xd0 btrfs_sysfs_add_devices_dir+0x81/0x130 btrfs_init_new_device+0x67f/0x1250 btrfs_ioctl+0x1ef/0x2e20 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_insert_delayed_items+0x90/0x4f0 btrfs_commit_inode_delayed_items+0x93/0x140 btrfs_log_inode+0x5de/0x2020 btrfs_log_inode_parent+0x429/0xc90 btrfs_log_new_name+0x95/0x9b btrfs_rename2+0xbb9/0x1800 vfs_rename+0x64f/0x9f0 do_renameat2+0x320/0x4e0 __x64_sys_rename+0x1f/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff8dd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff8dd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff96ed2ade30e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 0 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ #4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because we are holding the chunk_mutex at the time of adding in a new device. However we only need to hold the device_list_mutex, as we're going to iterate over the fs_devices devices. Move the sysfs init stuff outside of the chunk_mutex to get rid of this lockdep splat. CC: stable@vger.kernel.org # 4.4.x: f3cd2c58110dad14e: btrfs: sysfs, rename device_link add/remove functions CC: stable@vger.kernel.org # 4.4.x Reported-by: David Sterba <dsterba@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-09-01 12:09:01 +00:00
mutex_unlock(&fs_devices->device_list_mutex);
if (seeding_dev) {
mutex_lock(&fs_info->chunk_mutex);
ret = init_first_rw_device(trans);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto error_sysfs;
}
}
ret = btrfs_add_dev_item(trans, device);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto error_sysfs;
}
if (seeding_dev) {
ret = btrfs_finish_sprout(trans);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto error_sysfs;
}
/*
* fs_devices now represents the newly sprouted filesystem and
* its fsid has been changed by btrfs_sprout_splice().
*/
btrfs_sysfs_update_sprout_fsid(fs_devices);
}
ret = btrfs_commit_transaction(trans);
if (seeding_dev) {
mutex_unlock(&uuid_mutex);
up_write(&sb->s_umount);
locked = false;
if (ret) /* transaction commit */
return ret;
ret = btrfs_relocate_sys_chunks(fs_info);
if (ret < 0)
btrfs_handle_fs_error(fs_info, ret,
"Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) == -ENOENT)
return 0;
ret = PTR_ERR(trans);
trans = NULL;
goto error_sysfs;
}
ret = btrfs_commit_transaction(trans);
}
/*
* Now that we have written a new super block to this device, check all
* other fs_devices list if device_path alienates any other scanned
* device.
* We can ignore the return value as it typically returns -EINVAL and
* only succeeds if the device was an alien.
*/
btrfs_forget_devices(device->devt);
/* Update ctime/mtime for blkid or udev */
update_dev_time(device_path);
return ret;
error_sysfs:
btrfs_sysfs_remove_device(device);
mutex_lock(&fs_info->fs_devices->device_list_mutex);
mutex_lock(&fs_info->chunk_mutex);
list_del_rcu(&device->dev_list);
list_del(&device->dev_alloc_list);
fs_info->fs_devices->num_devices--;
fs_info->fs_devices->open_devices--;
fs_info->fs_devices->rw_devices--;
fs_info->fs_devices->total_devices--;
fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
btrfs_set_super_total_bytes(fs_info->super_copy,
orig_super_total_bytes);
btrfs_set_super_num_devices(fs_info->super_copy,
orig_super_num_devices);
mutex_unlock(&fs_info->chunk_mutex);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
error_trans:
if (seeding_dev)
btrfs: fix race between RO remount and the cleaner task When we are remounting a filesystem in RO mode we can race with the cleaner task and result in leaking a transaction if the filesystem is unmounted shortly after, before the transaction kthread had a chance to commit that transaction. That also results in a crash during unmount, due to a use-after-free, if hardware acceleration is not available for crc32c. The following sequence of steps explains how the race happens. 1) The filesystem is mounted in RW mode and the cleaner task is running. This means that currently BTRFS_FS_CLEANER_RUNNING is set at fs_info->flags; 2) The cleaner task is currently running delayed iputs for example; 3) A filesystem RO remount operation starts; 4) The RO remount task calls btrfs_commit_super(), which commits any currently open transaction, and it finishes; 5) At this point the cleaner task is still running and it creates a new transaction by doing one of the following things: * When running the delayed iput() for an inode with a 0 link count, in which case at btrfs_evict_inode() we start a transaction through the call to evict_refill_and_join(), use it and then release its handle through btrfs_end_transaction(); * When deleting a dead root through btrfs_clean_one_deleted_snapshot(), a transaction is started at btrfs_drop_snapshot() and then its handle is released through a call to btrfs_end_transaction_throttle(); * When the remount task was still running, and before the remount task called btrfs_delete_unused_bgs(), the cleaner task also called btrfs_delete_unused_bgs() and it picked and removed one block group from the list of unused block groups. Before the cleaner task started a transaction, through btrfs_start_trans_remove_block_group() at btrfs_delete_unused_bgs(), the remount task had already called btrfs_commit_super(); 6) So at this point the filesystem is in RO mode and we have an open transaction that was started by the cleaner task; 7) Shortly after a filesystem unmount operation starts. At close_ctree() we stop the transaction kthread before it had a chance to commit the transaction, since less than 30 seconds (the default commit interval) have elapsed since the last transaction was committed; 8) We end up calling iput() against the btree inode at close_ctree() while there is an open transaction, and since that transaction was used to update btrees by the cleaner, we have dirty pages in the btree inode due to COW operations on metadata extents, and therefore writeback is triggered for the btree inode. So btree_write_cache_pages() is invoked to flush those dirty pages during the final iput() on the btree inode. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 So fix this by making the remount path to wait for the cleaner task before calling btrfs_commit_super(). The remount path now waits for the bit BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling btrfs_commit_super() and this ensures the cleaner can not start a transaction after that, because it sleeps when the filesystem is in RO mode and we have already flagged the filesystem as RO before waiting for BTRFS_FS_CLEANER_RUNNING to be cleared. This also introduces a new flag BTRFS_FS_STATE_RO to be used for fs_info->fs_state when the filesystem is in RO mode. This is because we were doing the RO check using the flags of the superblock and setting the RO mode simply by ORing into the superblock's flags - those operations are not atomic and could result in the cleaner not seeing the update from the remount task after it clears BTRFS_FS_CLEANER_RUNNING. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:47 +00:00
btrfs_set_sb_rdonly(sb);
if (trans)
btrfs_end_transaction(trans);
error_free_zone:
btrfs_destroy_dev_zone_info(device);
error_free_device:
btrfs_free_device(device);
error:
blkdev_put(bdev, fs_info->bdev_holder);
if (locked) {
mutex_unlock(&uuid_mutex);
up_write(&sb->s_umount);
}
return ret;
}
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root = device->fs_info->chunk_root;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item,
btrfs_device_get_disk_total_bytes(device));
btrfs_set_device_bytes_used(leaf, dev_item,
btrfs_device_get_bytes_used(device));
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_grow_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device, u64 new_size)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_super_block *super_copy = fs_info->super_copy;
u64 old_total;
u64 diff;
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
int ret;
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
return -EACCES;
new_size = round_down(new_size, fs_info->sectorsize);
mutex_lock(&fs_info->chunk_mutex);
old_total = btrfs_super_total_bytes(super_copy);
diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
if (new_size <= device->total_bytes ||
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
mutex_unlock(&fs_info->chunk_mutex);
return -EINVAL;
}
btrfs_set_super_total_bytes(super_copy,
round_down(old_total + diff, fs_info->sectorsize));
device->fs_devices->total_rw_bytes += diff;
btrfs_device_set_total_bytes(device, new_size);
btrfs_device_set_disk_total_bytes(device, new_size);
btrfs_clear_space_info_full(device->fs_info);
if (list_empty(&device->post_commit_list))
list_add_tail(&device->post_commit_list,
&trans->transaction->dev_update_list);
mutex_unlock(&fs_info->chunk_mutex);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_reserve_chunk_metadata(trans, false);
ret = btrfs_update_device(trans, device);
btrfs_trans_release_chunk_metadata(trans);
return ret;
}
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->chunk_root;
int ret;
struct btrfs_path *path;
struct btrfs_key key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.offset = chunk_offset;
key.type = BTRFS_CHUNK_ITEM_KEY;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
else if (ret > 0) { /* Logic error or corruption */
btrfs_handle_fs_error(fs_info, -ENOENT,
"Failed lookup while freeing chunk.");
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, root, path);
if (ret < 0)
btrfs_handle_fs_error(fs_info, ret,
"Failed to delete chunk item.");
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
{
struct btrfs_super_block *super_copy = fs_info->super_copy;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *ptr;
int ret = 0;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur;
struct btrfs_key key;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
lockdep_assert_held(&fs_info->chunk_mutex);
array_size = btrfs_super_sys_array_size(super_copy);
ptr = super_copy->sys_chunk_array;
cur = 0;
while (cur < array_size) {
disk_key = (struct btrfs_disk_key *)ptr;
btrfs_disk_key_to_cpu(&key, disk_key);
len = sizeof(*disk_key);
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)(ptr + len);
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
len += btrfs_chunk_item_size(num_stripes);
} else {
ret = -EIO;
break;
}
if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
key.offset == chunk_offset) {
memmove(ptr, ptr + len, array_size - (cur + len));
array_size -= len;
btrfs_set_super_sys_array_size(super_copy, array_size);
} else {
ptr += len;
cur += len;
}
}
return ret;
}
/*
* btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
* @logical: Logical block offset in bytes.
* @length: Length of extent in bytes.
*
* Return: Chunk mapping or ERR_PTR.
*/
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
u64 logical, u64 length)
{
struct extent_map_tree *em_tree;
struct extent_map *em;
em_tree = &fs_info->mapping_tree;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, logical, length);
read_unlock(&em_tree->lock);
if (!em) {
btrfs_crit(fs_info, "unable to find logical %llu length %llu",
logical, length);
return ERR_PTR(-EINVAL);
}
if (em->start > logical || em->start + em->len < logical) {
btrfs_crit(fs_info,
"found a bad mapping, wanted %llu-%llu, found %llu-%llu",
logical, length, em->start, em->start + em->len);
free_extent_map(em);
return ERR_PTR(-EINVAL);
}
/* callers are responsible for dropping em's ref. */
return em;
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
static int remove_chunk_item(struct btrfs_trans_handle *trans,
struct map_lookup *map, u64 chunk_offset)
{
int i;
/*
* Removing chunk items and updating the device items in the chunks btree
* requires holding the chunk_mutex.
* See the comment at btrfs_chunk_alloc() for the details.
*/
lockdep_assert_held(&trans->fs_info->chunk_mutex);
for (i = 0; i < map->num_stripes; i++) {
int ret;
ret = btrfs_update_device(trans, map->stripes[i].dev);
if (ret)
return ret;
}
return btrfs_free_chunk(trans, chunk_offset);
}
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct extent_map *em;
struct map_lookup *map;
u64 dev_extent_len = 0;
int i, ret = 0;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
if (IS_ERR(em)) {
/*
* This is a logic error, but we don't want to just rely on the
* user having built with ASSERT enabled, so if ASSERT doesn't
* do anything we still error out.
*/
ASSERT(0);
return PTR_ERR(em);
}
map = em->map_lookup;
Btrfs: fix race between device replace and block group removal When it's finishing, the device replace code iterates all extent maps representing block group and for each one that has a stripe that refers to the source device, it replaces its device with the target device. However when it replaces the source device with the target device it, the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID), only after its ID is changed to match the one from the source device. This leads to races with the chunk removal code that can temporarly see a device with an ID of 0ULL and then attempt to use that ID to remove items from the device tree and fail, causing a transaction abort: [ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished [ 9238.594377] ------------[ cut here ]------------ [ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594403] BTRFS: Transaction aborted (error 1) [ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl oppy [last unloaded: btrfs] [ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1 [ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0 [ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18 [ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0 [ 9238.594424] Call Trace: [ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90 [ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd [ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53 [ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188 [ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc [ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs] [ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs] [ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs] [ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc [ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40 [ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286 [ 9238.594496] ---[ end trace 183efbe50275f059 ]--- The sequence of steps leading to this is like the following: CPU 1 CPU 2 btrfs_dev_replace_finishing() at this point dev_replace->tgtdev->devid == BTRFS_DEV_REPLACE_DEVID (0ULL) ... btrfs_start_transaction() btrfs_commit_transaction() btrfs_delete_unused_bgs() btrfs_remove_chunk() looks up for the extent map corresponding to the chunk lock_chunks() (chunk_mutex) check_system_chunk() unlock_chunks() (chunk_mutex) locks fs_info->chunk_mutex btrfs_dev_replace_update_device_in_mapping_tree() --> iterates fs_info->mapping_tree and replaces the device in every extent map's map->stripes[] with dev_replace->tgtdev, which still has an id of 0ULL (BTRFS_DEV_REPLACE_DEVID) iterates over all stripes from the extent map --> calls btrfs_free_dev_extent() passing it the target device that still has an ID of 0ULL --> btrfs_free_dev_extent() fails --> aborts current transaction finishes setting up the target device, namely it sets tgtdev->devid to the value of srcdev->devid (which is necessarily > 0) frees the srcdev unlocks fs_info->chunk_mutex So fix this by taking the device list mutex while processing the stripes for the chunk's extent map. This is similar to the race between device replace and block group creation that was fixed by commit 50460e37186a ("Btrfs: fix race when finishing dev replace leading to transaction abort"). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-20 03:34:23 +00:00
/*
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
* First delete the device extent items from the devices btree.
* We take the device_list_mutex to avoid racing with the finishing phase
* of a device replace operation. See the comment below before acquiring
* fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
* because that can result in a deadlock when deleting the device extent
* items from the devices btree - COWing an extent buffer from the btree
* may result in allocating a new metadata chunk, which would attempt to
* lock again fs_info->chunk_mutex.
Btrfs: fix race between device replace and block group removal When it's finishing, the device replace code iterates all extent maps representing block group and for each one that has a stripe that refers to the source device, it replaces its device with the target device. However when it replaces the source device with the target device it, the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID), only after its ID is changed to match the one from the source device. This leads to races with the chunk removal code that can temporarly see a device with an ID of 0ULL and then attempt to use that ID to remove items from the device tree and fail, causing a transaction abort: [ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished [ 9238.594377] ------------[ cut here ]------------ [ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594403] BTRFS: Transaction aborted (error 1) [ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl oppy [last unloaded: btrfs] [ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1 [ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0 [ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18 [ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0 [ 9238.594424] Call Trace: [ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90 [ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd [ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53 [ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188 [ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc [ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs] [ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs] [ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs] [ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc [ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40 [ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286 [ 9238.594496] ---[ end trace 183efbe50275f059 ]--- The sequence of steps leading to this is like the following: CPU 1 CPU 2 btrfs_dev_replace_finishing() at this point dev_replace->tgtdev->devid == BTRFS_DEV_REPLACE_DEVID (0ULL) ... btrfs_start_transaction() btrfs_commit_transaction() btrfs_delete_unused_bgs() btrfs_remove_chunk() looks up for the extent map corresponding to the chunk lock_chunks() (chunk_mutex) check_system_chunk() unlock_chunks() (chunk_mutex) locks fs_info->chunk_mutex btrfs_dev_replace_update_device_in_mapping_tree() --> iterates fs_info->mapping_tree and replaces the device in every extent map's map->stripes[] with dev_replace->tgtdev, which still has an id of 0ULL (BTRFS_DEV_REPLACE_DEVID) iterates over all stripes from the extent map --> calls btrfs_free_dev_extent() passing it the target device that still has an ID of 0ULL --> btrfs_free_dev_extent() fails --> aborts current transaction finishes setting up the target device, namely it sets tgtdev->devid to the value of srcdev->devid (which is necessarily > 0) frees the srcdev unlocks fs_info->chunk_mutex So fix this by taking the device list mutex while processing the stripes for the chunk's extent map. This is similar to the race between device replace and block group creation that was fixed by commit 50460e37186a ("Btrfs: fix race when finishing dev replace leading to transaction abort"). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-20 03:34:23 +00:00
*/
mutex_lock(&fs_devices->device_list_mutex);
for (i = 0; i < map->num_stripes; i++) {
struct btrfs_device *device = map->stripes[i].dev;
ret = btrfs_free_dev_extent(trans, device,
map->stripes[i].physical,
&dev_extent_len);
if (ret) {
Btrfs: fix race between device replace and block group removal When it's finishing, the device replace code iterates all extent maps representing block group and for each one that has a stripe that refers to the source device, it replaces its device with the target device. However when it replaces the source device with the target device it, the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID), only after its ID is changed to match the one from the source device. This leads to races with the chunk removal code that can temporarly see a device with an ID of 0ULL and then attempt to use that ID to remove items from the device tree and fail, causing a transaction abort: [ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished [ 9238.594377] ------------[ cut here ]------------ [ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594403] BTRFS: Transaction aborted (error 1) [ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl oppy [last unloaded: btrfs] [ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1 [ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0 [ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18 [ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0 [ 9238.594424] Call Trace: [ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90 [ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd [ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53 [ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188 [ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc [ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs] [ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs] [ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs] [ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc [ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40 [ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286 [ 9238.594496] ---[ end trace 183efbe50275f059 ]--- The sequence of steps leading to this is like the following: CPU 1 CPU 2 btrfs_dev_replace_finishing() at this point dev_replace->tgtdev->devid == BTRFS_DEV_REPLACE_DEVID (0ULL) ... btrfs_start_transaction() btrfs_commit_transaction() btrfs_delete_unused_bgs() btrfs_remove_chunk() looks up for the extent map corresponding to the chunk lock_chunks() (chunk_mutex) check_system_chunk() unlock_chunks() (chunk_mutex) locks fs_info->chunk_mutex btrfs_dev_replace_update_device_in_mapping_tree() --> iterates fs_info->mapping_tree and replaces the device in every extent map's map->stripes[] with dev_replace->tgtdev, which still has an id of 0ULL (BTRFS_DEV_REPLACE_DEVID) iterates over all stripes from the extent map --> calls btrfs_free_dev_extent() passing it the target device that still has an ID of 0ULL --> btrfs_free_dev_extent() fails --> aborts current transaction finishes setting up the target device, namely it sets tgtdev->devid to the value of srcdev->devid (which is necessarily > 0) frees the srcdev unlocks fs_info->chunk_mutex So fix this by taking the device list mutex while processing the stripes for the chunk's extent map. This is similar to the race between device replace and block group creation that was fixed by commit 50460e37186a ("Btrfs: fix race when finishing dev replace leading to transaction abort"). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-20 03:34:23 +00:00
mutex_unlock(&fs_devices->device_list_mutex);
btrfs_abort_transaction(trans, ret);
goto out;
}
if (device->bytes_used > 0) {
mutex_lock(&fs_info->chunk_mutex);
btrfs_device_set_bytes_used(device,
device->bytes_used - dev_extent_len);
atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
btrfs_clear_space_info_full(fs_info);
mutex_unlock(&fs_info->chunk_mutex);
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
}
mutex_unlock(&fs_devices->device_list_mutex);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
/*
* We acquire fs_info->chunk_mutex for 2 reasons:
*
* 1) Just like with the first phase of the chunk allocation, we must
* reserve system space, do all chunk btree updates and deletions, and
* update the system chunk array in the superblock while holding this
* mutex. This is for similar reasons as explained on the comment at
* the top of btrfs_chunk_alloc();
*
* 2) Prevent races with the final phase of a device replace operation
* that replaces the device object associated with the map's stripes,
* because the device object's id can change at any time during that
* final phase of the device replace operation
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
* replaced device and then see it with an ID of
* BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
* the device item, which does not exists on the chunk btree.
* The finishing phase of device replace acquires both the
* device_list_mutex and the chunk_mutex, in that order, so we are
* safe by just acquiring the chunk_mutex.
*/
trans->removing_chunk = true;
mutex_lock(&fs_info->chunk_mutex);
check_system_chunk(trans, map->type);
ret = remove_chunk_item(trans, map, chunk_offset);
/*
* Normally we should not get -ENOSPC since we reserved space before
* through the call to check_system_chunk().
*
* Despite our system space_info having enough free space, we may not
* be able to allocate extents from its block groups, because all have
* an incompatible profile, which will force us to allocate a new system
* block group with the right profile, or right after we called
* check_system_space() above, a scrub turned the only system block group
* with enough free space into RO mode.
* This is explained with more detail at do_chunk_alloc().
*
* So if we get -ENOSPC, allocate a new system chunk and retry once.
*/
if (ret == -ENOSPC) {
const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
struct btrfs_block_group *sys_bg;
sys_bg = btrfs_create_chunk(trans, sys_flags);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (IS_ERR(sys_bg)) {
ret = PTR_ERR(sys_bg);
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
Btrfs: fix race between device replace and block group removal When it's finishing, the device replace code iterates all extent maps representing block group and for each one that has a stripe that refers to the source device, it replaces its device with the target device. However when it replaces the source device with the target device it, the target device still has an ID of 0ULL (BTRFS_DEV_REPLACE_DEVID), only after its ID is changed to match the one from the source device. This leads to races with the chunk removal code that can temporarly see a device with an ID of 0ULL and then attempt to use that ID to remove items from the device tree and fail, causing a transaction abort: [ 9238.594364] BTRFS info (device sdf): dev_replace from /dev/sdf (devid 3) to /dev/sde finished [ 9238.594377] ------------[ cut here ]------------ [ 9238.594402] WARNING: CPU: 14 PID: 21566 at fs/btrfs/volumes.c:2771 btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594403] BTRFS: Transaction aborted (error 1) [ 9238.594416] Modules linked in: btrfs crc32c_generic acpi_cpufreq xor tpm_tis tpm raid6_pq ppdev parport_pc processor psmouse parport i2c_piix4 evdev sg i2c_core se rio_raw pcspkr button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod fl oppy [last unloaded: btrfs] [ 9238.594418] CPU: 14 PID: 21566 Comm: btrfs-cleaner Not tainted 4.6.0-rc7-btrfs-next-29+ #1 [ 9238.594419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 9238.594421] 0000000000000000 ffff88017f1dbc60 ffffffff8126b42c ffff88017f1dbcb0 [ 9238.594422] 0000000000000000 ffff88017f1dbca0 ffffffff81052b14 00000ad37f1dbd18 [ 9238.594423] 0000000000000001 ffff88018068a558 ffff88005c4b9c00 ffff880233f60db0 [ 9238.594424] Call Trace: [ 9238.594428] [<ffffffff8126b42c>] dump_stack+0x67/0x90 [ 9238.594430] [<ffffffff81052b14>] __warn+0xc2/0xdd [ 9238.594432] [<ffffffff81052b7a>] warn_slowpath_fmt+0x4b/0x53 [ 9238.594434] [<ffffffff8116c311>] ? kmem_cache_free+0x128/0x188 [ 9238.594450] [<ffffffffa04d43f5>] btrfs_remove_chunk+0x2e5/0x793 [btrfs] [ 9238.594452] [<ffffffff8108e456>] ? arch_local_irq_save+0x9/0xc [ 9238.594464] [<ffffffffa04a26fa>] btrfs_delete_unused_bgs+0x317/0x382 [btrfs] [ 9238.594476] [<ffffffffa04a961d>] cleaner_kthread+0x1ad/0x1c7 [btrfs] [ 9238.594489] [<ffffffffa04a9470>] ? btree_invalidatepage+0x8e/0x8e [btrfs] [ 9238.594490] [<ffffffff8106f403>] kthread+0xd4/0xdc [ 9238.594494] [<ffffffff8149e242>] ret_from_fork+0x22/0x40 [ 9238.594495] [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286 [ 9238.594496] ---[ end trace 183efbe50275f059 ]--- The sequence of steps leading to this is like the following: CPU 1 CPU 2 btrfs_dev_replace_finishing() at this point dev_replace->tgtdev->devid == BTRFS_DEV_REPLACE_DEVID (0ULL) ... btrfs_start_transaction() btrfs_commit_transaction() btrfs_delete_unused_bgs() btrfs_remove_chunk() looks up for the extent map corresponding to the chunk lock_chunks() (chunk_mutex) check_system_chunk() unlock_chunks() (chunk_mutex) locks fs_info->chunk_mutex btrfs_dev_replace_update_device_in_mapping_tree() --> iterates fs_info->mapping_tree and replaces the device in every extent map's map->stripes[] with dev_replace->tgtdev, which still has an id of 0ULL (BTRFS_DEV_REPLACE_DEVID) iterates over all stripes from the extent map --> calls btrfs_free_dev_extent() passing it the target device that still has an ID of 0ULL --> btrfs_free_dev_extent() fails --> aborts current transaction finishes setting up the target device, namely it sets tgtdev->devid to the value of srcdev->devid (which is necessarily > 0) frees the srcdev unlocks fs_info->chunk_mutex So fix this by taking the device list mutex while processing the stripes for the chunk's extent map. This is similar to the race between device replace and block group creation that was fixed by commit 50460e37186a ("Btrfs: fix race when finishing dev replace leading to transaction abort"). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-20 03:34:23 +00:00
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
ret = remove_chunk_item(trans, map, chunk_offset);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
} else if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
Btrfs: add initial tracepoint support for btrfs Tracepoints can provide insight into why btrfs hits bugs and be greatly helpful for debugging, e.g dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0 dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0 btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0) btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0) btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8 flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0) flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0) flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0) Here is what I have added: 1) ordere_extent: btrfs_ordered_extent_add btrfs_ordered_extent_remove btrfs_ordered_extent_start btrfs_ordered_extent_put These provide critical information to understand how ordered_extents are updated. 2) extent_map: btrfs_get_extent extent_map is used in both read and write cases, and it is useful for tracking how btrfs specific IO is running. 3) writepage: __extent_writepage btrfs_writepage_end_io_hook Pages are cirtical resourses and produce a lot of corner cases during writeback, so it is valuable to know how page is written to disk. 4) inode: btrfs_inode_new btrfs_inode_request btrfs_inode_evict These can show where and when a inode is created, when a inode is evicted. 5) sync: btrfs_sync_file btrfs_sync_fs These show sync arguments. 6) transaction: btrfs_transaction_commit In transaction based filesystem, it will be useful to know the generation and who does commit. 7) back reference and cow: btrfs_delayed_tree_ref btrfs_delayed_data_ref btrfs_delayed_ref_head btrfs_cow_block Btrfs natively supports back references, these tracepoints are helpful on understanding btrfs's COW mechanism. 8) chunk: btrfs_chunk_alloc btrfs_chunk_free Chunk is a link between physical offset and logical offset, and stands for space infomation in btrfs, and these are helpful on tracing space things. 9) reserved_extent: btrfs_reserved_extent_alloc btrfs_reserved_extent_free These can show how btrfs uses its space. Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-24 11:18:59 +00:00
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
mutex_unlock(&fs_info->chunk_mutex);
trans->removing_chunk = false;
/*
* We are done with chunk btree updates and deletions, so release the
* system space we previously reserved (with check_system_chunk()).
*/
btrfs_trans_release_chunk_metadata(trans);
ret = btrfs_remove_block_group(trans, chunk_offset, em);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto out;
}
out:
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (trans->removing_chunk) {
mutex_unlock(&fs_info->chunk_mutex);
trans->removing_chunk = false;
}
/* once for us */
free_extent_map(em);
return ret;
}
int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
{
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_trans_handle *trans;
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
struct btrfs_block_group *block_group;
u64 length;
int ret;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
btrfs_err(fs_info,
"relocate: not supported on extent tree v2 yet");
return -EINVAL;
}
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
/*
* Prevent races with automatic removal of unused block groups.
* After we relocate and before we remove the chunk with offset
* chunk_offset, automatic removal of the block group can kick in,
* resulting in a failure when calling btrfs_remove_chunk() below.
*
* Make sure to acquire this mutex before doing a tree search (dev
* or chunk trees) to find chunks. Otherwise the cleaner kthread might
* call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
* we release the path used to search the chunk/dev tree and before
* the current task acquires this mutex and calls us.
*/
lockdep_assert_held(&fs_info->reclaim_bgs_lock);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
/* step one, relocate all the extents inside this chunk */
btrfs_scrub_pause(fs_info);
ret = btrfs_relocate_block_group(fs_info, chunk_offset);
btrfs_scrub_continue(fs_info);
btrfs: fix deadlock when aborting transaction during relocation with scrub Before relocating a block group we pause scrub, then do the relocation and then unpause scrub. The relocation process requires starting and committing a transaction, and if we have a failure in the critical section of the transaction commit path (transaction state >= TRANS_STATE_COMMIT_START), we will deadlock if there is a paused scrub. That results in stack traces like the following: [42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6 [42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction. [42.936] ------------[ cut here ]------------ [42.936] BTRFS: Transaction aborted (error -28) [42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...) [42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Code: ff ff 45 8b (...) [42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282 [42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000 [42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff [42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8 [42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00 [42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0 [42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000 [42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0 [42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [42.936] Call Trace: [42.936] <TASK> [42.936] ? start_transaction+0xcb/0x610 [btrfs] [42.936] prepare_to_relocate+0x111/0x1a0 [btrfs] [42.936] relocate_block_group+0x57/0x5d0 [btrfs] [42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [42.936] ? __pfx_autoremove_wake_function+0x10/0x10 [42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [42.936] btrfs_balance+0x8ff/0x11d0 [btrfs] [42.936] ? __kmem_cache_alloc_node+0x14a/0x410 [42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs] [42.937] ? mod_objcg_state+0xd2/0x360 [42.937] ? refill_obj_stock+0xb0/0x160 [42.937] ? seq_release+0x25/0x30 [42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [42.937] ? percpu_counter_add_batch+0x2e/0xa0 [42.937] ? __x64_sys_ioctl+0x88/0xc0 [42.937] __x64_sys_ioctl+0x88/0xc0 [42.937] do_syscall_64+0x38/0x90 [42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc [42.937] RIP: 0033:0x7f381a6ffe9b [42.937] Code: 00 48 89 44 24 (...) [42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [42.937] </TASK> [42.937] ---[ end trace 0000000000000000 ]--- [42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left [59.196] INFO: task btrfs:346772 blocked for more than 120 seconds. [59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.196] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.196] task:btrfs state:D stack:0 pid:346772 ppid:1 flags:0x00004002 [59.196] Call Trace: [59.196] <TASK> [59.196] __schedule+0x392/0xa70 [59.196] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.196] schedule+0x5d/0xd0 [59.196] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.197] ? __pfx_autoremove_wake_function+0x10/0x10 [59.197] scrub_pause_off+0x21/0x50 [btrfs] [59.197] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.197] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.198] ? __pfx_autoremove_wake_function+0x10/0x10 [59.198] scrub_stripe+0x20d/0x740 [btrfs] [59.198] scrub_chunk+0xc4/0x130 [btrfs] [59.198] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.198] ? __pfx_autoremove_wake_function+0x10/0x10 [59.198] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.199] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.199] ? _copy_from_user+0x7b/0x80 [59.199] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.199] ? refill_stock+0x33/0x50 [59.199] ? should_failslab+0xa/0x20 [59.199] ? kmem_cache_alloc_node+0x151/0x460 [59.199] ? alloc_io_context+0x1b/0x80 [59.199] ? preempt_count_add+0x70/0xa0 [59.199] ? __x64_sys_ioctl+0x88/0xc0 [59.199] __x64_sys_ioctl+0x88/0xc0 [59.199] do_syscall_64+0x38/0x90 [59.199] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.199] RIP: 0033:0x7f82ffaffe9b [59.199] RSP: 002b:00007f82ff9fcc50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.199] RAX: ffffffffffffffda RBX: 000055b191e36310 RCX: 00007f82ffaffe9b [59.199] RDX: 000055b191e36310 RSI: 00000000c400941b RDI: 0000000000000003 [59.199] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.199] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82ff9fd640 [59.199] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.199] </TASK> [59.199] INFO: task btrfs:346773 blocked for more than 120 seconds. [59.200] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.200] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.201] task:btrfs state:D stack:0 pid:346773 ppid:1 flags:0x00004002 [59.201] Call Trace: [59.201] <TASK> [59.201] __schedule+0x392/0xa70 [59.201] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.201] schedule+0x5d/0xd0 [59.201] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.201] ? __pfx_autoremove_wake_function+0x10/0x10 [59.201] scrub_pause_off+0x21/0x50 [btrfs] [59.202] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.202] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.202] ? __pfx_autoremove_wake_function+0x10/0x10 [59.202] scrub_stripe+0x20d/0x740 [btrfs] [59.202] scrub_chunk+0xc4/0x130 [btrfs] [59.203] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.203] ? __pfx_autoremove_wake_function+0x10/0x10 [59.203] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.203] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.203] ? _copy_from_user+0x7b/0x80 [59.203] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.204] ? should_failslab+0xa/0x20 [59.204] ? kmem_cache_alloc_node+0x151/0x460 [59.204] ? alloc_io_context+0x1b/0x80 [59.204] ? preempt_count_add+0x70/0xa0 [59.204] ? __x64_sys_ioctl+0x88/0xc0 [59.204] __x64_sys_ioctl+0x88/0xc0 [59.204] do_syscall_64+0x38/0x90 [59.204] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.204] RIP: 0033:0x7f82ffaffe9b [59.204] RSP: 002b:00007f82ff1fbc50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.204] RAX: ffffffffffffffda RBX: 000055b191e36790 RCX: 00007f82ffaffe9b [59.204] RDX: 000055b191e36790 RSI: 00000000c400941b RDI: 0000000000000003 [59.204] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.204] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82ff1fc640 [59.204] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.204] </TASK> [59.204] INFO: task btrfs:346774 blocked for more than 120 seconds. [59.205] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.205] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.206] task:btrfs state:D stack:0 pid:346774 ppid:1 flags:0x00004002 [59.206] Call Trace: [59.206] <TASK> [59.206] __schedule+0x392/0xa70 [59.206] schedule+0x5d/0xd0 [59.206] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.206] ? __pfx_autoremove_wake_function+0x10/0x10 [59.206] scrub_pause_off+0x21/0x50 [btrfs] [59.207] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.207] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.207] ? __pfx_autoremove_wake_function+0x10/0x10 [59.207] scrub_stripe+0x20d/0x740 [btrfs] [59.208] scrub_chunk+0xc4/0x130 [btrfs] [59.208] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.208] ? __mutex_unlock_slowpath.isra.0+0x9a/0x120 [59.208] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.208] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.209] ? _copy_from_user+0x7b/0x80 [59.209] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.209] ? should_failslab+0xa/0x20 [59.209] ? kmem_cache_alloc_node+0x151/0x460 [59.209] ? alloc_io_context+0x1b/0x80 [59.209] ? preempt_count_add+0x70/0xa0 [59.209] ? __x64_sys_ioctl+0x88/0xc0 [59.209] __x64_sys_ioctl+0x88/0xc0 [59.209] do_syscall_64+0x38/0x90 [59.209] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.209] RIP: 0033:0x7f82ffaffe9b [59.209] RSP: 002b:00007f82fe9fac50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.209] RAX: ffffffffffffffda RBX: 000055b191e36c10 RCX: 00007f82ffaffe9b [59.209] RDX: 000055b191e36c10 RSI: 00000000c400941b RDI: 0000000000000003 [59.209] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.209] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fe9fb640 [59.209] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.209] </TASK> [59.209] INFO: task btrfs:346775 blocked for more than 120 seconds. [59.210] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.210] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.211] task:btrfs state:D stack:0 pid:346775 ppid:1 flags:0x00004002 [59.211] Call Trace: [59.211] <TASK> [59.211] __schedule+0x392/0xa70 [59.211] schedule+0x5d/0xd0 [59.211] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.211] ? __pfx_autoremove_wake_function+0x10/0x10 [59.211] scrub_pause_off+0x21/0x50 [btrfs] [59.212] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.212] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.212] ? __pfx_autoremove_wake_function+0x10/0x10 [59.212] scrub_stripe+0x20d/0x740 [btrfs] [59.213] scrub_chunk+0xc4/0x130 [btrfs] [59.213] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.213] ? __mutex_unlock_slowpath.isra.0+0x9a/0x120 [59.213] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.213] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.214] ? _copy_from_user+0x7b/0x80 [59.214] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.214] ? should_failslab+0xa/0x20 [59.214] ? kmem_cache_alloc_node+0x151/0x460 [59.214] ? alloc_io_context+0x1b/0x80 [59.214] ? preempt_count_add+0x70/0xa0 [59.214] ? __x64_sys_ioctl+0x88/0xc0 [59.214] __x64_sys_ioctl+0x88/0xc0 [59.214] do_syscall_64+0x38/0x90 [59.214] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.214] RIP: 0033:0x7f82ffaffe9b [59.214] RSP: 002b:00007f82fe1f9c50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.214] RAX: ffffffffffffffda RBX: 000055b191e37090 RCX: 00007f82ffaffe9b [59.214] RDX: 000055b191e37090 RSI: 00000000c400941b RDI: 0000000000000003 [59.214] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.214] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fe1fa640 [59.214] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.214] </TASK> [59.214] INFO: task btrfs:346776 blocked for more than 120 seconds. [59.215] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.216] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.217] task:btrfs state:D stack:0 pid:346776 ppid:1 flags:0x00004002 [59.217] Call Trace: [59.217] <TASK> [59.217] __schedule+0x392/0xa70 [59.217] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.217] schedule+0x5d/0xd0 [59.217] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.217] ? __pfx_autoremove_wake_function+0x10/0x10 [59.217] scrub_pause_off+0x21/0x50 [btrfs] [59.217] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.217] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.218] ? __pfx_autoremove_wake_function+0x10/0x10 [59.218] scrub_stripe+0x20d/0x740 [btrfs] [59.218] scrub_chunk+0xc4/0x130 [btrfs] [59.218] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.219] ? __pfx_autoremove_wake_function+0x10/0x10 [59.219] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.219] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.219] ? _copy_from_user+0x7b/0x80 [59.219] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.219] ? should_failslab+0xa/0x20 [59.219] ? kmem_cache_alloc_node+0x151/0x460 [59.219] ? alloc_io_context+0x1b/0x80 [59.219] ? preempt_count_add+0x70/0xa0 [59.219] ? __x64_sys_ioctl+0x88/0xc0 [59.219] __x64_sys_ioctl+0x88/0xc0 [59.219] do_syscall_64+0x38/0x90 [59.219] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.219] RIP: 0033:0x7f82ffaffe9b [59.219] RSP: 002b:00007f82fd9f8c50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.219] RAX: ffffffffffffffda RBX: 000055b191e37510 RCX: 00007f82ffaffe9b [59.219] RDX: 000055b191e37510 RSI: 00000000c400941b RDI: 0000000000000003 [59.219] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.219] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fd9f9640 [59.219] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.219] </TASK> [59.219] INFO: task btrfs:346822 blocked for more than 120 seconds. [59.220] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.221] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.222] task:btrfs state:D stack:0 pid:346822 ppid:1 flags:0x00004002 [59.222] Call Trace: [59.222] <TASK> [59.222] __schedule+0x392/0xa70 [59.222] schedule+0x5d/0xd0 [59.222] btrfs_scrub_cancel+0x91/0x100 [btrfs] [59.222] ? __pfx_autoremove_wake_function+0x10/0x10 [59.222] btrfs_commit_transaction+0x572/0xeb0 [btrfs] [59.223] ? start_transaction+0xcb/0x610 [btrfs] [59.223] prepare_to_relocate+0x111/0x1a0 [btrfs] [59.223] relocate_block_group+0x57/0x5d0 [btrfs] [59.223] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [59.223] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [59.224] ? __pfx_autoremove_wake_function+0x10/0x10 [59.224] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [59.224] btrfs_balance+0x8ff/0x11d0 [btrfs] [59.224] ? __kmem_cache_alloc_node+0x14a/0x410 [59.224] btrfs_ioctl+0x2334/0x32c0 [btrfs] [59.225] ? mod_objcg_state+0xd2/0x360 [59.225] ? refill_obj_stock+0xb0/0x160 [59.225] ? seq_release+0x25/0x30 [59.225] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [59.225] ? percpu_counter_add_batch+0x2e/0xa0 [59.225] ? __x64_sys_ioctl+0x88/0xc0 [59.225] __x64_sys_ioctl+0x88/0xc0 [59.225] do_syscall_64+0x38/0x90 [59.225] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.225] RIP: 0033:0x7f381a6ffe9b [59.225] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.225] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [59.225] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [59.225] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [59.225] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [59.225] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [59.225] </TASK> What happens is the following: 1) A scrub is running, so fs_info->scrubs_running is 1; 2) Task A starts block group relocation, and at btrfs_relocate_chunk() it pauses scrub by calling btrfs_scrub_pause(). That increments fs_info->scrub_pause_req from 0 to 1 and waits for the scrub task to pause (for fs_info->scrubs_paused to be == to fs_info->scrubs_running); 3) The scrub task pauses at scrub_pause_off(), waiting for fs_info->scrub_pause_req to decrease to 0; 4) Task A then enters btrfs_relocate_block_group(), and down that call chain we start a transaction and then attempt to commit it; 5) When task A calls btrfs_commit_transaction(), it either will do the commit itself or wait for some other task that already started the commit of the transaction - it doesn't matter which case; 6) The transaction commit enters state TRANS_STATE_COMMIT_START; 7) An error happens during the transaction commit, like -ENOSPC when running delayed refs or delayed items for example; 8) This results in calling transaction.c:cleanup_transaction(), where we call btrfs_scrub_cancel(), incrementing fs_info->scrub_cancel_req from 0 to 1, and blocking this task waiting for fs_info->scrubs_running to decrease to 0; 9) From this point on, both the transaction commit and the scrub task hang forever: 1) The transaction commit is waiting for fs_info->scrubs_running to be decreased to 0; 2) The scrub task is at scrub_pause_off() waiting for fs_info->scrub_pause_req to decrease to 0 - so it can not proceed to stop the scrub and decrement fs_info->scrubs_running from 0 to 1. Therefore resulting in a deadlock. Fix this by having cleanup_transaction(), called if a transaction commit fails, not call btrfs_scrub_cancel() if relocation is in progress, and having btrfs_relocate_block_group() call btrfs_scrub_cancel() instead if the relocation failed and a transaction abort happened. This was triggered with btrfs/061 from fstests. Fixes: 55e3a601c81c ("btrfs: Fix data checksum error cause by replace with io-load.") CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 09:46:34 +00:00
if (ret) {
/*
* If we had a transaction abort, stop all running scrubs.
* See transaction.c:cleanup_transaction() why we do it here.
*/
if (BTRFS_FS_ERROR(fs_info))
btrfs_scrub_cancel(fs_info);
return ret;
btrfs: fix deadlock when aborting transaction during relocation with scrub Before relocating a block group we pause scrub, then do the relocation and then unpause scrub. The relocation process requires starting and committing a transaction, and if we have a failure in the critical section of the transaction commit path (transaction state >= TRANS_STATE_COMMIT_START), we will deadlock if there is a paused scrub. That results in stack traces like the following: [42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6 [42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction. [42.936] ------------[ cut here ]------------ [42.936] BTRFS: Transaction aborted (error -28) [42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...) [42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs] [42.936] Code: ff ff 45 8b (...) [42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282 [42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000 [42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff [42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8 [42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00 [42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0 [42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000 [42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0 [42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [42.936] Call Trace: [42.936] <TASK> [42.936] ? start_transaction+0xcb/0x610 [btrfs] [42.936] prepare_to_relocate+0x111/0x1a0 [btrfs] [42.936] relocate_block_group+0x57/0x5d0 [btrfs] [42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [42.936] ? __pfx_autoremove_wake_function+0x10/0x10 [42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [42.936] btrfs_balance+0x8ff/0x11d0 [btrfs] [42.936] ? __kmem_cache_alloc_node+0x14a/0x410 [42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs] [42.937] ? mod_objcg_state+0xd2/0x360 [42.937] ? refill_obj_stock+0xb0/0x160 [42.937] ? seq_release+0x25/0x30 [42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [42.937] ? percpu_counter_add_batch+0x2e/0xa0 [42.937] ? __x64_sys_ioctl+0x88/0xc0 [42.937] __x64_sys_ioctl+0x88/0xc0 [42.937] do_syscall_64+0x38/0x90 [42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc [42.937] RIP: 0033:0x7f381a6ffe9b [42.937] Code: 00 48 89 44 24 (...) [42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [42.937] </TASK> [42.937] ---[ end trace 0000000000000000 ]--- [42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left [59.196] INFO: task btrfs:346772 blocked for more than 120 seconds. [59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.196] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.196] task:btrfs state:D stack:0 pid:346772 ppid:1 flags:0x00004002 [59.196] Call Trace: [59.196] <TASK> [59.196] __schedule+0x392/0xa70 [59.196] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.196] schedule+0x5d/0xd0 [59.196] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.197] ? __pfx_autoremove_wake_function+0x10/0x10 [59.197] scrub_pause_off+0x21/0x50 [btrfs] [59.197] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.197] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.198] ? __pfx_autoremove_wake_function+0x10/0x10 [59.198] scrub_stripe+0x20d/0x740 [btrfs] [59.198] scrub_chunk+0xc4/0x130 [btrfs] [59.198] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.198] ? __pfx_autoremove_wake_function+0x10/0x10 [59.198] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.199] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.199] ? _copy_from_user+0x7b/0x80 [59.199] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.199] ? refill_stock+0x33/0x50 [59.199] ? should_failslab+0xa/0x20 [59.199] ? kmem_cache_alloc_node+0x151/0x460 [59.199] ? alloc_io_context+0x1b/0x80 [59.199] ? preempt_count_add+0x70/0xa0 [59.199] ? __x64_sys_ioctl+0x88/0xc0 [59.199] __x64_sys_ioctl+0x88/0xc0 [59.199] do_syscall_64+0x38/0x90 [59.199] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.199] RIP: 0033:0x7f82ffaffe9b [59.199] RSP: 002b:00007f82ff9fcc50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.199] RAX: ffffffffffffffda RBX: 000055b191e36310 RCX: 00007f82ffaffe9b [59.199] RDX: 000055b191e36310 RSI: 00000000c400941b RDI: 0000000000000003 [59.199] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.199] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82ff9fd640 [59.199] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.199] </TASK> [59.199] INFO: task btrfs:346773 blocked for more than 120 seconds. [59.200] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.200] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.201] task:btrfs state:D stack:0 pid:346773 ppid:1 flags:0x00004002 [59.201] Call Trace: [59.201] <TASK> [59.201] __schedule+0x392/0xa70 [59.201] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.201] schedule+0x5d/0xd0 [59.201] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.201] ? __pfx_autoremove_wake_function+0x10/0x10 [59.201] scrub_pause_off+0x21/0x50 [btrfs] [59.202] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.202] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.202] ? __pfx_autoremove_wake_function+0x10/0x10 [59.202] scrub_stripe+0x20d/0x740 [btrfs] [59.202] scrub_chunk+0xc4/0x130 [btrfs] [59.203] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.203] ? __pfx_autoremove_wake_function+0x10/0x10 [59.203] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.203] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.203] ? _copy_from_user+0x7b/0x80 [59.203] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.204] ? should_failslab+0xa/0x20 [59.204] ? kmem_cache_alloc_node+0x151/0x460 [59.204] ? alloc_io_context+0x1b/0x80 [59.204] ? preempt_count_add+0x70/0xa0 [59.204] ? __x64_sys_ioctl+0x88/0xc0 [59.204] __x64_sys_ioctl+0x88/0xc0 [59.204] do_syscall_64+0x38/0x90 [59.204] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.204] RIP: 0033:0x7f82ffaffe9b [59.204] RSP: 002b:00007f82ff1fbc50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.204] RAX: ffffffffffffffda RBX: 000055b191e36790 RCX: 00007f82ffaffe9b [59.204] RDX: 000055b191e36790 RSI: 00000000c400941b RDI: 0000000000000003 [59.204] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.204] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82ff1fc640 [59.204] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.204] </TASK> [59.204] INFO: task btrfs:346774 blocked for more than 120 seconds. [59.205] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.205] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.206] task:btrfs state:D stack:0 pid:346774 ppid:1 flags:0x00004002 [59.206] Call Trace: [59.206] <TASK> [59.206] __schedule+0x392/0xa70 [59.206] schedule+0x5d/0xd0 [59.206] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.206] ? __pfx_autoremove_wake_function+0x10/0x10 [59.206] scrub_pause_off+0x21/0x50 [btrfs] [59.207] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.207] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.207] ? __pfx_autoremove_wake_function+0x10/0x10 [59.207] scrub_stripe+0x20d/0x740 [btrfs] [59.208] scrub_chunk+0xc4/0x130 [btrfs] [59.208] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.208] ? __mutex_unlock_slowpath.isra.0+0x9a/0x120 [59.208] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.208] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.209] ? _copy_from_user+0x7b/0x80 [59.209] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.209] ? should_failslab+0xa/0x20 [59.209] ? kmem_cache_alloc_node+0x151/0x460 [59.209] ? alloc_io_context+0x1b/0x80 [59.209] ? preempt_count_add+0x70/0xa0 [59.209] ? __x64_sys_ioctl+0x88/0xc0 [59.209] __x64_sys_ioctl+0x88/0xc0 [59.209] do_syscall_64+0x38/0x90 [59.209] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.209] RIP: 0033:0x7f82ffaffe9b [59.209] RSP: 002b:00007f82fe9fac50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.209] RAX: ffffffffffffffda RBX: 000055b191e36c10 RCX: 00007f82ffaffe9b [59.209] RDX: 000055b191e36c10 RSI: 00000000c400941b RDI: 0000000000000003 [59.209] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.209] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fe9fb640 [59.209] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.209] </TASK> [59.209] INFO: task btrfs:346775 blocked for more than 120 seconds. [59.210] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.210] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.211] task:btrfs state:D stack:0 pid:346775 ppid:1 flags:0x00004002 [59.211] Call Trace: [59.211] <TASK> [59.211] __schedule+0x392/0xa70 [59.211] schedule+0x5d/0xd0 [59.211] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.211] ? __pfx_autoremove_wake_function+0x10/0x10 [59.211] scrub_pause_off+0x21/0x50 [btrfs] [59.212] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.212] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.212] ? __pfx_autoremove_wake_function+0x10/0x10 [59.212] scrub_stripe+0x20d/0x740 [btrfs] [59.213] scrub_chunk+0xc4/0x130 [btrfs] [59.213] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.213] ? __mutex_unlock_slowpath.isra.0+0x9a/0x120 [59.213] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.213] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.214] ? _copy_from_user+0x7b/0x80 [59.214] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.214] ? should_failslab+0xa/0x20 [59.214] ? kmem_cache_alloc_node+0x151/0x460 [59.214] ? alloc_io_context+0x1b/0x80 [59.214] ? preempt_count_add+0x70/0xa0 [59.214] ? __x64_sys_ioctl+0x88/0xc0 [59.214] __x64_sys_ioctl+0x88/0xc0 [59.214] do_syscall_64+0x38/0x90 [59.214] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.214] RIP: 0033:0x7f82ffaffe9b [59.214] RSP: 002b:00007f82fe1f9c50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.214] RAX: ffffffffffffffda RBX: 000055b191e37090 RCX: 00007f82ffaffe9b [59.214] RDX: 000055b191e37090 RSI: 00000000c400941b RDI: 0000000000000003 [59.214] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.214] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fe1fa640 [59.214] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.214] </TASK> [59.214] INFO: task btrfs:346776 blocked for more than 120 seconds. [59.215] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.216] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.217] task:btrfs state:D stack:0 pid:346776 ppid:1 flags:0x00004002 [59.217] Call Trace: [59.217] <TASK> [59.217] __schedule+0x392/0xa70 [59.217] ? __pv_queued_spin_lock_slowpath+0x165/0x370 [59.217] schedule+0x5d/0xd0 [59.217] __scrub_blocked_if_needed+0x74/0xc0 [btrfs] [59.217] ? __pfx_autoremove_wake_function+0x10/0x10 [59.217] scrub_pause_off+0x21/0x50 [btrfs] [59.217] scrub_simple_mirror+0x1c7/0x950 [btrfs] [59.217] ? scrub_parity_put+0x1a5/0x1d0 [btrfs] [59.218] ? __pfx_autoremove_wake_function+0x10/0x10 [59.218] scrub_stripe+0x20d/0x740 [btrfs] [59.218] scrub_chunk+0xc4/0x130 [btrfs] [59.218] scrub_enumerate_chunks+0x3e4/0x7a0 [btrfs] [59.219] ? __pfx_autoremove_wake_function+0x10/0x10 [59.219] btrfs_scrub_dev+0x236/0x6a0 [btrfs] [59.219] ? btrfs_ioctl+0xd97/0x32c0 [btrfs] [59.219] ? _copy_from_user+0x7b/0x80 [59.219] btrfs_ioctl+0xde1/0x32c0 [btrfs] [59.219] ? should_failslab+0xa/0x20 [59.219] ? kmem_cache_alloc_node+0x151/0x460 [59.219] ? alloc_io_context+0x1b/0x80 [59.219] ? preempt_count_add+0x70/0xa0 [59.219] ? __x64_sys_ioctl+0x88/0xc0 [59.219] __x64_sys_ioctl+0x88/0xc0 [59.219] do_syscall_64+0x38/0x90 [59.219] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.219] RIP: 0033:0x7f82ffaffe9b [59.219] RSP: 002b:00007f82fd9f8c50 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.219] RAX: ffffffffffffffda RBX: 000055b191e37510 RCX: 00007f82ffaffe9b [59.219] RDX: 000055b191e37510 RSI: 00000000c400941b RDI: 0000000000000003 [59.219] RBP: 0000000000000000 R08: 00007fff1575016f R09: 0000000000000000 [59.219] R10: 0000000000000000 R11: 0000000000000246 R12: 00007f82fd9f9640 [59.219] R13: 000000000000006b R14: 00007f82ffa87580 R15: 0000000000000000 [59.219] </TASK> [59.219] INFO: task btrfs:346822 blocked for more than 120 seconds. [59.220] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1 [59.221] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [59.222] task:btrfs state:D stack:0 pid:346822 ppid:1 flags:0x00004002 [59.222] Call Trace: [59.222] <TASK> [59.222] __schedule+0x392/0xa70 [59.222] schedule+0x5d/0xd0 [59.222] btrfs_scrub_cancel+0x91/0x100 [btrfs] [59.222] ? __pfx_autoremove_wake_function+0x10/0x10 [59.222] btrfs_commit_transaction+0x572/0xeb0 [btrfs] [59.223] ? start_transaction+0xcb/0x610 [btrfs] [59.223] prepare_to_relocate+0x111/0x1a0 [btrfs] [59.223] relocate_block_group+0x57/0x5d0 [btrfs] [59.223] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs] [59.223] btrfs_relocate_block_group+0x248/0x3c0 [btrfs] [59.224] ? __pfx_autoremove_wake_function+0x10/0x10 [59.224] btrfs_relocate_chunk+0x3b/0x150 [btrfs] [59.224] btrfs_balance+0x8ff/0x11d0 [btrfs] [59.224] ? __kmem_cache_alloc_node+0x14a/0x410 [59.224] btrfs_ioctl+0x2334/0x32c0 [btrfs] [59.225] ? mod_objcg_state+0xd2/0x360 [59.225] ? refill_obj_stock+0xb0/0x160 [59.225] ? seq_release+0x25/0x30 [59.225] ? __rseq_handle_notify_resume+0x3b5/0x4b0 [59.225] ? percpu_counter_add_batch+0x2e/0xa0 [59.225] ? __x64_sys_ioctl+0x88/0xc0 [59.225] __x64_sys_ioctl+0x88/0xc0 [59.225] do_syscall_64+0x38/0x90 [59.225] entry_SYSCALL_64_after_hwframe+0x72/0xdc [59.225] RIP: 0033:0x7f381a6ffe9b [59.225] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [59.225] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b [59.225] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003 [59.225] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000 [59.225] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423 [59.225] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148 [59.225] </TASK> What happens is the following: 1) A scrub is running, so fs_info->scrubs_running is 1; 2) Task A starts block group relocation, and at btrfs_relocate_chunk() it pauses scrub by calling btrfs_scrub_pause(). That increments fs_info->scrub_pause_req from 0 to 1 and waits for the scrub task to pause (for fs_info->scrubs_paused to be == to fs_info->scrubs_running); 3) The scrub task pauses at scrub_pause_off(), waiting for fs_info->scrub_pause_req to decrease to 0; 4) Task A then enters btrfs_relocate_block_group(), and down that call chain we start a transaction and then attempt to commit it; 5) When task A calls btrfs_commit_transaction(), it either will do the commit itself or wait for some other task that already started the commit of the transaction - it doesn't matter which case; 6) The transaction commit enters state TRANS_STATE_COMMIT_START; 7) An error happens during the transaction commit, like -ENOSPC when running delayed refs or delayed items for example; 8) This results in calling transaction.c:cleanup_transaction(), where we call btrfs_scrub_cancel(), incrementing fs_info->scrub_cancel_req from 0 to 1, and blocking this task waiting for fs_info->scrubs_running to decrease to 0; 9) From this point on, both the transaction commit and the scrub task hang forever: 1) The transaction commit is waiting for fs_info->scrubs_running to be decreased to 0; 2) The scrub task is at scrub_pause_off() waiting for fs_info->scrub_pause_req to decrease to 0 - so it can not proceed to stop the scrub and decrement fs_info->scrubs_running from 0 to 1. Therefore resulting in a deadlock. Fix this by having cleanup_transaction(), called if a transaction commit fails, not call btrfs_scrub_cancel() if relocation is in progress, and having btrfs_relocate_block_group() call btrfs_scrub_cancel() instead if the relocation failed and a transaction abort happened. This was triggered with btrfs/061 from fstests. Fixes: 55e3a601c81c ("btrfs: Fix data checksum error cause by replace with io-load.") CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-22 09:46:34 +00:00
}
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
if (!block_group)
return -ENOENT;
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
length = block_group->length;
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
btrfs_put_block_group(block_group);
/*
* On a zoned file system, discard the whole block group, this will
* trigger a REQ_OP_ZONE_RESET operation on the device zone. If
* resetting the zone fails, don't treat it as a fatal problem from the
* filesystem's point of view.
*/
if (btrfs_is_zoned(fs_info)) {
ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
if (ret)
btrfs_info(fs_info,
"failed to reset zone %llu after relocation",
chunk_offset);
}
trans = btrfs_start_trans_remove_block_group(root->fs_info,
chunk_offset);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
btrfs_handle_fs_error(root->fs_info, ret, NULL);
return ret;
}
/*
* step two, delete the device extents and the
* chunk tree entries
*/
ret = btrfs_remove_chunk(trans, chunk_offset);
btrfs_end_transaction(trans);
return ret;
}
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *chunk_root = fs_info->chunk_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_chunk *chunk;
struct btrfs_key key;
struct btrfs_key found_key;
u64 chunk_type;
bool retried = false;
int failed = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_CHUNK_ITEM_KEY;
while (1) {
mutex_lock(&fs_info->reclaim_bgs_lock);
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (ret < 0) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto error;
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
}
BUG_ON(ret == 0); /* Corruption */
ret = btrfs_previous_item(chunk_root, path, key.objectid,
key.type);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (ret)
mutex_unlock(&fs_info->reclaim_bgs_lock);
if (ret < 0)
goto error;
if (ret > 0)
break;
2008-09-26 14:09:34 +00:00
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2008-09-26 14:09:34 +00:00
chunk = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_chunk);
chunk_type = btrfs_chunk_type(leaf, chunk);
btrfs_release_path(path);
if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_relocate_chunk(fs_info, found_key.offset);
if (ret == -ENOSPC)
failed++;
else
BUG_ON(ret);
}
mutex_unlock(&fs_info->reclaim_bgs_lock);
if (found_key.offset == 0)
break;
key.offset = found_key.offset - 1;
}
ret = 0;
if (failed && !retried) {
failed = 0;
retried = true;
goto again;
} else if (WARN_ON(failed && retried)) {
ret = -ENOSPC;
}
error:
btrfs_free_path(path);
return ret;
}
/*
* return 1 : allocate a data chunk successfully,
* return <0: errors during allocating a data chunk,
* return 0 : no need to allocate a data chunk.
*/
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
u64 chunk_offset)
{
struct btrfs_block_group *cache;
u64 bytes_used;
u64 chunk_type;
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ASSERT(cache);
chunk_type = cache->flags;
btrfs_put_block_group(cache);
if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
return 0;
spin_lock(&fs_info->data_sinfo->lock);
bytes_used = fs_info->data_sinfo->bytes_used;
spin_unlock(&fs_info->data_sinfo->lock);
if (!bytes_used) {
struct btrfs_trans_handle *trans;
int ret;
trans = btrfs_join_transaction(fs_info->tree_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
btrfs_end_transaction(trans);
if (ret < 0)
return ret;
return 1;
}
return 0;
}
static int insert_balance_item(struct btrfs_fs_info *fs_info,
struct btrfs_balance_control *bctl)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_trans_handle *trans;
struct btrfs_balance_item *item;
struct btrfs_disk_balance_args disk_bargs;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
int ret, err;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
btrfs_free_path(path);
return PTR_ERR(trans);
}
key.objectid = BTRFS_BALANCE_OBJECTID;
key.type = BTRFS_TEMPORARY_ITEM_KEY;
key.offset = 0;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*item));
if (ret)
goto out;
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
btrfs_set_balance_data(leaf, item, &disk_bargs);
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
btrfs_set_balance_meta(leaf, item, &disk_bargs);
btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
btrfs_set_balance_sys(leaf, item, &disk_bargs);
btrfs_set_balance_flags(leaf, item, bctl->flags);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
err = btrfs_commit_transaction(trans);
if (err && !ret)
ret = err;
return ret;
}
static int del_balance_item(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_key key;
int ret, err;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
if (IS_ERR(trans)) {
btrfs_free_path(path);
return PTR_ERR(trans);
}
key.objectid = BTRFS_BALANCE_OBJECTID;
key.type = BTRFS_TEMPORARY_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
err = btrfs_commit_transaction(trans);
if (err && !ret)
ret = err;
return ret;
}
/*
* This is a heuristic used to reduce the number of chunks balanced on
* resume after balance was interrupted.
*/
static void update_balance_args(struct btrfs_balance_control *bctl)
{
/*
* Turn on soft mode for chunk types that were being converted.
*/
if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
/*
* Turn on usage filter if is not already used. The idea is
* that chunks that we have already balanced should be
* reasonably full. Don't do it for chunks that are being
* converted - that will keep us from relocating unconverted
* (albeit full) chunks.
*/
if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
!(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
bctl->data.usage = 90;
}
if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
!(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
bctl->sys.usage = 90;
}
if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
!(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
bctl->meta.usage = 90;
}
}
/*
* Clear the balance status in fs_info and delete the balance item from disk.
*/
static void reset_balance_state(struct btrfs_fs_info *fs_info)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
int ret;
BUG_ON(!fs_info->balance_ctl);
spin_lock(&fs_info->balance_lock);
fs_info->balance_ctl = NULL;
spin_unlock(&fs_info->balance_lock);
kfree(bctl);
ret = del_balance_item(fs_info);
if (ret)
btrfs_handle_fs_error(fs_info, ret, NULL);
}
/*
* Balance filters. Return 1 if chunk should be filtered out
* (should not be balanced).
*/
static int chunk_profiles_filter(u64 chunk_type,
struct btrfs_balance_args *bargs)
{
chunk_type = chunk_to_extended(chunk_type) &
BTRFS_EXTENDED_PROFILE_MASK;
if (bargs->profiles & chunk_type)
return 0;
return 1;
}
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
struct btrfs_balance_args *bargs)
{
struct btrfs_block_group *cache;
u64 chunk_used;
u64 user_thresh_min;
u64 user_thresh_max;
int ret = 1;
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
chunk_used = cache->used;
if (bargs->usage_min == 0)
user_thresh_min = 0;
else
user_thresh_min = mult_perc(cache->length, bargs->usage_min);
if (bargs->usage_max == 0)
user_thresh_max = 1;
else if (bargs->usage_max > 100)
user_thresh_max = cache->length;
else
user_thresh_max = mult_perc(cache->length, bargs->usage_max);
if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
ret = 0;
btrfs_put_block_group(cache);
return ret;
}
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
u64 chunk_offset, struct btrfs_balance_args *bargs)
{
struct btrfs_block_group *cache;
u64 chunk_used, user_thresh;
int ret = 1;
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
chunk_used = cache->used;
if (bargs->usage_min == 0)
user_thresh = 1;
else if (bargs->usage > 100)
user_thresh = cache->length;
else
user_thresh = mult_perc(cache->length, bargs->usage);
if (chunk_used < user_thresh)
ret = 0;
btrfs_put_block_group(cache);
return ret;
}
static int chunk_devid_filter(struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
struct btrfs_balance_args *bargs)
{
struct btrfs_stripe *stripe;
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
int i;
for (i = 0; i < num_stripes; i++) {
stripe = btrfs_stripe_nr(chunk, i);
if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
return 0;
}
return 1;
}
static u64 calc_data_stripes(u64 type, int num_stripes)
{
const int index = btrfs_bg_flags_to_raid_index(type);
const int ncopies = btrfs_raid_array[index].ncopies;
const int nparity = btrfs_raid_array[index].nparity;
return (num_stripes - nparity) / ncopies;
}
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
struct btrfs_balance_args *bargs)
{
struct btrfs_stripe *stripe;
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
u64 stripe_offset;
u64 stripe_length;
u64 type;
int factor;
int i;
if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
return 0;
type = btrfs_chunk_type(leaf, chunk);
factor = calc_data_stripes(type, num_stripes);
for (i = 0; i < num_stripes; i++) {
stripe = btrfs_stripe_nr(chunk, i);
if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
continue;
stripe_offset = btrfs_stripe_offset(leaf, stripe);
stripe_length = btrfs_chunk_length(leaf, chunk);
stripe_length = div_u64(stripe_length, factor);
if (stripe_offset < bargs->pend &&
stripe_offset + stripe_length > bargs->pstart)
return 0;
}
return 1;
}
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
u64 chunk_offset,
struct btrfs_balance_args *bargs)
{
if (chunk_offset < bargs->vend &&
chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
/* at least part of the chunk is inside this vrange */
return 0;
return 1;
}
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
struct btrfs_balance_args *bargs)
{
int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
if (bargs->stripes_min <= num_stripes
&& num_stripes <= bargs->stripes_max)
return 0;
return 1;
}
static int chunk_soft_convert_filter(u64 chunk_type,
struct btrfs_balance_args *bargs)
{
if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
return 0;
chunk_type = chunk_to_extended(chunk_type) &
BTRFS_EXTENDED_PROFILE_MASK;
if (bargs->target == chunk_type)
return 1;
return 0;
}
static int should_balance_chunk(struct extent_buffer *leaf,
struct btrfs_chunk *chunk, u64 chunk_offset)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
struct btrfs_balance_args *bargs = NULL;
u64 chunk_type = btrfs_chunk_type(leaf, chunk);
/* type filter */
if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
(bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
return 0;
}
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
bargs = &bctl->data;
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
bargs = &bctl->sys;
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
bargs = &bctl->meta;
/* profiles filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
chunk_profiles_filter(chunk_type, bargs)) {
return 0;
}
/* usage filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
chunk_usage_filter(fs_info, chunk_offset, bargs)) {
return 0;
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
return 0;
}
/* devid filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
chunk_devid_filter(leaf, chunk, bargs)) {
return 0;
}
/* drange filter, makes sense only with devid filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
chunk_drange_filter(leaf, chunk, bargs)) {
return 0;
}
/* vrange filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
return 0;
}
/* stripes filter */
if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
chunk_stripes_range_filter(leaf, chunk, bargs)) {
return 0;
}
/* soft profile changing mode */
if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
chunk_soft_convert_filter(chunk_type, bargs)) {
return 0;
}
/*
* limited by count, must be the last filter
*/
if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
if (bargs->limit == 0)
return 0;
else
bargs->limit--;
} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
/*
* Same logic as the 'limit' filter; the minimum cannot be
* determined here because we do not have the global information
* about the count of all chunks that satisfy the filters.
*/
if (bargs->limit_max == 0)
return 0;
else
bargs->limit_max--;
}
return 1;
}
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
{
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
struct btrfs_root *chunk_root = fs_info->chunk_root;
u64 chunk_type;
struct btrfs_chunk *chunk;
struct btrfs_path *path = NULL;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int slot;
int ret;
int enospc_errors = 0;
bool counting = true;
/* The single value limit and min/max limits use the same bytes in the */
u64 limit_data = bctl->data.limit;
u64 limit_meta = bctl->meta.limit;
u64 limit_sys = bctl->sys.limit;
u32 count_data = 0;
u32 count_meta = 0;
u32 count_sys = 0;
btrfs: Fix lost-data-profile caused by balance bg Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs balance start -dusage=0 $TEST_DIR btrfs filesystem usage $TEST_DIR dd if=/dev/zero of="$TEST_DIR"/file count=100 btrfs filesystem usage $TEST_DIR Result: We can see "no data chunk" in first "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 1.07GiB And "data chunks changed from raid1 to single" in second "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Data,single: Size:256.00MiB, Used:0.00B /dev/vdh 256.00MiB Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 841.92MiB Reason: btrfs balance delete last data chunk in case of no data in the filesystem, then we can see "no data chunk" by "fi usage" command. And when we do write operation to fs, the only available data profile is 0x0, result is all new chunks are allocated single type. Fix: Allocate a data chunk explicitly to ensure we don't lose the raid profile for data. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-09 03:51:32 +00:00
int chunk_reserved = 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto error;
}
/* zero out stat counters */
spin_lock(&fs_info->balance_lock);
memset(&bctl->stat, 0, sizeof(bctl->stat));
spin_unlock(&fs_info->balance_lock);
again:
if (!counting) {
/*
* The single value limit and min/max limits use the same bytes
* in the
*/
bctl->data.limit = limit_data;
bctl->meta.limit = limit_meta;
bctl->sys.limit = limit_sys;
}
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_CHUNK_ITEM_KEY;
while (1) {
if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
atomic_read(&fs_info->balance_cancel_req)) {
ret = -ECANCELED;
goto error;
}
mutex_lock(&fs_info->reclaim_bgs_lock);
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (ret < 0) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto error;
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
}
/*
* this shouldn't happen, it means the last relocate
* failed
*/
if (ret == 0)
BUG(); /* FIXME break ? */
ret = btrfs_previous_item(chunk_root, path, 0,
BTRFS_CHUNK_ITEM_KEY);
if (ret) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
ret = 0;
break;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &found_key, slot);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (found_key.objectid != key.objectid) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
break;
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
}
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
chunk_type = btrfs_chunk_type(leaf, chunk);
if (!counting) {
spin_lock(&fs_info->balance_lock);
bctl->stat.considered++;
spin_unlock(&fs_info->balance_lock);
}
ret = should_balance_chunk(leaf, chunk, found_key.offset);
btrfs: Fix lost-data-profile caused by balance bg Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs balance start -dusage=0 $TEST_DIR btrfs filesystem usage $TEST_DIR dd if=/dev/zero of="$TEST_DIR"/file count=100 btrfs filesystem usage $TEST_DIR Result: We can see "no data chunk" in first "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 1.07GiB And "data chunks changed from raid1 to single" in second "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Data,single: Size:256.00MiB, Used:0.00B /dev/vdh 256.00MiB Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 841.92MiB Reason: btrfs balance delete last data chunk in case of no data in the filesystem, then we can see "no data chunk" by "fi usage" command. And when we do write operation to fs, the only available data profile is 0x0, result is all new chunks are allocated single type. Fix: Allocate a data chunk explicitly to ensure we don't lose the raid profile for data. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-09 03:51:32 +00:00
btrfs_release_path(path);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (!ret) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto loop;
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
}
if (counting) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
spin_lock(&fs_info->balance_lock);
bctl->stat.expected++;
spin_unlock(&fs_info->balance_lock);
if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
count_data++;
else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
count_sys++;
else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
count_meta++;
goto loop;
}
/*
* Apply limit_min filter, no need to check if the LIMITS
* filter is used, limit_min is 0 by default
*/
if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
count_data < bctl->data.limit_min)
|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
count_meta < bctl->meta.limit_min)
|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
count_sys < bctl->sys.limit_min)) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto loop;
}
if (!chunk_reserved) {
/*
* We may be relocating the only data chunk we have,
* which could potentially end up with losing data's
* raid profile, so lets allocate an empty one in
* advance.
*/
ret = btrfs_may_alloc_data_chunk(fs_info,
found_key.offset);
btrfs: Fix lost-data-profile caused by balance bg Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs balance start -dusage=0 $TEST_DIR btrfs filesystem usage $TEST_DIR dd if=/dev/zero of="$TEST_DIR"/file count=100 btrfs filesystem usage $TEST_DIR Result: We can see "no data chunk" in first "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 1.07GiB And "data chunks changed from raid1 to single" in second "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Data,single: Size:256.00MiB, Used:0.00B /dev/vdh 256.00MiB Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 841.92MiB Reason: btrfs balance delete last data chunk in case of no data in the filesystem, then we can see "no data chunk" by "fi usage" command. And when we do write operation to fs, the only available data profile is 0x0, result is all new chunks are allocated single type. Fix: Allocate a data chunk explicitly to ensure we don't lose the raid profile for data. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-09 03:51:32 +00:00
if (ret < 0) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
btrfs: Fix lost-data-profile caused by balance bg Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs balance start -dusage=0 $TEST_DIR btrfs filesystem usage $TEST_DIR dd if=/dev/zero of="$TEST_DIR"/file count=100 btrfs filesystem usage $TEST_DIR Result: We can see "no data chunk" in first "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 1.07GiB And "data chunks changed from raid1 to single" in second "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Data,single: Size:256.00MiB, Used:0.00B /dev/vdh 256.00MiB Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 841.92MiB Reason: btrfs balance delete last data chunk in case of no data in the filesystem, then we can see "no data chunk" by "fi usage" command. And when we do write operation to fs, the only available data profile is 0x0, result is all new chunks are allocated single type. Fix: Allocate a data chunk explicitly to ensure we don't lose the raid profile for data. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-09 03:51:32 +00:00
goto error;
} else if (ret == 1) {
chunk_reserved = 1;
btrfs: Fix lost-data-profile caused by balance bg Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs balance start -dusage=0 $TEST_DIR btrfs filesystem usage $TEST_DIR dd if=/dev/zero of="$TEST_DIR"/file count=100 btrfs filesystem usage $TEST_DIR Result: We can see "no data chunk" in first "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 1.07GiB And "data chunks changed from raid1 to single" in second "btrfs filesystem usage": # btrfs filesystem usage $TEST_DIR Overall: ... Data,single: Size:256.00MiB, Used:0.00B /dev/vdh 256.00MiB Metadata,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB Metadata,RAID1: Size:122.88MiB, Used:112.00KiB /dev/vdg 122.88MiB /dev/vdh 122.88MiB System,single: Size:4.00MiB, Used:0.00B /dev/vdg 4.00MiB System,RAID1: Size:8.00MiB, Used:16.00KiB /dev/vdg 8.00MiB /dev/vdh 8.00MiB Unallocated: /dev/vdg 1.06GiB /dev/vdh 841.92MiB Reason: btrfs balance delete last data chunk in case of no data in the filesystem, then we can see "no data chunk" by "fi usage" command. And when we do write operation to fs, the only available data profile is 0x0, result is all new chunks are allocated single type. Fix: Allocate a data chunk explicitly to ensure we don't lose the raid profile for data. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-09 03:51:32 +00:00
}
}
ret = btrfs_relocate_chunk(fs_info, found_key.offset);
mutex_unlock(&fs_info->reclaim_bgs_lock);
if (ret == -ENOSPC) {
enospc_errors++;
} else if (ret == -ETXTBSY) {
btrfs_info(fs_info,
"skipping relocation of block group %llu due to active swapfile",
found_key.offset);
ret = 0;
} else if (ret) {
goto error;
} else {
spin_lock(&fs_info->balance_lock);
bctl->stat.completed++;
spin_unlock(&fs_info->balance_lock);
}
loop:
if (found_key.offset == 0)
break;
key.offset = found_key.offset - 1;
}
if (counting) {
btrfs_release_path(path);
counting = false;
goto again;
}
error:
btrfs_free_path(path);
if (enospc_errors) {
btrfs_info(fs_info, "%d enospc errors during balance",
enospc_errors);
if (!ret)
ret = -ENOSPC;
}
return ret;
}
/*
* See if a given profile is valid and reduced.
*
* @flags: profile to validate
* @extended: if true @flags is treated as an extended profile
*/
static int alloc_profile_is_valid(u64 flags, int extended)
{
u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
BTRFS_BLOCK_GROUP_PROFILE_MASK);
flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
/* 1) check that all other bits are zeroed */
if (flags & ~mask)
return 0;
/* 2) see if profile is reduced */
if (flags == 0)
return !extended; /* "0" is valid for usual profiles */
return has_single_bit_set(flags);
}
/*
* Validate target profile against allowed profiles and return true if it's OK.
* Otherwise print the error message and return false.
*/
static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
const struct btrfs_balance_args *bargs,
u64 allowed, const char *type)
{
if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
return true;
/* Profile is valid and does not have bits outside of the allowed set */
if (alloc_profile_is_valid(bargs->target, 1) &&
(bargs->target & ~allowed) == 0)
return true;
btrfs_err(fs_info, "balance: invalid convert %s profile %s",
type, btrfs_bg_type_to_raid_name(bargs->target));
return false;
}
/*
* Fill @buf with textual description of balance filter flags @bargs, up to
* @size_buf including the terminating null. The output may be trimmed if it
* does not fit into the provided buffer.
*/
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
u32 size_buf)
{
int ret;
u32 size_bp = size_buf;
char *bp = buf;
u64 flags = bargs->flags;
char tmp_buf[128] = {'\0'};
if (!flags)
return;
#define CHECK_APPEND_NOARG(a) \
do { \
ret = snprintf(bp, size_bp, (a)); \
if (ret < 0 || ret >= size_bp) \
goto out_overflow; \
size_bp -= ret; \
bp += ret; \
} while (0)
#define CHECK_APPEND_1ARG(a, v1) \
do { \
ret = snprintf(bp, size_bp, (a), (v1)); \
if (ret < 0 || ret >= size_bp) \
goto out_overflow; \
size_bp -= ret; \
bp += ret; \
} while (0)
#define CHECK_APPEND_2ARG(a, v1, v2) \
do { \
ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
if (ret < 0 || ret >= size_bp) \
goto out_overflow; \
size_bp -= ret; \
bp += ret; \
} while (0)
if (flags & BTRFS_BALANCE_ARGS_CONVERT)
CHECK_APPEND_1ARG("convert=%s,",
btrfs_bg_type_to_raid_name(bargs->target));
if (flags & BTRFS_BALANCE_ARGS_SOFT)
CHECK_APPEND_NOARG("soft,");
if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
btrfs_describe_block_groups(bargs->profiles, tmp_buf,
sizeof(tmp_buf));
CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
}
if (flags & BTRFS_BALANCE_ARGS_USAGE)
CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
CHECK_APPEND_2ARG("usage=%u..%u,",
bargs->usage_min, bargs->usage_max);
if (flags & BTRFS_BALANCE_ARGS_DEVID)
CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
if (flags & BTRFS_BALANCE_ARGS_DRANGE)
CHECK_APPEND_2ARG("drange=%llu..%llu,",
bargs->pstart, bargs->pend);
if (flags & BTRFS_BALANCE_ARGS_VRANGE)
CHECK_APPEND_2ARG("vrange=%llu..%llu,",
bargs->vstart, bargs->vend);
if (flags & BTRFS_BALANCE_ARGS_LIMIT)
CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
CHECK_APPEND_2ARG("limit=%u..%u,",
bargs->limit_min, bargs->limit_max);
if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
CHECK_APPEND_2ARG("stripes=%u..%u,",
bargs->stripes_min, bargs->stripes_max);
#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG
out_overflow:
if (size_bp < size_buf)
buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
else
buf[0] = '\0';
}
static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
u32 size_buf = 1024;
char tmp_buf[192] = {'\0'};
char *buf;
char *bp;
u32 size_bp = size_buf;
int ret;
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
buf = kzalloc(size_buf, GFP_KERNEL);
if (!buf)
return;
bp = buf;
#define CHECK_APPEND_1ARG(a, v1) \
do { \
ret = snprintf(bp, size_bp, (a), (v1)); \
if (ret < 0 || ret >= size_bp) \
goto out_overflow; \
size_bp -= ret; \
bp += ret; \
} while (0)
if (bctl->flags & BTRFS_BALANCE_FORCE)
CHECK_APPEND_1ARG("%s", "-f ");
if (bctl->flags & BTRFS_BALANCE_DATA) {
describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
CHECK_APPEND_1ARG("-d%s ", tmp_buf);
}
if (bctl->flags & BTRFS_BALANCE_METADATA) {
describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
CHECK_APPEND_1ARG("-m%s ", tmp_buf);
}
if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
CHECK_APPEND_1ARG("-s%s ", tmp_buf);
}
#undef CHECK_APPEND_1ARG
out_overflow:
if (size_bp < size_buf)
buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
btrfs_info(fs_info, "balance: %s %s",
(bctl->flags & BTRFS_BALANCE_RESUME) ?
"resume" : "start", buf);
kfree(buf);
}
/*
btrfs: kill btrfs_fs_info::volume_mutex Mutual exclusion of device add/rm and balance was done by the volume mutex up to version 3.7. The commit 5ac00addc7ac091109 ("Btrfs: disallow mutually exclusive admin operations from user mode") added a bit that essentially tracked the same information. The status bit has an advantage over a mutex that it can be set without restrictions of function context, so it started to be used in the mount-time resuming of balance or device replace. But we don't really need to track the same information in two ways. 1) After the previous cleanups, the main ioctl handlers for add/del/resize copy the EXCL_OP bit next to the volume mutex, here it's clearly safe. 2) Resuming balance during mount or after rw remount will set only the EXCL_OP bit and the volume_mutex is held in the kernel thread that calls btrfs_balance. 3) Resuming device replace during mount or after rw remount is done after balance and is excluded by the EXCL_OP bit. It does not take the volume_mutex at all and completely relies on the EXCL_OP bit. 4) The resuming of balance and dev-replace cannot hapen at the same time as the ioctls cannot be started in parallel. Nevertheless, a crafted image could trigger that and a warning is printed. 5) Balance is normally excluded by EXCL_OP and also uses own mutex to protect against concurrent access to its status data. There's some trickery to maintain the right lock nesting in case we need to reexamine the status in btrfs_ioctl_balance. The volume_mutex is removed and the unlock/lock sequence is left in place as we might expect other waiters to proceed. 6) Similar to 5, the unlock/lock sequence is kept in btrfs_cancel_balance to allow waiters to continue. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-20 23:20:05 +00:00
* Should be called with balance mutexe held
*/
int btrfs_balance(struct btrfs_fs_info *fs_info,
struct btrfs_balance_control *bctl,
struct btrfs_ioctl_balance_args *bargs)
{
u64 meta_target, data_target;
u64 allowed;
int mixed = 0;
int ret;
u64 num_devices;
unsigned seq;
bool reducing_redundancy;
btrfs: fix race between balance and cancel/pause Syzbot reported a panic that looks like this: assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259 Call Trace: <TASK> btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline] btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline] btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The reproducer is running a balance and a cancel or pause in parallel. The way balance finishes is a bit wonky, if we were paused we need to save the balance_ctl in the fs_info, but clear it otherwise and cleanup. However we rely on the return values being specific errors, or having a cancel request or no pause request. If balance completes and returns 0, but we have a pause or cancel request we won't do the appropriate cleanup, and then the next time we try to start a balance we'll trip this ASSERT. The error handling is just wrong here, we always want to clean up, unless we got -ECANCELLED and we set the appropriate pause flag in the exclusive op. With this patch the reproducer ran for an hour without tripping, previously it would trip in less than a few minutes. Reported-by: syzbot+c0f3acf145cb465426d5@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-23 05:05:41 +00:00
bool paused = false;
int i;
if (btrfs_fs_closing(fs_info) ||
atomic_read(&fs_info->balance_pause_req) ||
btrfs_should_cancel_balance(fs_info)) {
ret = -EINVAL;
goto out;
}
allowed = btrfs_super_incompat_flags(fs_info->super_copy);
if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
mixed = 1;
/*
* In case of mixed groups both data and meta should be picked,
* and identical options should be given for both of them.
*/
allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
if (mixed && (bctl->flags & allowed)) {
if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
!(bctl->flags & BTRFS_BALANCE_METADATA) ||
memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
btrfs_err(fs_info,
"balance: mixed groups data and metadata options must be the same");
ret = -EINVAL;
goto out;
}
}
btrfs: check rw_devices, not num_devices for balance The fstest btrfs/154 reports [ 8675.381709] BTRFS: Transaction aborted (error -28) [ 8675.383302] WARNING: CPU: 1 PID: 31900 at fs/btrfs/block-group.c:2038 btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs] [ 8675.390925] CPU: 1 PID: 31900 Comm: btrfs Not tainted 5.5.0-rc6-default+ #935 [ 8675.392780] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 [ 8675.395452] RIP: 0010:btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs] [ 8675.402672] RSP: 0018:ffffb2090888fb00 EFLAGS: 00010286 [ 8675.404413] RAX: 0000000000000000 RBX: ffff92026dfa91c8 RCX: 0000000000000001 [ 8675.406609] RDX: 0000000000000000 RSI: ffffffff8e100899 RDI: ffffffff8e100971 [ 8675.408775] RBP: ffff920247c61660 R08: 0000000000000000 R09: 0000000000000000 [ 8675.410978] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000ffffffe4 [ 8675.412647] R13: ffff92026db74000 R14: ffff920247c616b8 R15: ffff92026dfbc000 [ 8675.413994] FS: 00007fd5e57248c0(0000) GS:ffff92027d800000(0000) knlGS:0000000000000000 [ 8675.416146] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8675.417833] CR2: 0000564aa51682d8 CR3: 000000006dcbc004 CR4: 0000000000160ee0 [ 8675.419801] Call Trace: [ 8675.420742] btrfs_start_dirty_block_groups+0x355/0x480 [btrfs] [ 8675.422600] btrfs_commit_transaction+0xc8/0xaf0 [btrfs] [ 8675.424335] reset_balance_state+0x14a/0x190 [btrfs] [ 8675.425824] btrfs_balance.cold+0xe7/0x154 [btrfs] [ 8675.427313] ? kmem_cache_alloc_trace+0x235/0x2c0 [ 8675.428663] btrfs_ioctl_balance+0x298/0x350 [btrfs] [ 8675.430285] btrfs_ioctl+0x466/0x2550 [btrfs] [ 8675.431788] ? mem_cgroup_charge_statistics+0x51/0xf0 [ 8675.433487] ? mem_cgroup_commit_charge+0x56/0x400 [ 8675.435122] ? do_raw_spin_unlock+0x4b/0xc0 [ 8675.436618] ? _raw_spin_unlock+0x1f/0x30 [ 8675.438093] ? __handle_mm_fault+0x499/0x740 [ 8675.439619] ? do_vfs_ioctl+0x56e/0x770 [ 8675.441034] do_vfs_ioctl+0x56e/0x770 [ 8675.442411] ksys_ioctl+0x3a/0x70 [ 8675.443718] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 8675.445333] __x64_sys_ioctl+0x16/0x20 [ 8675.446705] do_syscall_64+0x50/0x210 [ 8675.448059] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 8675.479187] BTRFS: error (device vdb) in btrfs_create_pending_block_groups:2038: errno=-28 No space left We now use btrfs_can_overcommit() to see if we can flip a block group read only. Before this would fail because we weren't taking into account the usable un-allocated space for allocating chunks. With my patches we were allowed to do the balance, which is technically correct. The test is trying to start balance on degraded mount. So now we're trying to allocate a chunk and cannot because we want to allocate a RAID1 chunk, but there's only 1 device that's available for usage. This results in an ENOSPC. But we shouldn't even be making it this far, we don't have enough devices to restripe. The problem is we're using btrfs_num_devices(), that also includes missing devices. That's not actually what we want, we need to use rw_devices. The chunk_mutex is not needed here, rw_devices changes only in device add, remove or replace, all are excluded by EXCL_OP mechanism. Fixes: e4d8ec0f65b9 ("Btrfs: implement online profile changing") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add stacktrace, update changelog, drop chunk_mutex ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-10 16:11:24 +00:00
/*
* rw_devices will not change at the moment, device add/delete/replace
* are exclusive
btrfs: check rw_devices, not num_devices for balance The fstest btrfs/154 reports [ 8675.381709] BTRFS: Transaction aborted (error -28) [ 8675.383302] WARNING: CPU: 1 PID: 31900 at fs/btrfs/block-group.c:2038 btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs] [ 8675.390925] CPU: 1 PID: 31900 Comm: btrfs Not tainted 5.5.0-rc6-default+ #935 [ 8675.392780] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 [ 8675.395452] RIP: 0010:btrfs_create_pending_block_groups+0x1e0/0x1f0 [btrfs] [ 8675.402672] RSP: 0018:ffffb2090888fb00 EFLAGS: 00010286 [ 8675.404413] RAX: 0000000000000000 RBX: ffff92026dfa91c8 RCX: 0000000000000001 [ 8675.406609] RDX: 0000000000000000 RSI: ffffffff8e100899 RDI: ffffffff8e100971 [ 8675.408775] RBP: ffff920247c61660 R08: 0000000000000000 R09: 0000000000000000 [ 8675.410978] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000ffffffe4 [ 8675.412647] R13: ffff92026db74000 R14: ffff920247c616b8 R15: ffff92026dfbc000 [ 8675.413994] FS: 00007fd5e57248c0(0000) GS:ffff92027d800000(0000) knlGS:0000000000000000 [ 8675.416146] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8675.417833] CR2: 0000564aa51682d8 CR3: 000000006dcbc004 CR4: 0000000000160ee0 [ 8675.419801] Call Trace: [ 8675.420742] btrfs_start_dirty_block_groups+0x355/0x480 [btrfs] [ 8675.422600] btrfs_commit_transaction+0xc8/0xaf0 [btrfs] [ 8675.424335] reset_balance_state+0x14a/0x190 [btrfs] [ 8675.425824] btrfs_balance.cold+0xe7/0x154 [btrfs] [ 8675.427313] ? kmem_cache_alloc_trace+0x235/0x2c0 [ 8675.428663] btrfs_ioctl_balance+0x298/0x350 [btrfs] [ 8675.430285] btrfs_ioctl+0x466/0x2550 [btrfs] [ 8675.431788] ? mem_cgroup_charge_statistics+0x51/0xf0 [ 8675.433487] ? mem_cgroup_commit_charge+0x56/0x400 [ 8675.435122] ? do_raw_spin_unlock+0x4b/0xc0 [ 8675.436618] ? _raw_spin_unlock+0x1f/0x30 [ 8675.438093] ? __handle_mm_fault+0x499/0x740 [ 8675.439619] ? do_vfs_ioctl+0x56e/0x770 [ 8675.441034] do_vfs_ioctl+0x56e/0x770 [ 8675.442411] ksys_ioctl+0x3a/0x70 [ 8675.443718] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 8675.445333] __x64_sys_ioctl+0x16/0x20 [ 8675.446705] do_syscall_64+0x50/0x210 [ 8675.448059] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 8675.479187] BTRFS: error (device vdb) in btrfs_create_pending_block_groups:2038: errno=-28 No space left We now use btrfs_can_overcommit() to see if we can flip a block group read only. Before this would fail because we weren't taking into account the usable un-allocated space for allocating chunks. With my patches we were allowed to do the balance, which is technically correct. The test is trying to start balance on degraded mount. So now we're trying to allocate a chunk and cannot because we want to allocate a RAID1 chunk, but there's only 1 device that's available for usage. This results in an ENOSPC. But we shouldn't even be making it this far, we don't have enough devices to restripe. The problem is we're using btrfs_num_devices(), that also includes missing devices. That's not actually what we want, we need to use rw_devices. The chunk_mutex is not needed here, rw_devices changes only in device add, remove or replace, all are excluded by EXCL_OP mechanism. Fixes: e4d8ec0f65b9 ("Btrfs: implement online profile changing") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add stacktrace, update changelog, drop chunk_mutex ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-10 16:11:24 +00:00
*/
num_devices = fs_info->fs_devices->rw_devices;
/*
* SINGLE profile on-disk has no profile bit, but in-memory we have a
* special bit for it, to make it easier to distinguish. Thus we need
* to set it manually, or balance would refuse the profile.
*/
allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
if (num_devices >= btrfs_raid_array[i].devs_min)
allowed |= btrfs_raid_array[i].bg_flag;
if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
!validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
!validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
ret = -EINVAL;
goto out;
}
/*
* Allow to reduce metadata or system integrity only if force set for
* profiles with redundancy (copies, parity)
*/
allowed = 0;
for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
if (btrfs_raid_array[i].ncopies >= 2 ||
btrfs_raid_array[i].tolerated_failures >= 1)
allowed |= btrfs_raid_array[i].bg_flag;
}
do {
seq = read_seqbegin(&fs_info->profiles_lock);
if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
(fs_info->avail_system_alloc_bits & allowed) &&
!(bctl->sys.target & allowed)) ||
((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
(fs_info->avail_metadata_alloc_bits & allowed) &&
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
!(bctl->meta.target & allowed)))
reducing_redundancy = true;
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
else
reducing_redundancy = false;
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
/* if we're not converting, the target field is uninitialized */
meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
bctl->meta.target : fs_info->avail_metadata_alloc_bits;
data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
bctl->data.target : fs_info->avail_data_alloc_bits;
} while (read_seqretry(&fs_info->profiles_lock, seq));
if (reducing_redundancy) {
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
if (bctl->flags & BTRFS_BALANCE_FORCE) {
btrfs_info(fs_info,
"balance: force reducing metadata redundancy");
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
} else {
btrfs_err(fs_info,
"balance: reduces metadata redundancy, use --force if you want this");
Btrfs: fix access to available allocation bits when starting balance The available allocation bits members from struct btrfs_fs_info are protected by a sequence lock, and when starting balance we access them incorrectly in two different ways: 1) In the read sequence lock loop at btrfs_balance() we use the values we read from fs_info->avail_*_alloc_bits and we can immediately do actions that have side effects and can not be undone (printing a message and jumping to a label). This is wrong because a retry might be needed, so our actions must not have side effects and must be repeatable as long as read_seqretry() returns a non-zero value. In other words, we were essentially ignoring the sequence lock; 2) Right below the read sequence lock loop, we were reading the values from avail_metadata_alloc_bits and avail_data_alloc_bits without any protection from concurrent writers, that is, reading them outside of the read sequence lock critical section. So fix this by making sure we only read the available allocation bits while in a read sequence lock critical section and that what we do in the critical section is repeatable (has nothing that can not be undone) so that any eventual retry that is needed is handled properly. Fixes: de98ced9e743 ("Btrfs: use seqlock to protect fs_info->avail_{data, metadata, system}_alloc_bits") Fixes: 14506127979a ("btrfs: fix a bogus warning when converting only data or metadata") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-19 09:48:12 +00:00
ret = -EINVAL;
goto out;
}
}
if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
btrfs_warn(fs_info,
"balance: metadata profile %s has lower redundancy than data profile %s",
btrfs_bg_type_to_raid_name(meta_target),
btrfs_bg_type_to_raid_name(data_target));
}
ret = insert_balance_item(fs_info, bctl);
if (ret && ret != -EEXIST)
goto out;
if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
BUG_ON(ret == -EEXIST);
BUG_ON(fs_info->balance_ctl);
spin_lock(&fs_info->balance_lock);
fs_info->balance_ctl = bctl;
spin_unlock(&fs_info->balance_lock);
} else {
BUG_ON(ret != -EEXIST);
spin_lock(&fs_info->balance_lock);
update_balance_args(bctl);
spin_unlock(&fs_info->balance_lock);
}
ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
describe_balance_start_or_resume(fs_info);
mutex_unlock(&fs_info->balance_mutex);
ret = __btrfs_balance(fs_info);
mutex_lock(&fs_info->balance_mutex);
if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
btrfs_info(fs_info, "balance: paused");
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
btrfs: fix race between balance and cancel/pause Syzbot reported a panic that looks like this: assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259 Call Trace: <TASK> btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline] btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline] btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The reproducer is running a balance and a cancel or pause in parallel. The way balance finishes is a bit wonky, if we were paused we need to save the balance_ctl in the fs_info, but clear it otherwise and cleanup. However we rely on the return values being specific errors, or having a cancel request or no pause request. If balance completes and returns 0, but we have a pause or cancel request we won't do the appropriate cleanup, and then the next time we try to start a balance we'll trip this ASSERT. The error handling is just wrong here, we always want to clean up, unless we got -ECANCELLED and we set the appropriate pause flag in the exclusive op. With this patch the reproducer ran for an hour without tripping, previously it would trip in less than a few minutes. Reported-by: syzbot+c0f3acf145cb465426d5@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-23 05:05:41 +00:00
paused = true;
}
/*
* Balance can be canceled by:
*
* - Regular cancel request
* Then ret == -ECANCELED and balance_cancel_req > 0
*
* - Fatal signal to "btrfs" process
* Either the signal caught by wait_reserve_ticket() and callers
* got -EINTR, or caught by btrfs_should_cancel_balance() and
* got -ECANCELED.
* Either way, in this case balance_cancel_req = 0, and
* ret == -EINTR or ret == -ECANCELED.
*
* So here we only check the return value to catch canceled balance.
*/
else if (ret == -ECANCELED || ret == -EINTR)
btrfs_info(fs_info, "balance: canceled");
else
btrfs_info(fs_info, "balance: ended with status: %d", ret);
clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
if (bargs) {
memset(bargs, 0, sizeof(*bargs));
btrfs_update_ioctl_balance_args(fs_info, bargs);
}
btrfs: fix race between balance and cancel/pause Syzbot reported a panic that looks like this: assertion failed: fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED, in fs/btrfs/ioctl.c:465 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! RIP: 0010:btrfs_assertfail+0x2c/0x30 fs/btrfs/messages.c:259 Call Trace: <TASK> btrfs_exclop_balance fs/btrfs/ioctl.c:465 [inline] btrfs_ioctl_balance fs/btrfs/ioctl.c:3564 [inline] btrfs_ioctl+0x531e/0x5b30 fs/btrfs/ioctl.c:4632 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The reproducer is running a balance and a cancel or pause in parallel. The way balance finishes is a bit wonky, if we were paused we need to save the balance_ctl in the fs_info, but clear it otherwise and cleanup. However we rely on the return values being specific errors, or having a cancel request or no pause request. If balance completes and returns 0, but we have a pause or cancel request we won't do the appropriate cleanup, and then the next time we try to start a balance we'll trip this ASSERT. The error handling is just wrong here, we always want to clean up, unless we got -ECANCELLED and we set the appropriate pause flag in the exclusive op. With this patch the reproducer ran for an hour without tripping, previously it would trip in less than a few minutes. Reported-by: syzbot+c0f3acf145cb465426d5@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-23 05:05:41 +00:00
/* We didn't pause, we can clean everything up. */
if (!paused) {
reset_balance_state(fs_info);
btrfs_exclop_finish(fs_info);
}
wake_up(&fs_info->balance_wait_q);
return ret;
out:
if (bctl->flags & BTRFS_BALANCE_RESUME)
reset_balance_state(fs_info);
else
kfree(bctl);
btrfs_exclop_finish(fs_info);
return ret;
}
static int balance_kthread(void *data)
{
struct btrfs_fs_info *fs_info = data;
int ret = 0;
sb_start_write(fs_info->sb);
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl)
ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
mutex_unlock(&fs_info->balance_mutex);
sb_end_write(fs_info->sb);
return ret;
}
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
struct task_struct *tsk;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
mutex_unlock(&fs_info->balance_mutex);
return 0;
}
mutex_unlock(&fs_info->balance_mutex);
if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
btrfs_info(fs_info, "balance: resume skipped");
return 0;
}
spin_lock(&fs_info->super_lock);
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
spin_unlock(&fs_info->super_lock);
/*
* A ro->rw remount sequence should continue with the paused balance
* regardless of who pauses it, system or the user as of now, so set
* the resume flag.
*/
spin_lock(&fs_info->balance_lock);
fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
spin_unlock(&fs_info->balance_lock);
tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
return PTR_ERR_OR_ZERO(tsk);
}
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
{
struct btrfs_balance_control *bctl;
struct btrfs_balance_item *item;
struct btrfs_disk_balance_args disk_bargs;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_BALANCE_OBJECTID;
key.type = BTRFS_TEMPORARY_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0) { /* ret = -ENOENT; */
ret = 0;
goto out;
}
bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
if (!bctl) {
ret = -ENOMEM;
goto out;
}
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
bctl->flags = btrfs_balance_flags(leaf, item);
bctl->flags |= BTRFS_BALANCE_RESUME;
btrfs_balance_data(leaf, item, &disk_bargs);
btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
btrfs_balance_meta(leaf, item, &disk_bargs);
btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
btrfs_balance_sys(leaf, item, &disk_bargs);
btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
/*
* This should never happen, as the paused balance state is recovered
* during mount without any chance of other exclusive ops to collide.
*
* This gives the exclusive op status to balance and keeps in paused
* state until user intervention (cancel or umount). If the ownership
* cannot be assigned, show a message but do not fail. The balance
* is in a paused state and must have fs_info::balance_ctl properly
* set up.
*/
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
btrfs_warn(fs_info,
"balance: cannot set exclusive op status, resume manually");
btrfs: fix lockdep splat in btrfs_recover_relocation While testing the error paths of relocation I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc6+ #217 Not tainted ------------------------------------------------------ mount/779 is trying to acquire lock: ffffa0e676945418 (&fs_info->balance_mutex){+.+.}-{3:3}, at: btrfs_recover_balance+0x2f0/0x340 but task is already holding lock: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-root-00){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x462/0x8f0 btrfs_update_root+0x55/0x2b0 btrfs_drop_snapshot+0x398/0x750 clean_dirty_subvols+0xdf/0x120 btrfs_recover_relocation+0x534/0x5a0 btrfs_start_pre_rw_mount+0xcb/0x170 open_ctree+0x151f/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (sb_internal#2){.+.+}-{0:0}: start_transaction+0x444/0x700 insert_balance_item.isra.0+0x37/0x320 btrfs_balance+0x354/0xf40 btrfs_ioctl_balance+0x2cf/0x380 __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&fs_info->balance_mutex){+.+.}-{3:3}: __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 __mutex_lock+0x7e/0x7b0 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: &fs_info->balance_mutex --> sb_internal#2 --> btrfs-root-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-root-00); lock(sb_internal#2); lock(btrfs-root-00); lock(&fs_info->balance_mutex); *** DEADLOCK *** 2 locks held by mount/779: #0: ffffa0e60dc040e0 (&type->s_umount_key#47/1){+.+.}-{3:3}, at: alloc_super+0xb5/0x380 #1: ffffa0e60ee31da8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x27/0x100 stack backtrace: CPU: 0 PID: 779 Comm: mount Not tainted 5.10.0-rc6+ #217 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1120/0x1e10 lock_acquire+0x116/0x370 ? btrfs_recover_balance+0x2f0/0x340 __mutex_lock+0x7e/0x7b0 ? btrfs_recover_balance+0x2f0/0x340 ? btrfs_recover_balance+0x2f0/0x340 ? rcu_read_lock_sched_held+0x3f/0x80 ? kmem_cache_alloc_trace+0x2c4/0x2f0 ? btrfs_get_64+0x5e/0x100 btrfs_recover_balance+0x2f0/0x340 open_ctree+0x1095/0x1726 btrfs_mount_root.cold+0x12/0xea ? rcu_read_lock_sched_held+0x3f/0x80 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 ? __kmalloc_track_caller+0x2f2/0x320 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 ? capable+0x3a/0x60 path_mount+0x433/0xc10 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This is straightforward to fix, simply release the path before we setup the balance_ctl. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:14 +00:00
btrfs_release_path(path);
mutex_lock(&fs_info->balance_mutex);
BUG_ON(fs_info->balance_ctl);
spin_lock(&fs_info->balance_lock);
fs_info->balance_ctl = bctl;
spin_unlock(&fs_info->balance_lock);
mutex_unlock(&fs_info->balance_mutex);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
int ret = 0;
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
mutex_unlock(&fs_info->balance_mutex);
return -ENOTCONN;
}
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
atomic_inc(&fs_info->balance_pause_req);
mutex_unlock(&fs_info->balance_mutex);
wait_event(fs_info->balance_wait_q,
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
mutex_lock(&fs_info->balance_mutex);
/* we are good with balance_ctl ripped off from under us */
BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
atomic_dec(&fs_info->balance_pause_req);
} else {
ret = -ENOTCONN;
}
mutex_unlock(&fs_info->balance_mutex);
return ret;
}
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
mutex_lock(&fs_info->balance_mutex);
if (!fs_info->balance_ctl) {
mutex_unlock(&fs_info->balance_mutex);
return -ENOTCONN;
}
/*
* A paused balance with the item stored on disk can be resumed at
* mount time if the mount is read-write. Otherwise it's still paused
* and we must not allow cancelling as it deletes the item.
*/
if (sb_rdonly(fs_info->sb)) {
mutex_unlock(&fs_info->balance_mutex);
return -EROFS;
}
atomic_inc(&fs_info->balance_cancel_req);
/*
* if we are running just wait and return, balance item is
* deleted in btrfs_balance in this case
*/
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
mutex_unlock(&fs_info->balance_mutex);
wait_event(fs_info->balance_wait_q,
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
mutex_lock(&fs_info->balance_mutex);
} else {
mutex_unlock(&fs_info->balance_mutex);
btrfs: kill btrfs_fs_info::volume_mutex Mutual exclusion of device add/rm and balance was done by the volume mutex up to version 3.7. The commit 5ac00addc7ac091109 ("Btrfs: disallow mutually exclusive admin operations from user mode") added a bit that essentially tracked the same information. The status bit has an advantage over a mutex that it can be set without restrictions of function context, so it started to be used in the mount-time resuming of balance or device replace. But we don't really need to track the same information in two ways. 1) After the previous cleanups, the main ioctl handlers for add/del/resize copy the EXCL_OP bit next to the volume mutex, here it's clearly safe. 2) Resuming balance during mount or after rw remount will set only the EXCL_OP bit and the volume_mutex is held in the kernel thread that calls btrfs_balance. 3) Resuming device replace during mount or after rw remount is done after balance and is excluded by the EXCL_OP bit. It does not take the volume_mutex at all and completely relies on the EXCL_OP bit. 4) The resuming of balance and dev-replace cannot hapen at the same time as the ioctls cannot be started in parallel. Nevertheless, a crafted image could trigger that and a warning is printed. 5) Balance is normally excluded by EXCL_OP and also uses own mutex to protect against concurrent access to its status data. There's some trickery to maintain the right lock nesting in case we need to reexamine the status in btrfs_ioctl_balance. The volume_mutex is removed and the unlock/lock sequence is left in place as we might expect other waiters to proceed. 6) Similar to 5, the unlock/lock sequence is kept in btrfs_cancel_balance to allow waiters to continue. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-20 23:20:05 +00:00
/*
* Lock released to allow other waiters to continue, we'll
* reexamine the status again.
*/
mutex_lock(&fs_info->balance_mutex);
if (fs_info->balance_ctl) {
reset_balance_state(fs_info);
btrfs_exclop_finish(fs_info);
btrfs_info(fs_info, "balance: canceled");
}
}
ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
atomic_dec(&fs_info->balance_cancel_req);
mutex_unlock(&fs_info->balance_mutex);
return 0;
}
int btrfs_uuid_scan_kthread(void *data)
{
struct btrfs_fs_info *fs_info = data;
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_key key;
struct btrfs_path *path = NULL;
int ret = 0;
struct extent_buffer *eb;
int slot;
struct btrfs_root_item root_item;
u32 item_size;
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
struct btrfs_trans_handle *trans = NULL;
bool closing = false;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
key.objectid = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
while (1) {
if (btrfs_fs_closing(fs_info)) {
closing = true;
break;
}
ret = btrfs_search_forward(root, &key, path,
BTRFS_OLDEST_GENERATION);
if (ret) {
if (ret > 0)
ret = 0;
break;
}
if (key.type != BTRFS_ROOT_ITEM_KEY ||
(key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
key.objectid != BTRFS_FS_TREE_OBJECTID) ||
key.objectid > BTRFS_LAST_FREE_OBJECTID)
goto skip;
eb = path->nodes[0];
slot = path->slots[0];
item_size = btrfs_item_size(eb, slot);
if (item_size < sizeof(root_item))
goto skip;
read_extent_buffer(eb, &root_item,
btrfs_item_ptr_offset(eb, slot),
(int)sizeof(root_item));
if (btrfs_root_refs(&root_item) == 0)
goto skip;
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
if (!btrfs_is_empty_uuid(root_item.uuid) ||
!btrfs_is_empty_uuid(root_item.received_uuid)) {
if (trans)
goto update_tree;
btrfs_release_path(path);
/*
* 1 - subvol uuid item
* 1 - received_subvol uuid item
*/
trans = btrfs_start_transaction(fs_info->uuid_root, 2);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
continue;
} else {
goto skip;
}
update_tree:
btrfs: drop path before adding new uuid tree entry With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Not tainted ------------------------------------------------------ btrfs-uuid/7955 is trying to acquire lock: ffff88bfbafec0f8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 but task is already holding lock: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-uuid-00){++++}-{3:3}: down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_uuid_tree_add+0x89/0x2d0 btrfs_uuid_scan_kthread+0x330/0x390 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-uuid-00); lock(btrfs-root-00); lock(btrfs-uuid-00); lock(btrfs-root-00); *** DEADLOCK *** 1 lock held by btrfs-uuid/7955: #0: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 73 PID: 7955 Comm: btrfs-uuid Kdump: loaded Not tainted 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __btrfs_tree_read_lock+0x39/0x180 ? btrfs_root_node+0x1c/0x1d0 down_read_nested+0x3e/0x140 ? __btrfs_tree_read_lock+0x39/0x180 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 ? btree_readpage+0x20/0x20 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x1f/0x30 This problem exists because we have two different rescan threads, btrfs_uuid_scan_kthread which creates the uuid tree, and btrfs_uuid_tree_iterate that goes through and updates or deletes any out of date roots. The problem is they both do things in different order. btrfs_uuid_scan_kthread() reads the tree_root, and then inserts entries into the uuid_root. btrfs_uuid_tree_iterate() scans the uuid_root, but then does a btrfs_get_fs_root() which can read from the tree_root. It's actually easy enough to not be holding the path in btrfs_uuid_scan_kthread() when we add a uuid entry, as we already drop it further down and re-start the search when we loop. So simply move the path release before we add our entry to the uuid tree. This also fixes a problem where we're holding a path open after we do btrfs_end_transaction(), which has it's own problems. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 15:42:26 +00:00
btrfs_release_path(path);
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
if (!btrfs_is_empty_uuid(root_item.uuid)) {
ret = btrfs_uuid_tree_add(trans, root_item.uuid,
BTRFS_UUID_KEY_SUBVOL,
key.objectid);
if (ret < 0) {
btrfs_warn(fs_info, "uuid_tree_add failed %d",
ret);
break;
}
}
if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
ret = btrfs_uuid_tree_add(trans,
root_item.received_uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
key.objectid);
if (ret < 0) {
btrfs_warn(fs_info, "uuid_tree_add failed %d",
ret);
break;
}
}
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
skip:
btrfs: drop path before adding new uuid tree entry With the conversion of the tree locks to rwsem I got the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Not tainted ------------------------------------------------------ btrfs-uuid/7955 is trying to acquire lock: ffff88bfbafec0f8 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 but task is already holding lock: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-uuid-00){++++}-{3:3}: down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_uuid_tree_add+0x89/0x2d0 btrfs_uuid_scan_kthread+0x330/0x390 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 down_read_nested+0x3e/0x140 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-uuid-00); lock(btrfs-root-00); lock(btrfs-uuid-00); lock(btrfs-root-00); *** DEADLOCK *** 1 lock held by btrfs-uuid/7955: #0: ffff88bfbafef2a8 (btrfs-uuid-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 stack backtrace: CPU: 73 PID: 7955 Comm: btrfs-uuid Kdump: loaded Not tainted 5.8.0-rc7-00167-g0d7ba0c5b375-dirty #925 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? __btrfs_tree_read_lock+0x39/0x180 ? btrfs_root_node+0x1c/0x1d0 down_read_nested+0x3e/0x140 ? __btrfs_tree_read_lock+0x39/0x180 __btrfs_tree_read_lock+0x39/0x180 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x4bd/0x990 btrfs_find_root+0x45/0x1b0 btrfs_read_tree_root+0x61/0x100 btrfs_get_root_ref.part.50+0x143/0x630 btrfs_uuid_tree_iterate+0x207/0x314 ? btree_readpage+0x20/0x20 btrfs_uuid_rescan_kthread+0x12/0x50 kthread+0x133/0x150 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x1f/0x30 This problem exists because we have two different rescan threads, btrfs_uuid_scan_kthread which creates the uuid tree, and btrfs_uuid_tree_iterate that goes through and updates or deletes any out of date roots. The problem is they both do things in different order. btrfs_uuid_scan_kthread() reads the tree_root, and then inserts entries into the uuid_root. btrfs_uuid_tree_iterate() scans the uuid_root, but then does a btrfs_get_fs_root() which can read from the tree_root. It's actually easy enough to not be holding the path in btrfs_uuid_scan_kthread() when we add a uuid entry, as we already drop it further down and re-start the search when we loop. So simply move the path release before we add our entry to the uuid tree. This also fixes a problem where we're holding a path open after we do btrfs_end_transaction(), which has it's own problems. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-10 15:42:26 +00:00
btrfs_release_path(path);
if (trans) {
ret = btrfs_end_transaction(trans);
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
trans = NULL;
if (ret)
break;
}
if (key.offset < (u64)-1) {
key.offset++;
} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
key.offset = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
} else if (key.objectid < (u64)-1) {
key.offset = 0;
key.type = BTRFS_ROOT_ITEM_KEY;
key.objectid++;
} else {
break;
}
cond_resched();
}
out:
btrfs_free_path(path);
Btrfs: fix deadlock in uuid scan kthread If there's an ongoing transaction when the uuid scan kthread attempts to create one, the kthread will block, waiting for that transaction to finish while it's keeping locks on the tree root, and in turn the existing transaction is waiting for those locks to be free. The stack trace reported by the kernel follows. [36700.671601] INFO: task btrfs-uuid:15480 blocked for more than 120 seconds. [36700.671602] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671602] btrfs-uuid D 0000000000000000 0 15480 2 0x00000000 [36700.671604] ffff880710bd5b88 0000000000000046 ffff8803d36ba850 0000000000030000 [36700.671605] ffff8806d76dc530 ffff880710bd5fd8 ffff880710bd5fd8 ffff880710bd5fd8 [36700.671607] ffff8808098ac530 ffff8806d76dc530 ffff880710bd5b98 ffff8805e4508e40 [36700.671608] Call Trace: [36700.671610] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671620] [<ffffffffa05a3bdf>] wait_current_trans.isra.33+0xbf/0x120 [btrfs] [36700.671623] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671629] [<ffffffffa05a5b06>] start_transaction+0x3d6/0x530 [btrfs] [36700.671636] [<ffffffffa05bb1f4>] ? btrfs_get_token_32+0x64/0xf0 [btrfs] [36700.671642] [<ffffffffa05a5fbb>] btrfs_start_transaction+0x1b/0x20 [btrfs] [36700.671649] [<ffffffffa05c8a81>] btrfs_uuid_scan_kthread+0x211/0x3d0 [btrfs] [36700.671655] [<ffffffffa05c8870>] ? __btrfs_open_devices+0x2a0/0x2a0 [btrfs] [36700.671657] [<ffffffff81065fa0>] kthread+0xc0/0xd0 [36700.671659] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671661] [<ffffffff816fcd1c>] ret_from_fork+0x7c/0xb0 [36700.671662] [<ffffffff81065ee0>] ? flush_kthread_worker+0xb0/0xb0 [36700.671663] INFO: task btrfs:15481 blocked for more than 120 seconds. [36700.671664] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [36700.671665] btrfs D 0000000000000000 0 15481 15212 0x00000004 [36700.671666] ffff880248cbf4c8 0000000000000086 ffff8803d36ba700 ffff8801dbd5c280 [36700.671668] ffff880807815c40 ffff880248cbffd8 ffff880248cbffd8 ffff880248cbffd8 [36700.671669] ffff8805e86a0000 ffff880807815c40 ffff880248cbf4d8 ffff8801dbd5c280 [36700.671670] Call Trace: [36700.671672] [<ffffffff816f36b9>] schedule+0x29/0x70 [36700.671679] [<ffffffffa05d9b0d>] btrfs_tree_lock+0x6d/0x230 [btrfs] [36700.671680] [<ffffffff81066760>] ? add_wait_queue+0x60/0x60 [36700.671685] [<ffffffffa0582829>] btrfs_search_slot+0x999/0xb00 [btrfs] [36700.671691] [<ffffffffa05bd9de>] ? btrfs_lookup_first_ordered_extent+0x5e/0xb0 [btrfs] [36700.671698] [<ffffffffa05e3e54>] __btrfs_write_out_cache+0x8c4/0xa80 [btrfs] [36700.671704] [<ffffffffa05e4362>] btrfs_write_out_cache+0xb2/0xf0 [btrfs] [36700.671710] [<ffffffffa05c4441>] ? free_extent_buffer+0x61/0xc0 [btrfs] [36700.671716] [<ffffffffa0594c82>] btrfs_write_dirty_block_groups+0x562/0x650 [btrfs] [36700.671723] [<ffffffffa0610092>] commit_cowonly_roots+0x171/0x24b [btrfs] [36700.671729] [<ffffffffa05a4dde>] btrfs_commit_transaction+0x4fe/0xa10 [btrfs] [36700.671735] [<ffffffffa0610af3>] create_subvol+0x5c0/0x636 [btrfs] [36700.671742] [<ffffffffa05d49ff>] btrfs_mksubvol.isra.60+0x33f/0x3f0 [btrfs] [36700.671747] [<ffffffffa05d4bf2>] btrfs_ioctl_snap_create_transid+0x142/0x190 [btrfs] [36700.671752] [<ffffffffa05d4c6c>] ? btrfs_ioctl_snap_create+0x2c/0x80 [btrfs] [36700.671757] [<ffffffffa05d4c9e>] btrfs_ioctl_snap_create+0x5e/0x80 [btrfs] [36700.671759] [<ffffffff8113a764>] ? handle_pte_fault+0x84/0x920 [36700.671764] [<ffffffffa05d87eb>] btrfs_ioctl+0xf0b/0x1d00 [btrfs] [36700.671766] [<ffffffff8113c120>] ? handle_mm_fault+0x210/0x310 [36700.671768] [<ffffffff816f83a4>] ? __do_page_fault+0x284/0x4e0 [36700.671770] [<ffffffff81180aa6>] do_vfs_ioctl+0x96/0x550 [36700.671772] [<ffffffff81170fe3>] ? __sb_end_write+0x33/0x70 [36700.671774] [<ffffffff81180ff1>] SyS_ioctl+0x91/0xb0 [36700.671775] [<ffffffff816fcdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-28 09:28:34 +00:00
if (trans && !IS_ERR(trans))
btrfs_end_transaction(trans);
if (ret)
btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
else if (!closing)
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
up(&fs_info->uuid_tree_rescan_sem);
return 0;
}
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *uuid_root;
struct task_struct *task;
int ret;
/*
* 1 - root node
* 1 - root item
*/
trans = btrfs_start_transaction(tree_root, 2);
if (IS_ERR(trans))
return PTR_ERR(trans);
uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
if (IS_ERR(uuid_root)) {
ret = PTR_ERR(uuid_root);
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
return ret;
}
fs_info->uuid_root = uuid_root;
ret = btrfs_commit_transaction(trans);
if (ret)
return ret;
down(&fs_info->uuid_tree_rescan_sem);
task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
if (IS_ERR(task)) {
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
btrfs_warn(fs_info, "failed to start uuid_scan task");
up(&fs_info->uuid_tree_rescan_sem);
return PTR_ERR(task);
}
return 0;
}
/*
* shrinking a device means finding all of the device extents past
* the new size, and then following the back refs to the chunks.
* The chunk relocation code actually frees the device extent
*/
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_trans_handle *trans;
struct btrfs_dev_extent *dev_extent = NULL;
struct btrfs_path *path;
u64 length;
u64 chunk_offset;
int ret;
int slot;
int failed = 0;
bool retried = false;
struct extent_buffer *l;
struct btrfs_key key;
struct btrfs_super_block *super_copy = fs_info->super_copy;
u64 old_total = btrfs_super_total_bytes(super_copy);
u64 old_size = btrfs_device_get_total_bytes(device);
u64 diff;
u64 start;
new_size = round_down(new_size, fs_info->sectorsize);
start = new_size;
diff = round_down(old_size - new_size, fs_info->sectorsize);
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
return -EINVAL;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_BACK;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
btrfs_free_path(path);
return PTR_ERR(trans);
}
mutex_lock(&fs_info->chunk_mutex);
btrfs_device_set_total_bytes(device, new_size);
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
device->fs_devices->total_rw_bytes -= diff;
atomic64_sub(diff, &fs_info->free_chunk_space);
}
/*
* Once the device's size has been set to the new size, ensure all
* in-memory chunks are synced to disk so that the loop below sees them
* and relocates them accordingly.
*/
if (contains_pending_extent(device, &start, diff)) {
mutex_unlock(&fs_info->chunk_mutex);
ret = btrfs_commit_transaction(trans);
if (ret)
goto done;
} else {
mutex_unlock(&fs_info->chunk_mutex);
btrfs_end_transaction(trans);
}
again:
key.objectid = device->devid;
key.offset = (u64)-1;
key.type = BTRFS_DEV_EXTENT_KEY;
do {
mutex_lock(&fs_info->reclaim_bgs_lock);
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
if (ret < 0) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto done;
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
}
ret = btrfs_previous_item(root, path, 0, key.type);
if (ret) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
if (ret < 0)
goto done;
ret = 0;
btrfs_release_path(path);
break;
}
l = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
if (key.objectid != device->devid) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
btrfs_release_path(path);
break;
}
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
length = btrfs_dev_extent_length(l, dev_extent);
if (key.offset + length <= new_size) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
btrfs_release_path(path);
break;
}
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
btrfs_release_path(path);
/*
* We may be relocating the only data chunk we have,
* which could potentially end up with losing data's
* raid profile, so lets allocate an empty one in
* advance.
*/
ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
if (ret < 0) {
mutex_unlock(&fs_info->reclaim_bgs_lock);
goto done;
}
ret = btrfs_relocate_chunk(fs_info, chunk_offset);
mutex_unlock(&fs_info->reclaim_bgs_lock);
if (ret == -ENOSPC) {
failed++;
} else if (ret) {
if (ret == -ETXTBSY) {
btrfs_warn(fs_info,
"could not shrink block group %llu due to active swapfile",
chunk_offset);
}
goto done;
}
} while (key.offset-- > 0);
if (failed && !retried) {
failed = 0;
retried = true;
goto again;
} else if (failed && retried) {
ret = -ENOSPC;
goto done;
}
/* Shrinking succeeded, else we would be at "done". */
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto done;
}
mutex_lock(&fs_info->chunk_mutex);
btrfs: trim: fix underflow in trim length to prevent access beyond device boundary [BUG] The following script can lead to tons of beyond device boundary access: mkfs.btrfs -f $dev -b 10G mount $dev $mnt trimfs $mnt btrfs filesystem resize 1:-1G $mnt trimfs $mnt [CAUSE] Since commit 929be17a9b49 ("btrfs: Switch btrfs_trim_free_extents to find_first_clear_extent_bit"), we try to avoid trimming ranges that's already trimmed. So we check device->alloc_state by finding the first range which doesn't have CHUNK_TRIMMED and CHUNK_ALLOCATED not set. But if we shrunk the device, that bits are not cleared, thus we could easily got a range starts beyond the shrunk device size. This results the returned @start and @end are all beyond device size, then we call "end = min(end, device->total_bytes -1);" making @end smaller than device size. Then finally we goes "len = end - start + 1", totally underflow the result, and lead to the beyond-device-boundary access. [FIX] This patch will fix the problem in two ways: - Clear CHUNK_TRIMMED | CHUNK_ALLOCATED bits when shrinking device This is the root fix - Add extra safety check when trimming free device extents We check and warn if the returned range is already beyond current device. Link: https://github.com/kdave/btrfs-progs/issues/282 Fixes: 929be17a9b49 ("btrfs: Switch btrfs_trim_free_extents to find_first_clear_extent_bit") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-31 11:29:11 +00:00
/* Clear all state bits beyond the shrunk device size */
clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
CHUNK_STATE_MASK);
btrfs_device_set_disk_total_bytes(device, new_size);
if (list_empty(&device->post_commit_list))
list_add_tail(&device->post_commit_list,
&trans->transaction->dev_update_list);
WARN_ON(diff > old_total);
btrfs_set_super_total_bytes(super_copy,
round_down(old_total - diff, fs_info->sectorsize));
mutex_unlock(&fs_info->chunk_mutex);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_reserve_chunk_metadata(trans, false);
/* Now btrfs_update_device() will change the on-disk size. */
ret = btrfs_update_device(trans, device);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
btrfs_trans_release_chunk_metadata(trans);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
btrfs_end_transaction(trans);
} else {
ret = btrfs_commit_transaction(trans);
}
done:
btrfs_free_path(path);
Btrfs: check pending chunks when shrinking fs to avoid corruption When we shrink the usable size of a device (its total_bytes), we go over all the device extent items in the device tree and attempt to relocate the chunk of any device extent that goes beyond the new usable size for the device. We do that after setting the new usable size (total_bytes) in the device object, so that all new allocations (and reallocations) don't use areas of the device that go beyond the new (shorter) size. However we were not considering that before setting the new size in the device, pending chunks might have been created that use device extents that go beyond the new size, and those device extents are not yet in the device tree after we search the device tree - they are still attached to the list of new block group for some ongoing transaction handle, and they are only added to the device tree when the transaction handle is ended (via btrfs_create_pending_block_groups()). So check for pending chunks with device extents that go beyond the new size and if any exists, commit the current transaction and repeat the search in the device tree. Not doing this it would mean we would return success to user space while still having extents that go beyond the new size, and later user space could override those locations on the device while the fs still references them, causing all sorts of corruption and unexpected events. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-02 13:43:21 +00:00
if (ret) {
mutex_lock(&fs_info->chunk_mutex);
Btrfs: check pending chunks when shrinking fs to avoid corruption When we shrink the usable size of a device (its total_bytes), we go over all the device extent items in the device tree and attempt to relocate the chunk of any device extent that goes beyond the new usable size for the device. We do that after setting the new usable size (total_bytes) in the device object, so that all new allocations (and reallocations) don't use areas of the device that go beyond the new (shorter) size. However we were not considering that before setting the new size in the device, pending chunks might have been created that use device extents that go beyond the new size, and those device extents are not yet in the device tree after we search the device tree - they are still attached to the list of new block group for some ongoing transaction handle, and they are only added to the device tree when the transaction handle is ended (via btrfs_create_pending_block_groups()). So check for pending chunks with device extents that go beyond the new size and if any exists, commit the current transaction and repeat the search in the device tree. Not doing this it would mean we would return success to user space while still having extents that go beyond the new size, and later user space could override those locations on the device while the fs still references them, causing all sorts of corruption and unexpected events. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-02 13:43:21 +00:00
btrfs_device_set_total_bytes(device, old_size);
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Btrfs: check pending chunks when shrinking fs to avoid corruption When we shrink the usable size of a device (its total_bytes), we go over all the device extent items in the device tree and attempt to relocate the chunk of any device extent that goes beyond the new usable size for the device. We do that after setting the new usable size (total_bytes) in the device object, so that all new allocations (and reallocations) don't use areas of the device that go beyond the new (shorter) size. However we were not considering that before setting the new size in the device, pending chunks might have been created that use device extents that go beyond the new size, and those device extents are not yet in the device tree after we search the device tree - they are still attached to the list of new block group for some ongoing transaction handle, and they are only added to the device tree when the transaction handle is ended (via btrfs_create_pending_block_groups()). So check for pending chunks with device extents that go beyond the new size and if any exists, commit the current transaction and repeat the search in the device tree. Not doing this it would mean we would return success to user space while still having extents that go beyond the new size, and later user space could override those locations on the device while the fs still references them, causing all sorts of corruption and unexpected events. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-02 13:43:21 +00:00
device->fs_devices->total_rw_bytes += diff;
atomic64_add(diff, &fs_info->free_chunk_space);
mutex_unlock(&fs_info->chunk_mutex);
Btrfs: check pending chunks when shrinking fs to avoid corruption When we shrink the usable size of a device (its total_bytes), we go over all the device extent items in the device tree and attempt to relocate the chunk of any device extent that goes beyond the new usable size for the device. We do that after setting the new usable size (total_bytes) in the device object, so that all new allocations (and reallocations) don't use areas of the device that go beyond the new (shorter) size. However we were not considering that before setting the new size in the device, pending chunks might have been created that use device extents that go beyond the new size, and those device extents are not yet in the device tree after we search the device tree - they are still attached to the list of new block group for some ongoing transaction handle, and they are only added to the device tree when the transaction handle is ended (via btrfs_create_pending_block_groups()). So check for pending chunks with device extents that go beyond the new size and if any exists, commit the current transaction and repeat the search in the device tree. Not doing this it would mean we would return success to user space while still having extents that go beyond the new size, and later user space could override those locations on the device while the fs still references them, causing all sorts of corruption and unexpected events. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-02 13:43:21 +00:00
}
return ret;
}
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
struct btrfs_key *key,
struct btrfs_chunk *chunk, int item_size)
{
struct btrfs_super_block *super_copy = fs_info->super_copy;
struct btrfs_disk_key disk_key;
u32 array_size;
u8 *ptr;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
lockdep_assert_held(&fs_info->chunk_mutex);
array_size = btrfs_super_sys_array_size(super_copy);
if (array_size + item_size + sizeof(disk_key)
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
return -EFBIG;
ptr = super_copy->sys_chunk_array + array_size;
btrfs_cpu_key_to_disk(&disk_key, key);
memcpy(ptr, &disk_key, sizeof(disk_key));
ptr += sizeof(disk_key);
memcpy(ptr, chunk, item_size);
item_size += sizeof(disk_key);
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
return 0;
}
/*
* sort the devices in descending order by max_avail, total_avail
*/
static int btrfs_cmp_device_info(const void *a, const void *b)
{
const struct btrfs_device_info *di_a = a;
const struct btrfs_device_info *di_b = b;
if (di_a->max_avail > di_b->max_avail)
return -1;
if (di_a->max_avail < di_b->max_avail)
return 1;
if (di_a->total_avail > di_b->total_avail)
return -1;
if (di_a->total_avail < di_b->total_avail)
return 1;
return 0;
}
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
return;
btrfs_set_fs_incompat(info, RAID56);
}
static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
return;
btrfs_set_fs_incompat(info, RAID1C34);
}
/*
* Structure used internally for btrfs_create_chunk() function.
* Wraps needed parameters.
*/
struct alloc_chunk_ctl {
u64 start;
u64 type;
/* Total number of stripes to allocate */
int num_stripes;
/* sub_stripes info for map */
int sub_stripes;
/* Stripes per device */
int dev_stripes;
/* Maximum number of devices to use */
int devs_max;
/* Minimum number of devices to use */
int devs_min;
/* ndevs has to be a multiple of this */
int devs_increment;
/* Number of copies */
int ncopies;
/* Number of stripes worth of bytes to store parity information */
int nparity;
u64 max_stripe_size;
u64 max_chunk_size;
u64 dev_extent_min;
u64 stripe_size;
u64 chunk_size;
int ndevs;
};
static void init_alloc_chunk_ctl_policy_regular(
struct btrfs_fs_devices *fs_devices,
struct alloc_chunk_ctl *ctl)
{
struct btrfs_space_info *space_info;
space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
ASSERT(space_info);
ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
ctl->max_stripe_size = ctl->max_chunk_size;
if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
/* We don't want a chunk larger than 10% of writable space */
ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
ctl->max_chunk_size);
ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
}
2021-02-04 10:21:48 +00:00
static void init_alloc_chunk_ctl_policy_zoned(
struct btrfs_fs_devices *fs_devices,
struct alloc_chunk_ctl *ctl)
{
u64 zone_size = fs_devices->fs_info->zone_size;
u64 limit;
int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
u64 min_chunk_size = min_data_stripes * zone_size;
u64 type = ctl->type;
ctl->max_stripe_size = zone_size;
if (type & BTRFS_BLOCK_GROUP_DATA) {
ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
zone_size);
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
ctl->max_chunk_size = ctl->max_stripe_size;
} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ctl->max_chunk_size = 2 * ctl->max_stripe_size;
ctl->devs_max = min_t(int, ctl->devs_max,
BTRFS_MAX_DEVS_SYS_CHUNK);
} else {
BUG();
2021-02-04 10:21:48 +00:00
}
/* We don't want a chunk larger than 10% of writable space */
limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
2021-02-04 10:21:48 +00:00
zone_size),
min_chunk_size);
ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
ctl->dev_extent_min = zone_size * ctl->dev_stripes;
}
static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
struct alloc_chunk_ctl *ctl)
{
int index = btrfs_bg_flags_to_raid_index(ctl->type);
ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
ctl->devs_max = btrfs_raid_array[index].devs_max;
if (!ctl->devs_max)
ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
ctl->devs_min = btrfs_raid_array[index].devs_min;
ctl->devs_increment = btrfs_raid_array[index].devs_increment;
ctl->ncopies = btrfs_raid_array[index].ncopies;
ctl->nparity = btrfs_raid_array[index].nparity;
ctl->ndevs = 0;
switch (fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
break;
2021-02-04 10:21:48 +00:00
case BTRFS_CHUNK_ALLOC_ZONED:
init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
break;
default:
BUG();
}
}
static int gather_device_info(struct btrfs_fs_devices *fs_devices,
struct alloc_chunk_ctl *ctl,
struct btrfs_device_info *devices_info)
{
struct btrfs_fs_info *info = fs_devices->fs_info;
struct btrfs_device *device;
u64 total_avail;
u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
int ret;
int ndevs = 0;
u64 max_avail;
u64 dev_offset;
/*
* in the first pass through the devices list, we gather information
* about the available holes on each device.
*/
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
WARN(1, KERN_ERR
"BTRFS: read-only device in alloc_list\n");
continue;
}
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
&device->dev_state) ||
test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
continue;
if (device->total_bytes > device->bytes_used)
total_avail = device->total_bytes - device->bytes_used;
else
total_avail = 0;
/* If there is no space on this device, skip it. */
if (total_avail < ctl->dev_extent_min)
continue;
ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
&max_avail);
if (ret && ret != -ENOSPC)
return ret;
if (ret == 0)
max_avail = dev_extent_want;
if (max_avail < ctl->dev_extent_min) {
if (btrfs_test_opt(info, ENOSPC_DEBUG))
btrfs_debug(info,
"%s: devid %llu has no free space, have=%llu want=%llu",
__func__, device->devid, max_avail,
ctl->dev_extent_min);
continue;
}
if (ndevs == fs_devices->rw_devices) {
WARN(1, "%s: found more than %llu devices\n",
__func__, fs_devices->rw_devices);
break;
}
devices_info[ndevs].dev_offset = dev_offset;
devices_info[ndevs].max_avail = max_avail;
devices_info[ndevs].total_avail = total_avail;
devices_info[ndevs].dev = device;
++ndevs;
}
ctl->ndevs = ndevs;
/*
* now sort the devices by hole size / available space
*/
sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
btrfs_cmp_device_info, NULL);
return 0;
}
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
struct btrfs_device_info *devices_info)
{
/* Number of stripes that count for block group size */
int data_stripes;
/*
* The primary goal is to maximize the number of stripes, so use as
* many devices as possible, even if the stripes are not maximum sized.
*
* The DUP profile stores more than one stripe per device, the
* max_avail is the total size so we have to adjust.
*/
ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
ctl->dev_stripes);
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
/* This will have to be fixed for RAID1 and RAID10 over more drives */
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
/*
* Use the number of data stripes to figure out how big this chunk is
* really going to be in terms of logical address space, and compare
* that answer with the max chunk size. If it's higher, we try to
* reduce stripe_size.
*/
if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
/*
* Reduce stripe_size, round it up to a 16MB boundary again and
* then use it, unless it ends up being even bigger than the
* previous value we had already.
*/
ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
data_stripes), SZ_16M),
ctl->stripe_size);
}
btrfs: fix the max chunk size and stripe length calculation [BEHAVIOR CHANGE] Since commit f6fca3917b4d ("btrfs: store chunk size in space-info struct"), btrfs no longer can create larger data chunks than 1G: mkfs.btrfs -f -m raid1 -d raid0 $dev1 $dev2 $dev3 $dev4 mount $dev1 $mnt btrfs balance start --full $mnt btrfs balance start --full $mnt umount $mnt btrfs ins dump-tree -t chunk $dev1 | grep "DATA|RAID0" -C 2 Before that offending commit, what we got is a 4G data chunk: item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 9492758528) itemoff 15491 itemsize 176 length 4294967296 owner 2 stripe_len 65536 type DATA|RAID0 io_align 65536 io_width 65536 sector_size 4096 num_stripes 4 sub_stripes 1 Now what we got is only 1G data chunk: item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 6271533056) itemoff 15491 itemsize 176 length 1073741824 owner 2 stripe_len 65536 type DATA|RAID0 io_align 65536 io_width 65536 sector_size 4096 num_stripes 4 sub_stripes 1 This will increase the number of data chunks by the number of devices, not only increase system chunk usage, but also greatly increase mount time. Without a proper reason, we should not change the max chunk size. [CAUSE] Previously, we set max data chunk size to 10G, while max data stripe length to 1G. Commit f6fca3917b4d ("btrfs: store chunk size in space-info struct") completely ignored the 10G limit, but use 1G max stripe limit instead, causing above shrink in max data chunk size. [FIX] Fix the max data chunk size to 10G, and in decide_stripe_size_regular() we limit stripe_size to 1G manually. This should only affect data chunks, as for metadata chunks we always set the max stripe size the same as max chunk size (256M or 1G depending on fs size). Now the same script result the same old result: item 6 key (FIRST_CHUNK_TREE CHUNK_ITEM 9492758528) itemoff 15491 itemsize 176 length 4294967296 owner 2 stripe_len 65536 type DATA|RAID0 io_align 65536 io_width 65536 sector_size 4096 num_stripes 4 sub_stripes 1 Reported-by: Wang Yugui <wangyugui@e16-tech.com> Fixes: f6fca3917b4d ("btrfs: store chunk size in space-info struct") Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-18 07:06:44 +00:00
/* Stripe size should not go beyond 1G. */
ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
/* Align to BTRFS_STRIPE_LEN */
ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
ctl->chunk_size = ctl->stripe_size * data_stripes;
return 0;
}
2021-02-04 10:21:48 +00:00
static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
struct btrfs_device_info *devices_info)
{
u64 zone_size = devices_info[0].dev->zone_info->zone_size;
/* Number of stripes that count for block group size */
int data_stripes;
/*
* It should hold because:
* dev_extent_min == dev_extent_want == zone_size * dev_stripes
*/
ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
ctl->stripe_size = zone_size;
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
ctl->stripe_size) + ctl->nparity,
ctl->dev_stripes);
ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
}
ctl->chunk_size = ctl->stripe_size * data_stripes;
return 0;
}
static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
struct alloc_chunk_ctl *ctl,
struct btrfs_device_info *devices_info)
{
struct btrfs_fs_info *info = fs_devices->fs_info;
/*
* Round down to number of usable stripes, devs_increment can be any
* number so we can't use round_down() that requires power of 2, while
* rounddown is safe.
*/
ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
if (ctl->ndevs < ctl->devs_min) {
if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
btrfs_debug(info,
"%s: not enough devices with free space: have=%d minimum required=%d",
__func__, ctl->ndevs, ctl->devs_min);
}
return -ENOSPC;
}
ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
switch (fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
return decide_stripe_size_regular(ctl, devices_info);
2021-02-04 10:21:48 +00:00
case BTRFS_CHUNK_ALLOC_ZONED:
return decide_stripe_size_zoned(ctl, devices_info);
default:
BUG();
}
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
struct alloc_chunk_ctl *ctl,
struct btrfs_device_info *devices_info)
{
struct btrfs_fs_info *info = trans->fs_info;
struct map_lookup *map = NULL;
struct extent_map_tree *em_tree;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
struct btrfs_block_group *block_group;
struct extent_map *em;
u64 start = ctl->start;
u64 type = ctl->type;
int ret;
int i;
int j;
map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
if (!map)
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-ENOMEM);
map->num_stripes = ctl->num_stripes;
for (i = 0; i < ctl->ndevs; ++i) {
for (j = 0; j < ctl->dev_stripes; ++j) {
int s = i * ctl->dev_stripes + j;
map->stripes[s].dev = devices_info[i].dev;
map->stripes[s].physical = devices_info[i].dev_offset +
j * ctl->stripe_size;
}
}
map->io_align = BTRFS_STRIPE_LEN;
map->io_width = BTRFS_STRIPE_LEN;
map->type = type;
map->sub_stripes = ctl->sub_stripes;
trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
Btrfs: add initial tracepoint support for btrfs Tracepoints can provide insight into why btrfs hits bugs and be greatly helpful for debugging, e.g dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0 dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0 btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0) btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0) btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8 flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0) flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0) flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0) Here is what I have added: 1) ordere_extent: btrfs_ordered_extent_add btrfs_ordered_extent_remove btrfs_ordered_extent_start btrfs_ordered_extent_put These provide critical information to understand how ordered_extents are updated. 2) extent_map: btrfs_get_extent extent_map is used in both read and write cases, and it is useful for tracking how btrfs specific IO is running. 3) writepage: __extent_writepage btrfs_writepage_end_io_hook Pages are cirtical resourses and produce a lot of corner cases during writeback, so it is valuable to know how page is written to disk. 4) inode: btrfs_inode_new btrfs_inode_request btrfs_inode_evict These can show where and when a inode is created, when a inode is evicted. 5) sync: btrfs_sync_file btrfs_sync_fs These show sync arguments. 6) transaction: btrfs_transaction_commit In transaction based filesystem, it will be useful to know the generation and who does commit. 7) back reference and cow: btrfs_delayed_tree_ref btrfs_delayed_data_ref btrfs_delayed_ref_head btrfs_cow_block Btrfs natively supports back references, these tracepoints are helpful on understanding btrfs's COW mechanism. 8) chunk: btrfs_chunk_alloc btrfs_chunk_free Chunk is a link between physical offset and logical offset, and stands for space infomation in btrfs, and these are helpful on tracing space things. 9) reserved_extent: btrfs_reserved_extent_alloc btrfs_reserved_extent_free These can show how btrfs uses its space. Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-24 11:18:59 +00:00
em = alloc_extent_map();
if (!em) {
Btrfs: fix NULL pointer crash when running balance and scrub concurrently While running balance, scrub, fsstress concurrently we hit the following kernel crash: [56561.448845] BTRFS info (device sde): relocating block group 11005853696 flags 132 [56561.524077] BUG: unable to handle kernel NULL pointer dereference at 0000000000000078 [56561.524237] IP: [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.524297] PGD 9be28067 PUD 7f3dd067 PMD 0 [56561.524325] Oops: 0000 [#1] SMP [....] [56561.527237] Call Trace: [56561.527309] [<ffffffffa038980e>] scrub_enumerate_chunks+0x24e/0x490 [btrfs] [56561.527392] [<ffffffff810abe00>] ? abort_exclusive_wait+0x50/0xb0 [56561.527476] [<ffffffffa038add4>] btrfs_scrub_dev+0x1a4/0x530 [btrfs] [56561.527561] [<ffffffffa0368107>] btrfs_ioctl+0x13f7/0x2a90 [btrfs] [56561.527639] [<ffffffff811c82f0>] do_vfs_ioctl+0x2e0/0x4c0 [56561.527712] [<ffffffff8109c384>] ? vtime_account_user+0x54/0x60 [56561.527788] [<ffffffff810f768c>] ? __audit_syscall_entry+0x9c/0xf0 [56561.527870] [<ffffffff811c8551>] SyS_ioctl+0x81/0xa0 [56561.527941] [<ffffffff815707f7>] tracesys+0xdd/0xe2 [...] [56561.528304] RIP [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.528395] RSP <ffff88004c0f5be8> [56561.528454] CR2: 0000000000000078 This is because in btrfs_relocate_chunk(), we will free @bdev directly while scrub may still hold extent mapping, and may access freed memory. Fix this problem by wrapping freeing @bdev work into free_extent_map() which is based on reference count. Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-19 02:42:52 +00:00
kfree(map);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-ENOMEM);
}
Btrfs: fix NULL pointer crash when running balance and scrub concurrently While running balance, scrub, fsstress concurrently we hit the following kernel crash: [56561.448845] BTRFS info (device sde): relocating block group 11005853696 flags 132 [56561.524077] BUG: unable to handle kernel NULL pointer dereference at 0000000000000078 [56561.524237] IP: [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.524297] PGD 9be28067 PUD 7f3dd067 PMD 0 [56561.524325] Oops: 0000 [#1] SMP [....] [56561.527237] Call Trace: [56561.527309] [<ffffffffa038980e>] scrub_enumerate_chunks+0x24e/0x490 [btrfs] [56561.527392] [<ffffffff810abe00>] ? abort_exclusive_wait+0x50/0xb0 [56561.527476] [<ffffffffa038add4>] btrfs_scrub_dev+0x1a4/0x530 [btrfs] [56561.527561] [<ffffffffa0368107>] btrfs_ioctl+0x13f7/0x2a90 [btrfs] [56561.527639] [<ffffffff811c82f0>] do_vfs_ioctl+0x2e0/0x4c0 [56561.527712] [<ffffffff8109c384>] ? vtime_account_user+0x54/0x60 [56561.527788] [<ffffffff810f768c>] ? __audit_syscall_entry+0x9c/0xf0 [56561.527870] [<ffffffff811c8551>] SyS_ioctl+0x81/0xa0 [56561.527941] [<ffffffff815707f7>] tracesys+0xdd/0xe2 [...] [56561.528304] RIP [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.528395] RSP <ffff88004c0f5be8> [56561.528454] CR2: 0000000000000078 This is because in btrfs_relocate_chunk(), we will free @bdev directly while scrub may still hold extent mapping, and may access freed memory. Fix this problem by wrapping freeing @bdev work into free_extent_map() which is based on reference count. Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-19 02:42:52 +00:00
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
em->map_lookup = map;
em->start = start;
em->len = ctl->chunk_size;
em->block_start = 0;
em->block_len = em->len;
em->orig_block_len = ctl->stripe_size;
em_tree = &info->mapping_tree;
write_lock(&em_tree->lock);
2013-04-05 20:51:15 +00:00
ret = add_extent_mapping(em_tree, em, 0);
if (ret) {
write_unlock(&em_tree->lock);
free_extent_map(em);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(ret);
}
write_unlock(&em_tree->lock);
block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (IS_ERR(block_group))
goto error_del_extent;
for (i = 0; i < map->num_stripes; i++) {
struct btrfs_device *dev = map->stripes[i].dev;
btrfs_device_set_bytes_used(dev,
dev->bytes_used + ctl->stripe_size);
if (list_empty(&dev->post_commit_list))
list_add_tail(&dev->post_commit_list,
&trans->transaction->dev_update_list);
}
atomic64_sub(ctl->stripe_size * map->num_stripes,
&info->free_chunk_space);
free_extent_map(em);
check_raid56_incompat_flag(info, type);
check_raid1c34_incompat_flag(info, type);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return block_group;
error_del_extent:
write_lock(&em_tree->lock);
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* One for our allocation */
free_extent_map(em);
/* One for the tree reference */
free_extent_map(em);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return block_group;
}
struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
u64 type)
{
struct btrfs_fs_info *info = trans->fs_info;
struct btrfs_fs_devices *fs_devices = info->fs_devices;
struct btrfs_device_info *devices_info = NULL;
struct alloc_chunk_ctl ctl;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
struct btrfs_block_group *block_group;
int ret;
lockdep_assert_held(&info->chunk_mutex);
if (!alloc_profile_is_valid(type, 0)) {
ASSERT(0);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-EINVAL);
}
if (list_empty(&fs_devices->alloc_list)) {
if (btrfs_test_opt(info, ENOSPC_DEBUG))
btrfs_debug(info, "%s: no writable device", __func__);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-ENOSPC);
}
if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
btrfs_err(info, "invalid chunk type 0x%llx requested", type);
ASSERT(0);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-EINVAL);
}
ctl.start = find_next_chunk(info);
ctl.type = type;
init_alloc_chunk_ctl(fs_devices, &ctl);
devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
GFP_NOFS);
if (!devices_info)
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return ERR_PTR(-ENOMEM);
ret = gather_device_info(fs_devices, &ctl, devices_info);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (ret < 0) {
block_group = ERR_PTR(ret);
goto out;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
}
ret = decide_stripe_size(fs_devices, &ctl, devices_info);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (ret < 0) {
block_group = ERR_PTR(ret);
goto out;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
block_group = create_chunk(trans, &ctl, devices_info);
out:
kfree(devices_info);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
return block_group;
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
/*
* This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
* phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
* chunks.
*
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
* phases.
*/
int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
struct btrfs_block_group *bg)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *chunk_root = fs_info->chunk_root;
struct btrfs_key key;
struct btrfs_chunk *chunk;
struct btrfs_stripe *stripe;
struct extent_map *em;
struct map_lookup *map;
size_t item_size;
int i;
int ret;
/*
* We take the chunk_mutex for 2 reasons:
*
* 1) Updates and insertions in the chunk btree must be done while holding
* the chunk_mutex, as well as updating the system chunk array in the
* superblock. See the comment on top of btrfs_chunk_alloc() for the
* details;
*
* 2) To prevent races with the final phase of a device replace operation
* that replaces the device object associated with the map's stripes,
* because the device object's id can change at any time during that
* final phase of the device replace operation
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
* which would cause a failure when updating the device item, which does
* not exists, or persisting a stripe of the chunk item with such ID.
* Here we can't use the device_list_mutex because our caller already
* has locked the chunk_mutex, and the final phase of device replace
* acquires both mutexes - first the device_list_mutex and then the
* chunk_mutex. Using any of those two mutexes protects us from a
* concurrent device replace.
*/
lockdep_assert_held(&fs_info->chunk_mutex);
em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
btrfs_abort_transaction(trans, ret);
return ret;
}
map = em->map_lookup;
item_size = btrfs_chunk_item_size(map->num_stripes);
chunk = kzalloc(item_size, GFP_NOFS);
if (!chunk) {
ret = -ENOMEM;
btrfs_abort_transaction(trans, ret);
Btrfs: fix race when finishing dev replace leading to transaction abort During the final phase of a device replace operation, I ran into a transaction abort that resulted in the following trace: [23919.655368] WARNING: CPU: 10 PID: 30175 at fs/btrfs/extent-tree.c:9843 btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs]() [23919.664742] BTRFS: Transaction aborted (error -2) [23919.665749] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 parport psmouse acpi_cpufreq processor i2c_core evdev microcode pcspkr button serio_raw ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic ata_piix virtio_pci floppy virtio_ring libata e1000 virtio scsi_mod [last unloaded: btrfs] [23919.679442] CPU: 10 PID: 30175 Comm: fsstress Not tainted 4.3.0-rc5-btrfs-next-17+ #1 [23919.682392] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [23919.689151] 0000000000000000 ffff8804020cbb50 ffffffff812566f4 ffff8804020cbb98 [23919.692604] ffff8804020cbb88 ffffffff8104d0a6 ffffffffa03eea69 ffff88041b678a48 [23919.694230] ffff88042ac38000 ffff88041b678930 00000000fffffffe ffff8804020cbbf0 [23919.696716] Call Trace: [23919.698669] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [23919.700597] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [23919.701958] [<ffffffffa03eea69>] ? btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs] [23919.703612] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50 [23919.705047] [<ffffffffa03eea69>] btrfs_create_pending_block_groups+0x15e/0x1ab [btrfs] [23919.706967] [<ffffffffa0402097>] __btrfs_end_transaction+0x84/0x2dd [btrfs] [23919.708611] [<ffffffffa0402300>] btrfs_end_transaction+0x10/0x12 [btrfs] [23919.710099] [<ffffffffa03ef0b8>] btrfs_alloc_data_chunk_ondemand+0x121/0x28b [btrfs] [23919.711970] [<ffffffffa0413025>] btrfs_fallocate+0x7d3/0xc6d [btrfs] [23919.713602] [<ffffffff8108b78f>] ? lock_acquire+0x10d/0x194 [23919.714756] [<ffffffff81086dbc>] ? percpu_down_read+0x51/0x78 [23919.716155] [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0 [23919.718918] [<ffffffff8116ef1d>] ? __sb_start_write+0x5f/0xb0 [23919.724170] [<ffffffff8116b579>] vfs_fallocate+0x170/0x1ff [23919.725482] [<ffffffff8117c1d7>] ioctl_preallocate+0x89/0x9b [23919.726790] [<ffffffff8117c5ef>] do_vfs_ioctl+0x406/0x4e6 [23919.728428] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [23919.729642] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [23919.730782] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [23919.731847] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f [23919.733330] ---[ end trace 166ef301a335832a ]--- This is due to a race between device replace and chunk allocation, which the following diagram illustrates: CPU 1 CPU 2 btrfs_dev_replace_finishing() at this point dev_replace->tgtdev->devid == BTRFS_DEV_REPLACE_DEVID (0ULL) ... btrfs_start_transaction() btrfs_commit_transaction() btrfs_fallocate() btrfs_alloc_data_chunk_ondemand() btrfs_join_transaction() --> starts a new transaction do_chunk_alloc() lock fs_info->chunk_mutex btrfs_alloc_chunk() --> creates extent map for the new chunk with em->bdev->map->stripes[i]->dev->devid == X (X > 0) --> extent map is added to fs_info->mapping_tree --> initial phase of bg A allocation completes unlock fs_info->chunk_mutex lock fs_info->chunk_mutex btrfs_dev_replace_update_device_in_mapping_tree() --> iterates fs_info->mapping_tree and replaces the device in every extent map's map->stripes[] with dev_replace->tgtdev, which still has an id of 0ULL (BTRFS_DEV_REPLACE_DEVID) btrfs_end_transaction() btrfs_create_pending_block_groups() --> starts final phase of bg A creation (update device, extent, and chunk trees, etc) btrfs_finish_chunk_alloc() btrfs_update_device() --> attempts to update a device item with ID == 0ULL (BTRFS_DEV_REPLACE_DEVID) which is the current ID of bg A's em->bdev->map->stripes[i]->dev->devid --> doesn't find such item returns -ENOENT --> the device id should have been X and not 0ULL got -ENOENT from btrfs_finish_chunk_alloc() and aborts current transaction finishes setting up the target device, namely it sets tgtdev->devid to the value of srcdev->devid, which is X (and X > 0) frees the srcdev unlock fs_info->chunk_mutex So fix this by taking the device list mutex when processing the chunk's extent map stripes to update the device items. This avoids getting the wrong device id and use-after-free problems if the task finishing a chunk allocation grabs the replaced device, which is freed while the dev replace task is holding the device list mutex. This happened while running fstest btrfs/071. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-11-20 10:42:47 +00:00
goto out;
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
for (i = 0; i < map->num_stripes; i++) {
struct btrfs_device *device = map->stripes[i].dev;
ret = btrfs_update_device(trans, device);
if (ret)
goto out;
}
stripe = &chunk->stripe;
for (i = 0; i < map->num_stripes; i++) {
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
struct btrfs_device *device = map->stripes[i].dev;
const u64 dev_offset = map->stripes[i].physical;
btrfs_set_stack_stripe_devid(stripe, device->devid);
btrfs_set_stack_stripe_offset(stripe, dev_offset);
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
stripe++;
}
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
btrfs_set_stack_chunk_length(chunk, bg->length);
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_type(chunk, map->type);
btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.type = BTRFS_CHUNK_ITEM_KEY;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
key.offset = bg->start;
ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (ret)
goto out;
set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (ret)
goto out;
}
Btrfs: add initial tracepoint support for btrfs Tracepoints can provide insight into why btrfs hits bugs and be greatly helpful for debugging, e.g dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0 dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0 btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0) btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0) btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8 flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0) flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0) flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0) Here is what I have added: 1) ordere_extent: btrfs_ordered_extent_add btrfs_ordered_extent_remove btrfs_ordered_extent_start btrfs_ordered_extent_put These provide critical information to understand how ordered_extents are updated. 2) extent_map: btrfs_get_extent extent_map is used in both read and write cases, and it is useful for tracking how btrfs specific IO is running. 3) writepage: __extent_writepage btrfs_writepage_end_io_hook Pages are cirtical resourses and produce a lot of corner cases during writeback, so it is valuable to know how page is written to disk. 4) inode: btrfs_inode_new btrfs_inode_request btrfs_inode_evict These can show where and when a inode is created, when a inode is evicted. 5) sync: btrfs_sync_file btrfs_sync_fs These show sync arguments. 6) transaction: btrfs_transaction_commit In transaction based filesystem, it will be useful to know the generation and who does commit. 7) back reference and cow: btrfs_delayed_tree_ref btrfs_delayed_data_ref btrfs_delayed_ref_head btrfs_cow_block Btrfs natively supports back references, these tracepoints are helpful on understanding btrfs's COW mechanism. 8) chunk: btrfs_chunk_alloc btrfs_chunk_free Chunk is a link between physical offset and logical offset, and stands for space infomation in btrfs, and these are helpful on tracing space things. 9) reserved_extent: btrfs_reserved_extent_alloc btrfs_reserved_extent_free These can show how btrfs uses its space. Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-24 11:18:59 +00:00
out:
kfree(chunk);
free_extent_map(em);
return ret;
}
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
u64 alloc_profile;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
struct btrfs_block_group *meta_bg;
struct btrfs_block_group *sys_bg;
/*
* When adding a new device for sprouting, the seed device is read-only
* so we must first allocate a metadata and a system chunk. But before
* adding the block group items to the extent, device and chunk btrees,
* we must first:
*
* 1) Create both chunks without doing any changes to the btrees, as
* otherwise we would get -ENOSPC since the block groups from the
* seed device are read-only;
*
* 2) Add the device item for the new sprout device - finishing the setup
* of a new block group requires updating the device item in the chunk
* btree, so it must exist when we attempt to do it. The previous step
* ensures this does not fail with -ENOSPC.
*
* After that we can add the block group items to their btrees:
* update existing device item in the chunk btree, add a new block group
* item to the extent btree, add a new chunk item to the chunk btree and
* finally add the new device extent items to the devices btree.
*/
alloc_profile = btrfs_metadata_alloc_profile(fs_info);
meta_bg = btrfs_create_chunk(trans, alloc_profile);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (IS_ERR(meta_bg))
return PTR_ERR(meta_bg);
alloc_profile = btrfs_system_alloc_profile(fs_info);
sys_bg = btrfs_create_chunk(trans, alloc_profile);
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
if (IS_ERR(sys_bg))
return PTR_ERR(sys_bg);
return 0;
}
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
const int index = btrfs_bg_flags_to_raid_index(map->type);
return btrfs_raid_array[index].tolerated_failures;
}
bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
{
struct extent_map *em;
struct map_lookup *map;
int miss_ndevs = 0;
int i;
bool ret = true;
em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
if (IS_ERR(em))
return false;
map = em->map_lookup;
for (i = 0; i < map->num_stripes; i++) {
if (test_bit(BTRFS_DEV_STATE_MISSING,
&map->stripes[i].dev->dev_state)) {
miss_ndevs++;
continue;
}
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
&map->stripes[i].dev->dev_state)) {
ret = false;
goto end;
}
}
/*
* If the number of missing devices is larger than max errors, we can
* not write the data into that chunk successfully.
*/
if (miss_ndevs > btrfs_chunk_max_errors(map))
ret = false;
end:
free_extent_map(em);
return ret;
}
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
{
struct extent_map *em;
while (1) {
write_lock(&tree->lock);
em = lookup_extent_mapping(tree, 0, (u64)-1);
if (em)
remove_extent_mapping(tree, em);
write_unlock(&tree->lock);
if (!em)
break;
/* once for us */
free_extent_map(em);
/* once for the tree */
free_extent_map(em);
}
}
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
{
struct extent_map *em;
struct map_lookup *map;
enum btrfs_raid_types index;
int ret = 1;
em = btrfs_get_chunk_map(fs_info, logical, len);
if (IS_ERR(em))
/*
* We could return errors for these cases, but that could get
* ugly and we'd probably do the same thing which is just not do
* anything else and exit, so return 1 so the callers don't try
* to use other copies.
*/
return 1;
map = em->map_lookup;
index = btrfs_bg_flags_to_raid_index(map->type);
/* Non-RAID56, use their ncopies from btrfs_raid_array. */
if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
ret = btrfs_raid_array[index].ncopies;
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
ret = 2;
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
/*
* There could be two corrupted data stripes, we need
* to loop retry in order to rebuild the correct data.
*
* Fail a stripe at a time on every retry except the
* stripe under reconstruction.
*/
ret = map->num_stripes;
free_extent_map(em);
return ret;
}
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
u64 logical)
{
struct extent_map *em;
struct map_lookup *map;
unsigned long len = fs_info->sectorsize;
if (!btrfs_fs_incompat(fs_info, RAID56))
return len;
em = btrfs_get_chunk_map(fs_info, logical, len);
if (!WARN_ON(IS_ERR(em))) {
map = em->map_lookup;
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
free_extent_map(em);
}
return len;
}
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
{
struct extent_map *em;
struct map_lookup *map;
int ret = 0;
if (!btrfs_fs_incompat(fs_info, RAID56))
return 0;
em = btrfs_get_chunk_map(fs_info, logical, len);
if(!WARN_ON(IS_ERR(em))) {
map = em->map_lookup;
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
ret = 1;
free_extent_map(em);
}
return ret;
}
static int find_live_mirror(struct btrfs_fs_info *fs_info,
struct map_lookup *map, int first,
int dev_replace_is_ongoing)
{
int i;
int num_stripes;
int preferred_mirror;
int tolerance;
struct btrfs_device *srcdev;
ASSERT((map->type &
(BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
num_stripes = map->sub_stripes;
else
num_stripes = map->num_stripes;
switch (fs_info->fs_devices->read_policy) {
default:
/* Shouldn't happen, just warn and use pid instead of failing */
btrfs_warn_rl(fs_info,
"unknown read_policy type %u, reset to pid",
fs_info->fs_devices->read_policy);
fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
fallthrough;
case BTRFS_READ_POLICY_PID:
preferred_mirror = first + (current->pid % num_stripes);
break;
}
if (dev_replace_is_ongoing &&
fs_info->dev_replace.cont_reading_from_srcdev_mode ==
BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
srcdev = fs_info->dev_replace.srcdev;
else
srcdev = NULL;
/*
* try to avoid the drive that is the source drive for a
* dev-replace procedure, only choose it if no other non-missing
* mirror is available
*/
for (tolerance = 0; tolerance < 2; tolerance++) {
if (map->stripes[preferred_mirror].dev->bdev &&
(tolerance || map->stripes[preferred_mirror].dev != srcdev))
return preferred_mirror;
for (i = first; i < first + num_stripes; i++) {
if (map->stripes[i].dev->bdev &&
(tolerance || map->stripes[i].dev != srcdev))
return i;
}
}
/* we couldn't find one that doesn't fail. Just return something
* and the io error handling code will clean up eventually
*/
return preferred_mirror;
}
static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
u16 total_stripes)
{
struct btrfs_io_context *bioc;
bioc = kzalloc(
/* The size of btrfs_io_context */
sizeof(struct btrfs_io_context) +
/* Plus the variable array for the stripes */
sizeof(struct btrfs_io_stripe) * (total_stripes),
GFP_NOFS);
if (!bioc)
return NULL;
refcount_set(&bioc->refs, 1);
bioc->fs_info = fs_info;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
bioc->replace_stripe_src = -1;
bioc->full_stripe_logical = (u64)-1;
btrfs: always initialize btrfs_bio::tgtdev_map/raid_map pointers Since btrfs_bio always contains the extra space for the tgtdev_map and raid_maps it's pointless to make the assignment iff specific conditions are met. Instead, always assign the pointers to their correct value at allocation time. To accommodate this change also move code a bit in __btrfs_map_block so that btrfs_bio::stripes array is always initialized before the raid_map, subsequently move the call to sort_parity_stripes in the 'if' building the raid_map, retaining the old behavior. To better understand the change, there are 2 aspects to this: 1. The original code is harder to grasp because the calculations for initializing raid_map/tgtdev ponters are apart from the initial allocation of memory. Having them predicated on 2 separate checks doesn't help that either... So by moving the initialisation in alloc_btrfs_bio puts everything together. 2. tgtdev/raid_maps are now always initialized despite sometimes they might be equal i.e __btrfs_map_block_for_discard calls alloc_btrfs_bio with tgtdev = 0 but their usage should be predicated on external checks i.e. just because those pointers are non-null doesn't mean they are valid per-se. And actually while taking another look at __btrfs_map_block I saw a discrepancy: Original code initialised tgtdev_map if the following check is true: if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) However, further down tgtdev_map is only used if the following check is true: if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && need_full_stripe(op)) e.g. the additional need_full_stripe(op) predicate is there. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copy more details from mail discussion ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 13:46:41 +00:00
return bioc;
}
void btrfs_get_bioc(struct btrfs_io_context *bioc)
{
WARN_ON(!refcount_read(&bioc->refs));
refcount_inc(&bioc->refs);
}
void btrfs_put_bioc(struct btrfs_io_context *bioc)
{
if (!bioc)
return;
if (refcount_dec_and_test(&bioc->refs))
kfree(bioc);
}
/*
* Please note that, discard won't be sent to target device of device
* replace.
*/
struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
u64 logical, u64 *length_ret,
u32 *num_stripes)
{
struct extent_map *em;
struct map_lookup *map;
struct btrfs_discard_stripe *stripes;
btrfs: Ensure we trim ranges across block group boundary [BUG] When deleting large files (which cross block group boundary) with discard mount option, we find some btrfs_discard_extent() calls only trimmed part of its space, not the whole range: btrfs_discard_extent: type=0x1 start=19626196992 len=2144530432 trimmed=1073741824 ratio=50% type: bbio->map_type, in above case, it's SINGLE DATA. start: Logical address of this trim len: Logical length of this trim trimmed: Physically trimmed bytes ratio: trimmed / len Thus leaving some unused space not discarded. [CAUSE] When discard mount option is specified, after a transaction is fully committed (super block written to disk), we begin to cleanup pinned extents in the following call chain: btrfs_commit_transaction() |- btrfs_finish_extent_commit() |- find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY); |- btrfs_discard_extent() However, pinned extents are recorded in an extent_io_tree, which can merge adjacent extent states. When a large file gets deleted and it has adjacent file extents across block group boundary, we will get a large merged range like this: |<--- BG1 --->|<--- BG2 --->| |//////|<-- Range to discard --->|/////| To discard that range, we have the following calls: btrfs_discard_extent() |- btrfs_map_block() | Returned bbio will end at BG1's end. As btrfs_map_block() | never returns result across block group boundary. |- btrfs_issuse_discard() Issue discard for each stripe. So we will only discard the range in BG1, not the remaining part in BG2. Furthermore, this bug is not that reliably observed, for above case, if there is no other extent in BG2, BG2 will be empty and btrfs will trim all space of BG2, covering up the bug. [FIX] - Allow __btrfs_map_block_for_discard() to modify @length parameter btrfs_map_block() uses its @length paramter to notify the caller how many bytes are mapped in current call. With __btrfs_map_block_for_discard() also modifing the @length, btrfs_discard_extent() now understands when to do extra trim. - Call btrfs_map_block() in a loop until we hit the range end Since we now know how many bytes are mapped each time, we can iterate through each block group boundary and issue correct trim for each range. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-23 13:57:27 +00:00
u64 length = *length_ret;
u64 offset;
u32 stripe_nr;
u32 stripe_nr_end;
u32 stripe_cnt;
u64 stripe_end_offset;
u64 stripe_offset;
u32 stripe_index;
u32 factor = 0;
u32 sub_stripes = 0;
u32 stripes_per_dev = 0;
u32 remaining_stripes = 0;
u32 last_stripe = 0;
int ret;
int i;
em = btrfs_get_chunk_map(fs_info, logical, length);
if (IS_ERR(em))
return ERR_CAST(em);
map = em->map_lookup;
/* we don't discard raid56 yet */
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
ret = -EOPNOTSUPP;
goto out_free_map;
}
offset = logical - em->start;
length = min_t(u64, em->start + em->len - logical, length);
btrfs: Ensure we trim ranges across block group boundary [BUG] When deleting large files (which cross block group boundary) with discard mount option, we find some btrfs_discard_extent() calls only trimmed part of its space, not the whole range: btrfs_discard_extent: type=0x1 start=19626196992 len=2144530432 trimmed=1073741824 ratio=50% type: bbio->map_type, in above case, it's SINGLE DATA. start: Logical address of this trim len: Logical length of this trim trimmed: Physically trimmed bytes ratio: trimmed / len Thus leaving some unused space not discarded. [CAUSE] When discard mount option is specified, after a transaction is fully committed (super block written to disk), we begin to cleanup pinned extents in the following call chain: btrfs_commit_transaction() |- btrfs_finish_extent_commit() |- find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY); |- btrfs_discard_extent() However, pinned extents are recorded in an extent_io_tree, which can merge adjacent extent states. When a large file gets deleted and it has adjacent file extents across block group boundary, we will get a large merged range like this: |<--- BG1 --->|<--- BG2 --->| |//////|<-- Range to discard --->|/////| To discard that range, we have the following calls: btrfs_discard_extent() |- btrfs_map_block() | Returned bbio will end at BG1's end. As btrfs_map_block() | never returns result across block group boundary. |- btrfs_issuse_discard() Issue discard for each stripe. So we will only discard the range in BG1, not the remaining part in BG2. Furthermore, this bug is not that reliably observed, for above case, if there is no other extent in BG2, BG2 will be empty and btrfs will trim all space of BG2, covering up the bug. [FIX] - Allow __btrfs_map_block_for_discard() to modify @length parameter btrfs_map_block() uses its @length paramter to notify the caller how many bytes are mapped in current call. With __btrfs_map_block_for_discard() also modifing the @length, btrfs_discard_extent() now understands when to do extra trim. - Call btrfs_map_block() in a loop until we hit the range end Since we now know how many bytes are mapped each time, we can iterate through each block group boundary and issue correct trim for each range. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-23 13:57:27 +00:00
*length_ret = length;
/*
* stripe_nr counts the total number of stripes we have to stride
* to get to this block
*/
stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
/* stripe_offset is the offset of this block in its stripe */
stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
BTRFS_STRIPE_LEN_SHIFT;
stripe_cnt = stripe_nr_end - stripe_nr;
stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
(offset + length);
/*
* after this, stripe_nr is the number of stripes on this
* device we have to walk to find the data, and stripe_index is
* the number of our device in the stripe array
*/
*num_stripes = 1;
stripe_index = 0;
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10)) {
if (map->type & BTRFS_BLOCK_GROUP_RAID0)
sub_stripes = 1;
else
sub_stripes = map->sub_stripes;
factor = map->num_stripes / sub_stripes;
*num_stripes = min_t(u64, map->num_stripes,
sub_stripes * stripe_cnt);
stripe_index = stripe_nr % factor;
stripe_nr /= factor;
stripe_index *= sub_stripes;
remaining_stripes = stripe_cnt % factor;
stripes_per_dev = stripe_cnt / factor;
last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
BTRFS_BLOCK_GROUP_DUP)) {
*num_stripes = map->num_stripes;
} else {
stripe_index = stripe_nr % map->num_stripes;
stripe_nr /= map->num_stripes;
}
stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
if (!stripes) {
ret = -ENOMEM;
goto out_free_map;
}
for (i = 0; i < *num_stripes; i++) {
stripes[i].physical =
map->stripes[stripe_index].physical +
stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
stripes[i].dev = map->stripes[stripe_index].dev;
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10)) {
stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
if (i / sub_stripes < remaining_stripes)
stripes[i].length += BTRFS_STRIPE_LEN;
/*
* Special for the first stripe and
* the last stripe:
*
* |-------|...|-------|
* |----------|
* off end_off
*/
if (i < sub_stripes)
stripes[i].length -= stripe_offset;
if (stripe_index >= last_stripe &&
stripe_index <= (last_stripe +
sub_stripes - 1))
stripes[i].length -= stripe_end_offset;
if (i == sub_stripes - 1)
stripe_offset = 0;
} else {
stripes[i].length = length;
}
stripe_index++;
if (stripe_index == map->num_stripes) {
stripe_index = 0;
stripe_nr++;
}
}
free_extent_map(em);
return stripes;
out_free_map:
free_extent_map(em);
return ERR_PTR(ret);
}
static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
{
struct btrfs_block_group *cache;
bool ret;
/* Non zoned filesystem does not use "to_copy" flag */
if (!btrfs_is_zoned(fs_info))
return false;
cache = btrfs_lookup_block_group(fs_info, logical);
ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
btrfs_put_block_group(cache);
return ret;
}
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
struct btrfs_io_context *bioc,
struct btrfs_dev_replace *dev_replace,
u64 logical,
int *num_stripes_ret, int *max_errors_ret)
{
u64 srcdev_devid = dev_replace->srcdev->devid;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
/*
* At this stage, num_stripes is still the real number of stripes,
* excluding the duplicated stripes.
*/
int num_stripes = *num_stripes_ret;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
int nr_extra_stripes = 0;
int max_errors = *max_errors_ret;
int i;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
/*
* A block group which has "to_copy" set will eventually be copied by
* the dev-replace process. We can avoid cloning IO here.
*/
if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
return;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
/*
* Duplicate the write operations while the dev-replace procedure is
* running. Since the copying of the old disk to the new disk takes
* place at run time while the filesystem is mounted writable, the
* regular write operations to the old disk have to be duplicated to go
* to the new disk as well.
*
* Note that device->missing is handled by the caller, and that the
* write to the old disk is already set up in the stripes array.
*/
for (i = 0; i < num_stripes; i++) {
struct btrfs_io_stripe *old = &bioc->stripes[i];
struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
if (old->dev->devid != srcdev_devid)
continue;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
new->physical = old->physical;
new->dev = dev_replace->tgtdev;
if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
bioc->replace_stripe_src = i;
nr_extra_stripes++;
}
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
/* We can only have at most 2 extra nr_stripes (for DUP). */
ASSERT(nr_extra_stripes <= 2);
/*
* For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
* replace.
* If we have 2 extra stripes, only choose the one with smaller physical.
*/
if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
/* Only DUP can have two extra stripes. */
ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
/*
* Swap the last stripe stripes and reduce @nr_extra_stripes.
* The extra stripe would still be there, but won't be accessed.
*/
if (first->physical > second->physical) {
swap(second->physical, first->physical);
swap(second->dev, first->dev);
nr_extra_stripes--;
}
}
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
*num_stripes_ret = num_stripes + nr_extra_stripes;
*max_errors_ret = max_errors + nr_extra_stripes;
bioc->replace_nr_stripes = nr_extra_stripes;
}
static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
u64 offset, u32 *stripe_nr, u64 *stripe_offset,
u64 *full_stripe_start)
{
/*
* Stripe_nr is the stripe where this block falls. stripe_offset is
* the offset of this block in its stripe.
*/
*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
ASSERT(*stripe_offset < U32_MAX);
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
unsigned long full_stripe_len =
btrfs_stripe_nr_to_offset(nr_data_stripes(map));
/*
* For full stripe start, we use previously calculated
* @stripe_nr. Align it to nr_data_stripes, then multiply with
* STRIPE_LEN.
*
* By this we can avoid u64 division completely. And we have
* to go rounddown(), not round_down(), as nr_data_stripes is
* not ensured to be power of 2.
*/
*full_stripe_start =
btrfs_stripe_nr_to_offset(
rounddown(*stripe_nr, nr_data_stripes(map)));
btrfs: fix u32 overflows when left shifting stripe_nr [BUG] David reported an ASSERT() get triggered during fio load on 8 devices with data/raid6 and metadata/raid1c3: fio --rw=randrw --randrepeat=1 --size=3000m \ --bsrange=512b-64k --bs_unaligned \ --ioengine=libaio --fsync=1024 \ --name=job0 --name=job1 \ The ASSERT() is from rbio_add_bio() of raid56.c: ASSERT(orig_logical >= full_stripe_start && orig_logical + orig_len <= full_stripe_start + rbio->nr_data * BTRFS_STRIPE_LEN); Which is checking if the target rbio is crossing the full stripe boundary. [100.789] assertion failed: orig_logical >= full_stripe_start && orig_logical + orig_len <= full_stripe_start + rbio->nr_data * BTRFS_STRIPE_LEN, in fs/btrfs/raid56.c:1622 [100.795] ------------[ cut here ]------------ [100.796] kernel BUG at fs/btrfs/raid56.c:1622! [100.797] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [100.798] CPU: 1 PID: 100 Comm: kworker/u8:4 Not tainted 6.4.0-rc6-default+ #124 [100.799] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552-rebuilt.opensuse.org 04/01/2014 [100.802] Workqueue: writeback wb_workfn (flush-btrfs-1) [100.803] RIP: 0010:rbio_add_bio+0x204/0x210 [btrfs] [100.806] RSP: 0018:ffff888104a8f300 EFLAGS: 00010246 [100.808] RAX: 00000000000000a1 RBX: ffff8881075907e0 RCX: ffffed1020951e01 [100.809] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 0000000000000001 [100.811] RBP: 0000000141d20000 R08: 0000000000000001 R09: ffff888104a8f04f [100.813] R10: ffffed1020951e09 R11: 0000000000000003 R12: ffff88810e87f400 [100.815] R13: 0000000041d20000 R14: 0000000144529000 R15: ffff888101524000 [100.817] FS: 0000000000000000(0000) GS:ffff88811ac00000(0000) knlGS:0000000000000000 [100.821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [100.822] CR2: 000055d54e44c270 CR3: 000000010a9a1006 CR4: 00000000003706a0 [100.824] Call Trace: [100.825] <TASK> [100.825] ? die+0x32/0x80 [100.826] ? do_trap+0x12d/0x160 [100.827] ? rbio_add_bio+0x204/0x210 [btrfs] [100.827] ? rbio_add_bio+0x204/0x210 [btrfs] [100.829] ? do_error_trap+0x90/0x130 [100.830] ? rbio_add_bio+0x204/0x210 [btrfs] [100.831] ? handle_invalid_op+0x2c/0x30 [100.833] ? rbio_add_bio+0x204/0x210 [btrfs] [100.835] ? exc_invalid_op+0x29/0x40 [100.836] ? asm_exc_invalid_op+0x16/0x20 [100.837] ? rbio_add_bio+0x204/0x210 [btrfs] [100.837] raid56_parity_write+0x64/0x270 [btrfs] [100.838] btrfs_submit_chunk+0x26e/0x800 [btrfs] [100.840] ? btrfs_bio_init+0x80/0x80 [btrfs] [100.841] ? release_pages+0x503/0x6d0 [100.842] ? folio_unlock+0x2f/0x60 [100.844] ? __folio_put+0x60/0x60 [100.845] ? btrfs_do_readpage+0xae0/0xae0 [btrfs] [100.847] btrfs_submit_bio+0x21/0x60 [btrfs] [100.847] submit_one_bio+0x6a/0xb0 [btrfs] [100.849] extent_write_cache_pages+0x395/0x680 [btrfs] [100.850] ? __extent_writepage+0x520/0x520 [btrfs] [100.851] ? mark_usage+0x190/0x190 [100.852] extent_writepages+0xdb/0x130 [btrfs] [100.853] ? extent_write_locked_range+0x480/0x480 [btrfs] [100.854] ? mark_usage+0x190/0x190 [100.854] ? attach_extent_buffer_page+0x220/0x220 [btrfs] [100.855] ? reacquire_held_locks+0x178/0x280 [100.856] ? writeback_sb_inodes+0x245/0x7f0 [100.857] do_writepages+0x102/0x2e0 [100.858] ? page_writeback_cpu_online+0x10/0x10 [100.859] ? __lock_release.isra.0+0x14a/0x4d0 [100.860] ? reacquire_held_locks+0x280/0x280 [100.861] ? __lock_acquired+0x1e9/0x3d0 [100.862] ? do_raw_spin_lock+0x1b0/0x1b0 [100.863] __writeback_single_inode+0x94/0x450 [100.864] writeback_sb_inodes+0x372/0x7f0 [100.864] ? lock_sync+0xd0/0xd0 [100.865] ? do_raw_spin_unlock+0x93/0xf0 [100.866] ? sync_inode_metadata+0xc0/0xc0 [100.867] ? rwsem_optimistic_spin+0x340/0x340 [100.868] __writeback_inodes_wb+0x70/0x130 [100.869] wb_writeback+0x2d1/0x530 [100.869] ? __writeback_inodes_wb+0x130/0x130 [100.870] ? lockdep_hardirqs_on_prepare.part.0+0xf1/0x1c0 [100.870] wb_do_writeback+0x3eb/0x480 [100.871] ? wb_writeback+0x530/0x530 [100.871] ? mark_lock_irq+0xcd0/0xcd0 [100.872] wb_workfn+0xe0/0x3f0< [CAUSE] Commit a97699d1d610 ("btrfs: replace map_lookup->stripe_len by BTRFS_STRIPE_LEN") changes how we calculate the map length, to reduce u64 division. Function btrfs_max_io_len() is to get the length to the stripe boundary. It calculates the full stripe start offset (inside the chunk) by the following code: *full_stripe_start = rounddown(*stripe_nr, nr_data_stripes(map)) << BTRFS_STRIPE_LEN_SHIFT; The calculation itself is fine, but the value returned by rounddown() is dependent on both @stripe_nr (which is u32) and nr_data_stripes() (which returned int). Thus the result is also u32, then we do the left shift, which can overflow u32. If such overflow happens, @full_stripe_start will be a value way smaller than @offset, causing later "full_stripe_len - (offset - *full_stripe_start)" to underflow, thus make later length calculation to have no stripe boundary limit, resulting a write bio to exceed stripe boundary. There are some other locations like this, with a u32 @stripe_nr got left shift, which can lead to a similar overflow. [FIX] Fix all @stripe_nr with left shift with a type cast to u64 before the left shift. Those involved @stripe_nr or similar variables are recording the stripe number inside the chunk, which is small enough to be contained by u32, but their offset inside the chunk can not fit into u32. Thus for those specific left shifts, a type cast to u64 is necessary so this patch does not touch them and the code will be cleaned up in the future to keep the fix minimal. Reported-by: David Sterba <dsterba@suse.com> Fixes: a97699d1d610 ("btrfs: replace map_lookup->stripe_len by BTRFS_STRIPE_LEN") Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-20 09:57:31 +00:00
ASSERT(*full_stripe_start + full_stripe_len > offset);
ASSERT(*full_stripe_start <= offset);
/*
* For writes to RAID56, allow to write a full stripe set, but
* no straddling of stripe sets.
*/
if (op == BTRFS_MAP_WRITE)
return full_stripe_len - (offset - *full_stripe_start);
}
/*
* For other RAID types and for RAID56 reads, allow a single stripe (on
* a single disk).
*/
if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
return BTRFS_STRIPE_LEN - *stripe_offset;
return U64_MAX;
}
static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
{
dst->dev = map->stripes[stripe_index].dev;
dst->physical = map->stripes[stripe_index].physical +
stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
}
/*
* Map one logical range to one or more physical ranges.
*
* @length: (Mandatory) mapped length of this run.
* One logical range can be split into different segments
* due to factors like zones and RAID0/5/6/10 stripe
* boundaries.
*
* @bioc_ret: (Mandatory) returned btrfs_io_context structure.
* which has one or more physical ranges (btrfs_io_stripe)
* recorded inside.
* Caller should call btrfs_put_bioc() to free it after use.
*
* @smap: (Optional) single physical range optimization.
* If the map request can be fulfilled by one single
* physical range, and this is parameter is not NULL,
* then @bioc_ret would be NULL, and @smap would be
* updated.
*
* @mirror_num_ret: (Mandatory) returned mirror number if the original
* value is 0.
*
* Mirror number 0 means to choose any live mirrors.
*
* For non-RAID56 profiles, non-zero mirror_num means
* the Nth mirror. (e.g. mirror_num 1 means the first
* copy).
*
* For RAID56 profile, mirror 1 means rebuild from P and
* the remaining data stripes.
*
* For RAID6 profile, mirror > 2 means mark another
* data/P stripe error and rebuild from the remaining
* stripes..
*
* @need_raid_map: (Used only for integrity checker) whether the map wants
* a full stripe map (including all data and P/Q stripes)
* for RAID56. Should always be 1 except integrity checker.
*/
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
u64 logical, u64 *length,
struct btrfs_io_context **bioc_ret,
struct btrfs_io_stripe *smap, int *mirror_num_ret,
int need_raid_map)
{
struct extent_map *em;
struct map_lookup *map;
u64 map_offset;
u64 stripe_offset;
u32 stripe_nr;
u32 stripe_index;
int data_stripes;
int i;
int ret = 0;
int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
int num_stripes;
btrfs: do not use replace target device as an extra mirror [BUG] Currently btrfs can use dev-replace device as an extra mirror for read-repair. But it can lead to NODATASUM corruption in the following case: There is a RAID1 data chunk, and dev-replace is running from dev2 to dev0. |//| = Replaced data X X+1MB X+2MB Dev 2: | | | <- Source dev Dev 0: |///////| | <- Target dev Then a read on dev 2 X+2MB happens. And something wrong happened inside devid 2, causing an -EIO. In that case, read-repair would try the next mirror, and since we can use target device as an extra mirror, we will use that mirror instead. But unfortunately since the read is beyond the current replace cursor, we should not trust it at all, what we get would be just uninitialized garbage. But if this read is for NODATASUM range, then we just trust them and cause data corruption. [CAUSE] We used to have some checks to make sure we only return such extra mirror when the range is before our left cursor. The first commit introducing this behavior is ad6d620e2a57 ("Btrfs: allow repair code to include target disk when searching mirrors"). But later a fix, 22ab04e814f4 ("Btrfs: fix race between device replace and chunk allocation") changed the behavior, to always let btrfs_map_block() include the extra mirror to address a race in dev-replace which can cause missing writes to target device. This means, we lose the tracking of cursor for the extra mirror, thus can lead to above corruption. [FIX] The extra mirror is never a reliable one, at the beginning of dev-replace, the reliability is zero, while only at the end of the replace it's a fully reliable mirror. We either do the complex tracking, or never trust it. IMHO it's much easier to maintain if we don't trust it at all, and the extra mirror can only benefit for a limited period of time (during replace). Thus this patch would completely remove the ability to use target device as an extra mirror. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-22 07:47:40 +00:00
int num_copies;
int max_errors = 0;
struct btrfs_io_context *bioc = NULL;
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
int dev_replace_is_ongoing = 0;
u16 num_alloc_stripes;
u64 raid56_full_stripe_start = (u64)-1;
u64 max_len;
ASSERT(bioc_ret);
btrfs: do not use replace target device as an extra mirror [BUG] Currently btrfs can use dev-replace device as an extra mirror for read-repair. But it can lead to NODATASUM corruption in the following case: There is a RAID1 data chunk, and dev-replace is running from dev2 to dev0. |//| = Replaced data X X+1MB X+2MB Dev 2: | | | <- Source dev Dev 0: |///////| | <- Target dev Then a read on dev 2 X+2MB happens. And something wrong happened inside devid 2, causing an -EIO. In that case, read-repair would try the next mirror, and since we can use target device as an extra mirror, we will use that mirror instead. But unfortunately since the read is beyond the current replace cursor, we should not trust it at all, what we get would be just uninitialized garbage. But if this read is for NODATASUM range, then we just trust them and cause data corruption. [CAUSE] We used to have some checks to make sure we only return such extra mirror when the range is before our left cursor. The first commit introducing this behavior is ad6d620e2a57 ("Btrfs: allow repair code to include target disk when searching mirrors"). But later a fix, 22ab04e814f4 ("Btrfs: fix race between device replace and chunk allocation") changed the behavior, to always let btrfs_map_block() include the extra mirror to address a race in dev-replace which can cause missing writes to target device. This means, we lose the tracking of cursor for the extra mirror, thus can lead to above corruption. [FIX] The extra mirror is never a reliable one, at the beginning of dev-replace, the reliability is zero, while only at the end of the replace it's a fully reliable mirror. We either do the complex tracking, or never trust it. IMHO it's much easier to maintain if we don't trust it at all, and the extra mirror can only benefit for a limited period of time (during replace). Thus this patch would completely remove the ability to use target device as an extra mirror. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-22 07:47:40 +00:00
num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
if (mirror_num > num_copies)
return -EINVAL;
em = btrfs_get_chunk_map(fs_info, logical, *length);
if (IS_ERR(em))
return PTR_ERR(em);
map = em->map_lookup;
data_stripes = nr_data_stripes(map);
map_offset = logical - em->start;
max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
&stripe_offset, &raid56_full_stripe_start);
*length = min_t(u64, em->len - map_offset, max_len);
down_read(&dev_replace->rwsem);
dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
/*
* Hold the semaphore for read during the whole operation, write is
* requested at commit time but must wait.
*/
if (!dev_replace_is_ongoing)
up_read(&dev_replace->rwsem);
num_stripes = 1;
stripe_index = 0;
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
stripe_index = stripe_nr % map->num_stripes;
stripe_nr /= map->num_stripes;
if (op == BTRFS_MAP_READ)
mirror_num = 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
if (op != BTRFS_MAP_READ) {
num_stripes = map->num_stripes;
} else if (mirror_num) {
stripe_index = mirror_num - 1;
} else {
stripe_index = find_live_mirror(fs_info, map, 0,
dev_replace_is_ongoing);
mirror_num = stripe_index + 1;
}
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
if (op != BTRFS_MAP_READ) {
num_stripes = map->num_stripes;
} else if (mirror_num) {
stripe_index = mirror_num - 1;
} else {
mirror_num = 1;
}
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
u32 factor = map->num_stripes / map->sub_stripes;
stripe_index = (stripe_nr % factor) * map->sub_stripes;
stripe_nr /= factor;
if (op != BTRFS_MAP_READ)
num_stripes = map->sub_stripes;
else if (mirror_num)
stripe_index += mirror_num - 1;
else {
int old_stripe_index = stripe_index;
stripe_index = find_live_mirror(fs_info, map,
stripe_index,
dev_replace_is_ongoing);
mirror_num = stripe_index - old_stripe_index + 1;
}
} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
/*
* Push stripe_nr back to the start of the full stripe
* For those cases needing a full stripe, @stripe_nr
* is the full stripe number.
*
* Originally we go raid56_full_stripe_start / full_stripe_len,
* but that can be expensive. Here we just divide
* @stripe_nr with @data_stripes.
*/
stripe_nr /= data_stripes;
/* RAID[56] write or recovery. Return all stripes */
num_stripes = map->num_stripes;
max_errors = btrfs_chunk_max_errors(map);
/* Return the length to the full stripe end */
*length = min(logical + *length,
raid56_full_stripe_start + em->start +
btrfs_stripe_nr_to_offset(data_stripes)) -
logical;
stripe_index = 0;
stripe_offset = 0;
} else {
/*
* Mirror #0 or #1 means the original data block.
* Mirror #2 is RAID5 parity block.
* Mirror #3 is RAID6 Q block.
*/
stripe_index = stripe_nr % data_stripes;
stripe_nr /= data_stripes;
if (mirror_num > 1)
stripe_index = data_stripes + mirror_num - 2;
/* We distribute the parity blocks across stripes */
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
if (op == BTRFS_MAP_READ && mirror_num <= 1)
mirror_num = 1;
}
} else {
/*
* After this, stripe_nr is the number of stripes on this
* device we have to walk to find the data, and stripe_index is
* the number of our device in the stripe array
*/
stripe_index = stripe_nr % map->num_stripes;
stripe_nr /= map->num_stripes;
mirror_num = stripe_index + 1;
}
if (stripe_index >= map->num_stripes) {
btrfs_crit(fs_info,
"stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
stripe_index, map->num_stripes);
ret = -EINVAL;
goto out;
}
num_alloc_stripes = num_stripes;
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
op != BTRFS_MAP_READ)
/*
* For replace case, we need to add extra stripes for extra
* duplicated stripes.
*
* For both WRITE and GET_READ_MIRRORS, we may have at most
* 2 more stripes (DUP types, otherwise 1).
*/
num_alloc_stripes += 2;
/*
* If this I/O maps to a single device, try to return the device and
* physical block information on the stack instead of allocating an
* I/O context structure.
*/
if (smap && num_alloc_stripes == 1 &&
!((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
btrfs: do not use replace target device as an extra mirror [BUG] Currently btrfs can use dev-replace device as an extra mirror for read-repair. But it can lead to NODATASUM corruption in the following case: There is a RAID1 data chunk, and dev-replace is running from dev2 to dev0. |//| = Replaced data X X+1MB X+2MB Dev 2: | | | <- Source dev Dev 0: |///////| | <- Target dev Then a read on dev 2 X+2MB happens. And something wrong happened inside devid 2, causing an -EIO. In that case, read-repair would try the next mirror, and since we can use target device as an extra mirror, we will use that mirror instead. But unfortunately since the read is beyond the current replace cursor, we should not trust it at all, what we get would be just uninitialized garbage. But if this read is for NODATASUM range, then we just trust them and cause data corruption. [CAUSE] We used to have some checks to make sure we only return such extra mirror when the range is before our left cursor. The first commit introducing this behavior is ad6d620e2a57 ("Btrfs: allow repair code to include target disk when searching mirrors"). But later a fix, 22ab04e814f4 ("Btrfs: fix race between device replace and chunk allocation") changed the behavior, to always let btrfs_map_block() include the extra mirror to address a race in dev-replace which can cause missing writes to target device. This means, we lose the tracking of cursor for the extra mirror, thus can lead to above corruption. [FIX] The extra mirror is never a reliable one, at the beginning of dev-replace, the reliability is zero, while only at the end of the replace it's a fully reliable mirror. We either do the complex tracking, or never trust it. IMHO it's much easier to maintain if we don't trust it at all, and the extra mirror can only benefit for a limited period of time (during replace). Thus this patch would completely remove the ability to use target device as an extra mirror. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-22 07:47:40 +00:00
set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
if (mirror_num_ret)
*mirror_num_ret = mirror_num;
*bioc_ret = NULL;
ret = 0;
goto out;
}
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
if (!bioc) {
ret = -ENOMEM;
goto out;
}
btrfs: use an efficient way to represent source of duplicated stripes For btrfs dev-replace, we have to duplicate writes to the source device into the target device. For non-RAID56, all writes into the same mapped ranges are sharing the same content, thus they don't really need to bother anything. (E.g. in btrfs_submit_bio() for non-RAID56 range we just submit the same write to all involved devices). But for RAID56, all stripes contain different content, thus we must have a clear mapping of which stripe is duplicated from which original stripe. Currently we use a complex way using tgtdev_map[] array, e.g: num_tgtdevs = 1 tgtdev_map[0] = 0 <- Means stripes[0] is not involved in replace. tgtdev_map[1] = 3 <- Means stripes[1] is involved in replace, and it's duplicated to stripes[3]. tgtdev_map[2] = 0 <- Means stripes[2] is not involved in replace. But this is wasting some space, and ignores one important thing for dev-replace, there is at most one running replace. Thus we can change it to a fixed array to represent the mapping: replace_nr_stripes = 1 replace_stripe_src = 1 <- Means stripes[1] is involved in replace. thus the extra stripe is a copy of stripes[1] By this we can save some space for bioc on RAID56 chunks with many devices. And we get rid of one variable sized array from bioc. Thus the patch involves the following changes: - Replace @num_tgtdevs and @tgtdev_map[] with @replace_nr_stripes and @replace_stripe_src. @num_tgtdevs is just renamed to @replace_nr_stripes. While the mapping is completely changed. - Add extra ASSERT()s for RAID56 code - Only add two more extra stripes for dev-replace cases. As we have an upper limit on how many dev-replace stripes we can have. - Unify the behavior of handle_ops_on_dev_replace() Previously handle_ops_on_dev_replace() go two different paths for WRITE and GET_READ_MIRRORS. Now unify them by always going the WRITE path first (with at most 2 replace stripes), then if we're doing GET_READ_MIRRORS and we have 2 extra stripes, just drop one stripe. - Remove the @real_stripes argument from alloc_btrfs_io_context() As we don't need the old variable length array any more. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-07 04:26:14 +00:00
bioc->map_type = map->type;
btrfs: always initialize btrfs_bio::tgtdev_map/raid_map pointers Since btrfs_bio always contains the extra space for the tgtdev_map and raid_maps it's pointless to make the assignment iff specific conditions are met. Instead, always assign the pointers to their correct value at allocation time. To accommodate this change also move code a bit in __btrfs_map_block so that btrfs_bio::stripes array is always initialized before the raid_map, subsequently move the call to sort_parity_stripes in the 'if' building the raid_map, retaining the old behavior. To better understand the change, there are 2 aspects to this: 1. The original code is harder to grasp because the calculations for initializing raid_map/tgtdev ponters are apart from the initial allocation of memory. Having them predicated on 2 separate checks doesn't help that either... So by moving the initialisation in alloc_btrfs_bio puts everything together. 2. tgtdev/raid_maps are now always initialized despite sometimes they might be equal i.e __btrfs_map_block_for_discard calls alloc_btrfs_bio with tgtdev = 0 but their usage should be predicated on external checks i.e. just because those pointers are non-null doesn't mean they are valid per-se. And actually while taking another look at __btrfs_map_block I saw a discrepancy: Original code initialised tgtdev_map if the following check is true: if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) However, further down tgtdev_map is only used if the following check is true: if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && need_full_stripe(op)) e.g. the additional need_full_stripe(op) predicate is there. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copy more details from mail discussion ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-02 13:46:41 +00:00
/*
* For RAID56 full map, we need to make sure the stripes[] follows the
* rule that data stripes are all ordered, then followed with P and Q
* (if we have).
*
* It's still mostly the same as other profiles, just with extra rotation.
*/
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
(op != BTRFS_MAP_READ || mirror_num > 1)) {
/*
* For RAID56 @stripe_nr is already the number of full stripes
* before us, which is also the rotation value (needs to modulo
* with num_stripes).
*
* In this case, we just add @stripe_nr with @i, then do the
* modulo, to reduce one modulo call.
*/
bioc->full_stripe_logical = em->start +
btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
for (i = 0; i < num_stripes; i++)
set_io_stripe(&bioc->stripes[i], map,
(i + stripe_nr) % num_stripes,
stripe_offset, stripe_nr);
} else {
/*
* For all other non-RAID56 profiles, just copy the target
* stripe into the bioc.
*/
for (i = 0; i < num_stripes; i++) {
set_io_stripe(&bioc->stripes[i], map, stripe_index,
stripe_offset, stripe_nr);
stripe_index++;
}
}
if (op != BTRFS_MAP_READ)
max_errors = btrfs_chunk_max_errors(map);
if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
op != BTRFS_MAP_READ) {
handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
&num_stripes, &max_errors);
}
*bioc_ret = bioc;
bioc->num_stripes = num_stripes;
bioc->max_errors = max_errors;
bioc->mirror_num = mirror_num;
out:
Btrfs: fix lockdep deadlock warning due to dev_replace Xfstests btrfs/011 complains about a deadlock warning, [ 1226.649039] ========================================================= [ 1226.649039] [ INFO: possible irq lock inversion dependency detected ] [ 1226.649039] 4.1.0+ #270 Not tainted [ 1226.649039] --------------------------------------------------------- [ 1226.652955] kswapd0/46 just changed the state of lock: [ 1226.652955] (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0 [ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past: [ 1226.652955] (&fs_info->dev_replace.lock){+.+.+.} and interrupts could create inverse lock ordering between them. [ 1226.652955] other info that might help us debug this: [ 1226.652955] Chain exists of: &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock [ 1226.652955] Possible interrupt unsafe locking scenario: [ 1226.652955] CPU0 CPU1 [ 1226.652955] ---- ---- [ 1226.652955] lock(&fs_info->dev_replace.lock); [ 1226.652955] local_irq_disable(); [ 1226.652955] lock(&delayed_node->mutex); [ 1226.652955] lock(&found->groups_sem); [ 1226.652955] <Interrupt> [ 1226.652955] lock(&delayed_node->mutex); [ 1226.652955] *** DEADLOCK *** Commit 084b6e7c7607 ("btrfs: Fix a lockdep warning when running xfstest.") tried to fix a similar one that has the exactly same warning, but with that, we still run to this. The above lock chain comes from btrfs_commit_transaction ->btrfs_run_delayed_items ... ->__btrfs_update_delayed_inode ... ->__btrfs_cow_block ... ->find_free_extent ->cache_block_group ->load_free_space_cache ->btrfs_readpages ->submit_one_bio ... ->__btrfs_map_block ->btrfs_dev_replace_lock However, with high memory pressure, tasks which hold dev_replace.lock can be interrupted by kswapd and then kswapd is intended to release memory occupied by superblock, inodes and dentries, where we may call evict_inode, and it comes to [ 1226.652955] [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0 [ 1226.652955] [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30 [ 1226.652955] [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700 delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads to a ABBA deadlock. To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but things are simpler here since we only needs read's spinlock to blocking lock. With this, btrfs/011 no more produces warnings in dmesg. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-07-17 08:49:19 +00:00
if (dev_replace_is_ongoing) {
lockdep_assert_held(&dev_replace->rwsem);
/* Unlock and let waiting writers proceed */
up_read(&dev_replace->rwsem);
Btrfs: fix lockdep deadlock warning due to dev_replace Xfstests btrfs/011 complains about a deadlock warning, [ 1226.649039] ========================================================= [ 1226.649039] [ INFO: possible irq lock inversion dependency detected ] [ 1226.649039] 4.1.0+ #270 Not tainted [ 1226.649039] --------------------------------------------------------- [ 1226.652955] kswapd0/46 just changed the state of lock: [ 1226.652955] (&delayed_node->mutex){+.+.-.}, at: [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0 [ 1226.652955] but this lock took another, RECLAIM_FS-unsafe lock in the past: [ 1226.652955] (&fs_info->dev_replace.lock){+.+.+.} and interrupts could create inverse lock ordering between them. [ 1226.652955] other info that might help us debug this: [ 1226.652955] Chain exists of: &delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock [ 1226.652955] Possible interrupt unsafe locking scenario: [ 1226.652955] CPU0 CPU1 [ 1226.652955] ---- ---- [ 1226.652955] lock(&fs_info->dev_replace.lock); [ 1226.652955] local_irq_disable(); [ 1226.652955] lock(&delayed_node->mutex); [ 1226.652955] lock(&found->groups_sem); [ 1226.652955] <Interrupt> [ 1226.652955] lock(&delayed_node->mutex); [ 1226.652955] *** DEADLOCK *** Commit 084b6e7c7607 ("btrfs: Fix a lockdep warning when running xfstest.") tried to fix a similar one that has the exactly same warning, but with that, we still run to this. The above lock chain comes from btrfs_commit_transaction ->btrfs_run_delayed_items ... ->__btrfs_update_delayed_inode ... ->__btrfs_cow_block ... ->find_free_extent ->cache_block_group ->load_free_space_cache ->btrfs_readpages ->submit_one_bio ... ->__btrfs_map_block ->btrfs_dev_replace_lock However, with high memory pressure, tasks which hold dev_replace.lock can be interrupted by kswapd and then kswapd is intended to release memory occupied by superblock, inodes and dentries, where we may call evict_inode, and it comes to [ 1226.652955] [<ffffffff81458735>] __btrfs_release_delayed_node+0x45/0x1d0 [ 1226.652955] [<ffffffff81459e74>] btrfs_remove_delayed_node+0x24/0x30 [ 1226.652955] [<ffffffff8140c5fe>] btrfs_evict_inode+0x34e/0x700 delayed_node->mutex may be acquired in __btrfs_release_delayed_node(), and it leads to a ABBA deadlock. To fix this, we can use "blocking rwlock" used in the case of extent_buffer, but things are simpler here since we only needs read's spinlock to blocking lock. With this, btrfs/011 no more produces warnings in dmesg. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-07-17 08:49:19 +00:00
}
free_extent_map(em);
return ret;
}
static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
const struct btrfs_fs_devices *fs_devices)
{
if (args->fsid == NULL)
return true;
if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
return true;
return false;
}
static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
const struct btrfs_device *device)
{
if (args->missing) {
if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
!device->bdev)
return true;
return false;
}
if (device->devid != args->devid)
return false;
if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
return false;
return true;
}
/*
* Find a device specified by @devid or @uuid in the list of @fs_devices, or
* return NULL.
*
* If devid and uuid are both specified, the match must be exact, otherwise
* only devid is used.
*/
struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
const struct btrfs_dev_lookup_args *args)
{
struct btrfs_device *device;
struct btrfs_fs_devices *seed_devs;
if (dev_args_match_fs_devices(args, fs_devices)) {
list_for_each_entry(device, &fs_devices->devices, dev_list) {
if (dev_args_match_device(args, device))
return device;
}
}
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
if (!dev_args_match_fs_devices(args, seed_devs))
continue;
list_for_each_entry(device, &seed_devs->devices, dev_list) {
if (dev_args_match_device(args, device))
return device;
}
}
return NULL;
}
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
u64 devid, u8 *dev_uuid)
{
struct btrfs_device *device;
btrfs: fix lockdep splat in add_missing_dev Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-31 14:52:42 +00:00
unsigned int nofs_flag;
btrfs: fix lockdep splat in add_missing_dev Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-31 14:52:42 +00:00
/*
* We call this under the chunk_mutex, so we want to use NOFS for this
* allocation, however we don't want to change btrfs_alloc_device() to
* always do NOFS because we use it in a lot of other GFP_KERNEL safe
* places.
*/
btrfs: fix lockdep splat in add_missing_dev Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-31 14:52:42 +00:00
nofs_flag = memalloc_nofs_save();
device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
btrfs: fix lockdep splat in add_missing_dev Nikolay reported a lockdep splat in generic/476 that I could reproduce with btrfs/187. ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc2+ #1 Tainted: G W ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff9e8ef38b6268 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc_trace+0x3a/0x1a0 btrfs_alloc_device+0x43/0x210 add_missing_dev+0x20/0x90 read_one_chunk+0x301/0x430 btrfs_read_sys_array+0x17b/0x1b0 open_ctree+0xa62/0x1896 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x379 legacy_get_tree+0x30/0x50 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 vfs_rmdir.part.0+0x149/0x160 do_rmdir+0x136/0x1a0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &fs_info->chunk_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(&fs_info->chunk_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffffa9d74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffffa9d65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9e8e9da260e0 (&type->s_umount_key#48){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Tainted: G W 5.9.0-rc2+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x92/0xc8 check_noncircular+0x12d/0x150 __lock_acquire+0x1184/0x1fa0 lock_acquire+0xa4/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa4/0x3d0 ? btrfs_evict_inode+0x11e/0x500 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x46/0x60 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This is because we are holding the chunk_mutex when we call btrfs_alloc_device, which does a GFP_KERNEL allocation. We don't want to switch that to a GFP_NOFS lock because this is the only place where it matters. So instead use memalloc_nofs_save() around the allocation in order to avoid the lockdep splat. Reported-by: Nikolay Borisov <nborisov@suse.com> CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-31 14:52:42 +00:00
memalloc_nofs_restore(nofs_flag);
if (IS_ERR(device))
return device;
list_add(&device->dev_list, &fs_devices->devices);
device->fs_devices = fs_devices;
fs_devices->num_devices++;
set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
fs_devices->missing_devices++;
return device;
}
/*
* Allocate new device struct, set up devid and UUID.
*
* @fs_info: used only for generating a new devid, can be NULL if
* devid is provided (i.e. @devid != NULL).
* @devid: a pointer to devid for this device. If NULL a new devid
* is generated.
* @uuid: a pointer to UUID for this device. If NULL a new UUID
* is generated.
* @path: a pointer to device path if available, NULL otherwise.
*
* Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
* on error. Returned struct is not linked onto any lists and must be
* destroyed with btrfs_free_device.
*/
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
const u64 *devid, const u8 *uuid,
const char *path)
{
struct btrfs_device *dev;
u64 tmp;
if (WARN_ON(!devid && !fs_info))
return ERR_PTR(-EINVAL);
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&dev->dev_list);
INIT_LIST_HEAD(&dev->dev_alloc_list);
INIT_LIST_HEAD(&dev->post_commit_list);
atomic_set(&dev->dev_stats_ccnt, 0);
btrfs_device_data_ordered_init(dev);
extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
if (devid)
tmp = *devid;
else {
int ret;
ret = find_next_devid(fs_info, &tmp);
if (ret) {
btrfs_free_device(dev);
return ERR_PTR(ret);
}
}
dev->devid = tmp;
if (uuid)
memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
else
generate_random_uuid(dev->uuid);
if (path) {
struct rcu_string *name;
name = rcu_string_strdup(path, GFP_KERNEL);
if (!name) {
btrfs_free_device(dev);
return ERR_PTR(-ENOMEM);
}
rcu_assign_pointer(dev->name, name);
}
return dev;
}
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
u64 devid, u8 *uuid, bool error)
{
if (error)
btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
devid, uuid);
else
btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
devid, uuid);
}
u64 btrfs_calc_stripe_length(const struct extent_map *em)
{
const struct map_lookup *map = em->map_lookup;
const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
return div_u64(em->len, data_stripes);
}
btrfs: more graceful errors/warnings on 32bit systems when reaching limits Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-25 01:18:14 +00:00
#if BITS_PER_LONG == 32
/*
* Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
* can't be accessed on 32bit systems.
*
* This function do mount time check to reject the fs if it already has
* metadata chunk beyond that limit.
*/
static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
u64 logical, u64 length, u64 type)
{
if (!(type & BTRFS_BLOCK_GROUP_METADATA))
return 0;
if (logical + length < MAX_LFS_FILESIZE)
return 0;
btrfs_err_32bit_limit(fs_info);
return -EOVERFLOW;
}
/*
* This is to give early warning for any metadata chunk reaching
* BTRFS_32BIT_EARLY_WARN_THRESHOLD.
* Although we can still access the metadata, it's not going to be possible
* once the limit is reached.
*/
static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
u64 logical, u64 length, u64 type)
{
if (!(type & BTRFS_BLOCK_GROUP_METADATA))
return;
if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
return;
btrfs_warn_32bit_limit(fs_info);
}
#endif
static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
u64 devid, u8 *uuid)
{
struct btrfs_device *dev;
if (!btrfs_test_opt(fs_info, DEGRADED)) {
btrfs_report_missing_device(fs_info, devid, uuid, true);
return ERR_PTR(-ENOENT);
}
dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
if (IS_ERR(dev)) {
btrfs_err(fs_info, "failed to init missing device %llu: %ld",
devid, PTR_ERR(dev));
return dev;
}
btrfs_report_missing_device(fs_info, devid, uuid, false);
return dev;
}
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
struct btrfs_chunk *chunk)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
struct map_lookup *map;
struct extent_map *em;
u64 logical;
u64 length;
u64 devid;
btrfs: more graceful errors/warnings on 32bit systems when reaching limits Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-25 01:18:14 +00:00
u64 type;
u8 uuid[BTRFS_UUID_SIZE];
btrfs: don't use btrfs_chunk::sub_stripes from disk [BUG] There are two reports (the earliest one from LKP, a more recent one from kernel bugzilla) that we can have some chunks with 0 as sub_stripes. This will cause divide-by-zero errors at btrfs_rmap_block, which is introduced by a recent kernel patch ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block"): if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); <<< } [CAUSE] From the more recent report, it has been proven that we have some chunks with 0 as sub_stripes, mostly caused by older mkfs. It turns out that the mkfs.btrfs fix is only introduced in 6718ab4d33aa ("btrfs-progs: Initialize sub_stripes to 1 in btrfs_alloc_data_chunk") which is included in v5.4 btrfs-progs release. So there would be quite some old filesystems with such 0 sub_stripes. [FIX] Just don't trust the sub_stripes values from disk. We have a trusted btrfs_raid_array[] to fetch the correct sub_stripes numbers for each profile and that are fixed. By this, we can keep the compatibility with older filesystems while still avoid divide-by-zero bugs. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Viktor Kuzmin <kvaster@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216559 Fixes: ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block") CC: stable@vger.kernel.org # 6.0 Reviewed-by: Su Yue <glass@fydeos.io> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-21 00:43:45 +00:00
int index;
int num_stripes;
int ret;
int i;
logical = key->offset;
length = btrfs_chunk_length(leaf, chunk);
btrfs: more graceful errors/warnings on 32bit systems when reaching limits Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-25 01:18:14 +00:00
type = btrfs_chunk_type(leaf, chunk);
btrfs: don't use btrfs_chunk::sub_stripes from disk [BUG] There are two reports (the earliest one from LKP, a more recent one from kernel bugzilla) that we can have some chunks with 0 as sub_stripes. This will cause divide-by-zero errors at btrfs_rmap_block, which is introduced by a recent kernel patch ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block"): if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); <<< } [CAUSE] From the more recent report, it has been proven that we have some chunks with 0 as sub_stripes, mostly caused by older mkfs. It turns out that the mkfs.btrfs fix is only introduced in 6718ab4d33aa ("btrfs-progs: Initialize sub_stripes to 1 in btrfs_alloc_data_chunk") which is included in v5.4 btrfs-progs release. So there would be quite some old filesystems with such 0 sub_stripes. [FIX] Just don't trust the sub_stripes values from disk. We have a trusted btrfs_raid_array[] to fetch the correct sub_stripes numbers for each profile and that are fixed. By this, we can keep the compatibility with older filesystems while still avoid divide-by-zero bugs. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Viktor Kuzmin <kvaster@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216559 Fixes: ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block") CC: stable@vger.kernel.org # 6.0 Reviewed-by: Su Yue <glass@fydeos.io> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-21 00:43:45 +00:00
index = btrfs_bg_flags_to_raid_index(type);
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
btrfs: more graceful errors/warnings on 32bit systems when reaching limits Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-25 01:18:14 +00:00
#if BITS_PER_LONG == 32
ret = check_32bit_meta_chunk(fs_info, logical, length, type);
if (ret < 0)
return ret;
warn_32bit_meta_chunk(fs_info, logical, length, type);
#endif
/*
* Only need to verify chunk item if we're reading from sys chunk array,
* as chunk item in tree block is already verified by tree-checker.
*/
if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ret = btrfs_check_chunk_valid(leaf, chunk, logical);
if (ret)
return ret;
}
read_lock(&map_tree->lock);
em = lookup_extent_mapping(map_tree, logical, 1);
read_unlock(&map_tree->lock);
/* already mapped? */
if (em && em->start <= logical && em->start + em->len > logical) {
free_extent_map(em);
return 0;
} else if (em) {
free_extent_map(em);
}
em = alloc_extent_map();
if (!em)
return -ENOMEM;
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
if (!map) {
free_extent_map(em);
return -ENOMEM;
}
Btrfs: fix NULL pointer crash when running balance and scrub concurrently While running balance, scrub, fsstress concurrently we hit the following kernel crash: [56561.448845] BTRFS info (device sde): relocating block group 11005853696 flags 132 [56561.524077] BUG: unable to handle kernel NULL pointer dereference at 0000000000000078 [56561.524237] IP: [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.524297] PGD 9be28067 PUD 7f3dd067 PMD 0 [56561.524325] Oops: 0000 [#1] SMP [....] [56561.527237] Call Trace: [56561.527309] [<ffffffffa038980e>] scrub_enumerate_chunks+0x24e/0x490 [btrfs] [56561.527392] [<ffffffff810abe00>] ? abort_exclusive_wait+0x50/0xb0 [56561.527476] [<ffffffffa038add4>] btrfs_scrub_dev+0x1a4/0x530 [btrfs] [56561.527561] [<ffffffffa0368107>] btrfs_ioctl+0x13f7/0x2a90 [btrfs] [56561.527639] [<ffffffff811c82f0>] do_vfs_ioctl+0x2e0/0x4c0 [56561.527712] [<ffffffff8109c384>] ? vtime_account_user+0x54/0x60 [56561.527788] [<ffffffff810f768c>] ? __audit_syscall_entry+0x9c/0xf0 [56561.527870] [<ffffffff811c8551>] SyS_ioctl+0x81/0xa0 [56561.527941] [<ffffffff815707f7>] tracesys+0xdd/0xe2 [...] [56561.528304] RIP [<ffffffffa038956d>] scrub_chunk.isra.12+0xdd/0x130 [btrfs] [56561.528395] RSP <ffff88004c0f5be8> [56561.528454] CR2: 0000000000000078 This is because in btrfs_relocate_chunk(), we will free @bdev directly while scrub may still hold extent mapping, and may access freed memory. Fix this problem by wrapping freeing @bdev work into free_extent_map() which is based on reference count. Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-19 02:42:52 +00:00
set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
em->map_lookup = map;
em->start = logical;
em->len = length;
em->orig_start = 0;
em->block_start = 0;
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
em->block_len = em->len;
map->num_stripes = num_stripes;
map->io_width = btrfs_chunk_io_width(leaf, chunk);
map->io_align = btrfs_chunk_io_align(leaf, chunk);
btrfs: more graceful errors/warnings on 32bit systems when reaching limits Btrfs uses internally mapped u64 address space for all its metadata. Due to the page cache limit on 32bit systems, btrfs can't access metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K page size while 256T for 64K page size. Users can have a filesystem which doesn't have metadata beyond the boundary at mount time, but later balance can cause it to create metadata beyond the boundary. And modification to MM layer is unrealistic just for such minor use case. We can't do more than to prevent mounting such filesystem or warn early when the numbers are still within the limits. To address such problem, this patch will introduce the following checks: - Mount time rejection This will reject any fs which has metadata chunk at or beyond the boundary. - Mount time early warning If there is any metadata chunk beyond 5/8th of the boundary, we do an early warning and hope the end user will see it. - Runtime extent buffer rejection If we're going to allocate an extent buffer at or beyond the boundary, reject such request with EOVERFLOW. This is definitely going to cause problems like transaction abort, but we have no better ways. - Runtime extent buffer early warning If an extent buffer beyond 5/8th of the max file size is allocated, do an early warning. Above error/warning message will only be printed once for each fs to reduce dmesg flood. If the mount is rejected, the filesystem will be mountable only on a 64bit host. Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/ Reported-by: Erik Jensen <erikjensen@rkjnsn.net> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-25 01:18:14 +00:00
map->type = type;
btrfs: don't use btrfs_chunk::sub_stripes from disk [BUG] There are two reports (the earliest one from LKP, a more recent one from kernel bugzilla) that we can have some chunks with 0 as sub_stripes. This will cause divide-by-zero errors at btrfs_rmap_block, which is introduced by a recent kernel patch ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block"): if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { stripe_nr = stripe_nr * map->num_stripes + i; stripe_nr = div_u64(stripe_nr, map->sub_stripes); <<< } [CAUSE] From the more recent report, it has been proven that we have some chunks with 0 as sub_stripes, mostly caused by older mkfs. It turns out that the mkfs.btrfs fix is only introduced in 6718ab4d33aa ("btrfs-progs: Initialize sub_stripes to 1 in btrfs_alloc_data_chunk") which is included in v5.4 btrfs-progs release. So there would be quite some old filesystems with such 0 sub_stripes. [FIX] Just don't trust the sub_stripes values from disk. We have a trusted btrfs_raid_array[] to fetch the correct sub_stripes numbers for each profile and that are fixed. By this, we can keep the compatibility with older filesystems while still avoid divide-by-zero bugs. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Viktor Kuzmin <kvaster@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216559 Fixes: ac0677348f3c ("btrfs: merge calculations for simple striped profiles in btrfs_rmap_block") CC: stable@vger.kernel.org # 6.0 Reviewed-by: Su Yue <glass@fydeos.io> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-21 00:43:45 +00:00
/*
* We can't use the sub_stripes value, as for profiles other than
* RAID10, they may have 0 as sub_stripes for filesystems created by
* older mkfs (<v5.4).
* In that case, it can cause divide-by-zero errors later.
* Since currently sub_stripes is fixed for each profile, let's
* use the trusted value instead.
*/
map->sub_stripes = btrfs_raid_array[index].sub_stripes;
map->verified_stripes = 0;
em->orig_block_len = btrfs_calc_stripe_length(em);
for (i = 0; i < num_stripes; i++) {
map->stripes[i].physical =
btrfs_stripe_offset_nr(leaf, chunk, i);
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
args.devid = devid;
read_extent_buffer(leaf, uuid, (unsigned long)
btrfs_stripe_dev_uuid_nr(chunk, i),
BTRFS_UUID_SIZE);
args.uuid = uuid;
map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!map->stripes[i].dev) {
map->stripes[i].dev = handle_missing_device(fs_info,
devid, uuid);
if (IS_ERR(map->stripes[i].dev)) {
ret = PTR_ERR(map->stripes[i].dev);
free_extent_map(em);
return ret;
}
}
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
&(map->stripes[i].dev->dev_state));
}
write_lock(&map_tree->lock);
ret = add_extent_mapping(map_tree, em, 0);
write_unlock(&map_tree->lock);
if (ret < 0) {
btrfs_err(fs_info,
"failed to add chunk map, start=%llu len=%llu: %d",
em->start, em->len, ret);
}
free_extent_map(em);
return ret;
}
static void fill_device_from_item(struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item,
struct btrfs_device *device)
{
unsigned long ptr;
device->devid = btrfs_device_id(leaf, dev_item);
device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
device->total_bytes = device->disk_total_bytes;
device->commit_total_bytes = device->disk_total_bytes;
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
device->commit_bytes_used = device->bytes_used;
device->type = btrfs_device_type(leaf, dev_item);
device->io_align = btrfs_device_io_align(leaf, dev_item);
device->io_width = btrfs_device_io_width(leaf, dev_item);
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
ptr = btrfs_device_uuid(dev_item);
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
}
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
u8 *fsid)
{
struct btrfs_fs_devices *fs_devices;
int ret;
lockdep_assert_held(&uuid_mutex);
ASSERT(fsid);
/* This will match only for multi-device seed fs */
list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
return fs_devices;
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
fs_devices = find_fsid(fsid, NULL);
if (!fs_devices) {
if (!btrfs_test_opt(fs_info, DEGRADED))
return ERR_PTR(-ENOENT);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
fs_devices = alloc_fs_devices(fsid, NULL);
if (IS_ERR(fs_devices))
return fs_devices;
fs_devices->seeding = true;
fs_devices->opened = 1;
return fs_devices;
}
/*
* Upon first call for a seed fs fsid, just create a private copy of the
* respective fs_devices and anchor it at fs_info->fs_devices->seed_list
*/
fs_devices = clone_fs_devices(fs_devices);
if (IS_ERR(fs_devices))
return fs_devices;
ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
if (ret) {
free_fs_devices(fs_devices);
return ERR_PTR(ret);
}
if (!fs_devices->seeding) {
close_fs_devices(fs_devices);
free_fs_devices(fs_devices);
return ERR_PTR(-EINVAL);
}
list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
return fs_devices;
}
static int read_one_dev(struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
struct btrfs_device *device;
u64 devid;
int ret;
u8 fs_uuid[BTRFS_FSID_SIZE];
u8 dev_uuid[BTRFS_UUID_SIZE];
devid = btrfs_device_id(leaf, dev_item);
args.devid = devid;
read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
BTRFS_FSID_SIZE);
args.uuid = dev_uuid;
args.fsid = fs_uuid;
if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
fs_devices = open_seed_devices(fs_info, fs_uuid);
if (IS_ERR(fs_devices))
return PTR_ERR(fs_devices);
}
device = btrfs_find_device(fs_info->fs_devices, &args);
if (!device) {
if (!btrfs_test_opt(fs_info, DEGRADED)) {
btrfs_report_missing_device(fs_info, devid,
dev_uuid, true);
return -ENOENT;
}
device = add_missing_dev(fs_devices, devid, dev_uuid);
if (IS_ERR(device)) {
btrfs_err(fs_info,
"failed to add missing dev %llu: %ld",
devid, PTR_ERR(device));
return PTR_ERR(device);
}
btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
} else {
if (!device->bdev) {
if (!btrfs_test_opt(fs_info, DEGRADED)) {
btrfs_report_missing_device(fs_info,
devid, dev_uuid, true);
return -ENOENT;
}
btrfs_report_missing_device(fs_info, devid,
dev_uuid, false);
}
if (!device->bdev &&
!test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
/*
* this happens when a device that was properly setup
* in the device info lists suddenly goes bad.
* device->bdev is NULL, and so we have to set
* device->missing to one here
*/
device->fs_devices->missing_devices++;
set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
}
/* Move the device to its own fs_devices */
if (device->fs_devices != fs_devices) {
ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
&device->dev_state));
list_move(&device->dev_list, &fs_devices->devices);
device->fs_devices->num_devices--;
fs_devices->num_devices++;
device->fs_devices->missing_devices--;
fs_devices->missing_devices++;
device->fs_devices = fs_devices;
}
}
if (device->fs_devices != fs_info->fs_devices) {
BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
if (device->generation !=
btrfs_device_generation(leaf, dev_item))
return -EINVAL;
}
fill_device_from_item(leaf, dev_item, device);
btrfs: drop never met disk total bytes check in verify_one_dev_extent Drop the condition in verify_one_dev_extent, btrfs_device::disk_total_bytes is set even for a seed device. The comment is wrong, the size is properly set when cloning the device. Commit 1b3922a8bc74 ("btrfs: Use real device structure to verify dev extent") introduced it but it's unclear why the total_disk_bytes was 0. Theoretically, all devices (including missing and seed) marked with the BTRFS_DEV_STATE_IN_FS_METADATA flag gets the total_disk_bytes updated at fill_device_from_item(): open_ctree() btrfs_read_chunk_tree() read_one_dev() open_seed_device() fill_device_from_item() Even if verify_one_dev_extent() reports total_disk_bytes == 0, then its a bug to be fixed somewhere else and not in verify_one_dev_extent() as it's just a messenger. It is never expected that a total_disk_bytes shall be zero. The function fill_device_from_item() does the job of reading it from the item and updating btrfs_device::disk_total_bytes. So both the missing device and the seed devices do have their disk_total_bytes updated. btrfs_find_device can also return a device from fs_info->seed_list because it searches it as well. Furthermore, while removing the device if there is a power loss, we could have a device with its total_bytes = 0, that's still valid. Instead, introduce a check against maximum block device size in read_one_dev(). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-03 05:49:42 +00:00
if (device->bdev) {
u64 max_total_bytes = bdev_nr_bytes(device->bdev);
btrfs: drop never met disk total bytes check in verify_one_dev_extent Drop the condition in verify_one_dev_extent, btrfs_device::disk_total_bytes is set even for a seed device. The comment is wrong, the size is properly set when cloning the device. Commit 1b3922a8bc74 ("btrfs: Use real device structure to verify dev extent") introduced it but it's unclear why the total_disk_bytes was 0. Theoretically, all devices (including missing and seed) marked with the BTRFS_DEV_STATE_IN_FS_METADATA flag gets the total_disk_bytes updated at fill_device_from_item(): open_ctree() btrfs_read_chunk_tree() read_one_dev() open_seed_device() fill_device_from_item() Even if verify_one_dev_extent() reports total_disk_bytes == 0, then its a bug to be fixed somewhere else and not in verify_one_dev_extent() as it's just a messenger. It is never expected that a total_disk_bytes shall be zero. The function fill_device_from_item() does the job of reading it from the item and updating btrfs_device::disk_total_bytes. So both the missing device and the seed devices do have their disk_total_bytes updated. btrfs_find_device can also return a device from fs_info->seed_list because it searches it as well. Furthermore, while removing the device if there is a power loss, we could have a device with its total_bytes = 0, that's still valid. Instead, introduce a check against maximum block device size in read_one_dev(). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-03 05:49:42 +00:00
if (device->total_bytes > max_total_bytes) {
btrfs_err(fs_info,
"device total_bytes should be at most %llu but found %llu",
max_total_bytes, device->total_bytes);
return -EINVAL;
}
}
set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
device->fs_devices->total_rw_bytes += device->total_bytes;
atomic64_add(device->total_bytes - device->bytes_used,
&fs_info->free_chunk_space);
}
ret = 0;
return ret;
}
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *super_copy = fs_info->super_copy;
struct extent_buffer *sb;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *array_ptr;
unsigned long sb_array_offset;
int ret = 0;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur_offset;
u64 type;
struct btrfs_key key;
ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
/*
* We allocated a dummy extent, just to use extent buffer accessors.
* There will be unused space after BTRFS_SUPER_INFO_SIZE, but
* that's fine, we will not go beyond system chunk array anyway.
*/
sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
if (!sb)
return -ENOMEM;
set_extent_buffer_uptodate(sb);
write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
array_size = btrfs_super_sys_array_size(super_copy);
array_ptr = super_copy->sys_chunk_array;
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
cur_offset = 0;
while (cur_offset < array_size) {
disk_key = (struct btrfs_disk_key *)array_ptr;
len = sizeof(*disk_key);
if (cur_offset + len > array_size)
goto out_short_read;
btrfs_disk_key_to_cpu(&key, disk_key);
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
if (key.type != BTRFS_CHUNK_ITEM_KEY) {
btrfs_err(fs_info,
"unexpected item type %u in sys_array at offset %u",
(u32)key.type, cur_offset);
ret = -EIO;
break;
}
chunk = (struct btrfs_chunk *)sb_array_offset;
/*
* At least one btrfs_chunk with one stripe must be present,
* exact stripe count check comes afterwards
*/
len = btrfs_chunk_item_size(1);
if (cur_offset + len > array_size)
goto out_short_read;
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
if (!num_stripes) {
btrfs_err(fs_info,
"invalid number of stripes %u in sys_array at offset %u",
num_stripes, cur_offset);
ret = -EIO;
break;
}
type = btrfs_chunk_type(sb, chunk);
if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
btrfs_err(fs_info,
"invalid chunk type %llu in sys_array at offset %u",
type, cur_offset);
ret = -EIO;
break;
}
len = btrfs_chunk_item_size(num_stripes);
if (cur_offset + len > array_size)
goto out_short_read;
ret = read_one_chunk(&key, sb, chunk);
if (ret)
break;
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
}
clear_extent_buffer_uptodate(sb);
free_extent_buffer_stale(sb);
return ret;
out_short_read:
btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
len, cur_offset);
clear_extent_buffer_uptodate(sb);
free_extent_buffer_stale(sb);
return -EIO;
}
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
/*
* Check if all chunks in the fs are OK for read-write degraded mount
*
* If the @failing_dev is specified, it's accounted as missing.
*
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
* Return true if all chunks meet the minimal RW mount requirements.
* Return false if any chunk doesn't meet the minimal RW mount requirements.
*/
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
struct btrfs_device *failing_dev)
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
{
struct extent_map_tree *map_tree = &fs_info->mapping_tree;
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
struct extent_map *em;
u64 next_start = 0;
bool ret = true;
read_lock(&map_tree->lock);
em = lookup_extent_mapping(map_tree, 0, (u64)-1);
read_unlock(&map_tree->lock);
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
/* No chunk at all? Return false anyway */
if (!em) {
ret = false;
goto out;
}
while (em) {
struct map_lookup *map;
int missing = 0;
int max_tolerated;
int i;
map = em->map_lookup;
max_tolerated =
btrfs_get_num_tolerated_disk_barrier_failures(
map->type);
for (i = 0; i < map->num_stripes; i++) {
struct btrfs_device *dev = map->stripes[i].dev;
if (!dev || !dev->bdev ||
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
dev->last_flush_error)
missing++;
else if (failing_dev && failing_dev == dev)
missing++;
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
}
if (missing > max_tolerated) {
if (!failing_dev)
btrfs_warn(fs_info,
"chunk %llu missing %d devices, max tolerance is %d for writable mount",
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
em->start, missing, max_tolerated);
free_extent_map(em);
ret = false;
goto out;
}
next_start = extent_map_end(em);
free_extent_map(em);
read_lock(&map_tree->lock);
em = lookup_extent_mapping(map_tree, next_start,
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
(u64)(-1) - next_start);
read_unlock(&map_tree->lock);
btrfs: Introduce a function to check if all chunks a OK for degraded rw mount Introduce a new function, btrfs_check_rw_degradable(), to check if all chunks in btrfs is OK for degraded rw mount. It provides the new basis for accurate btrfs mount/remount and even runtime degraded mount check other than old one-size-fit-all method. Btrfs currently uses num_tolerated_disk_barrier_failures to do global check for tolerated missing device. Although the one-size-fit-all solution is quite safe, it's too strict if data and metadata has different duplication level. For example, if one use Single data and RAID1 metadata for 2 disks, it means any missing device will make the fs unable to be degraded mounted. But in fact, some times all single chunks may be in the existing device and in that case, we should allow it to be rw degraded mounted. Such case can be easily reproduced using the following script: # mkfs.btrfs -f -m raid1 -d sing /dev/sdb /dev/sdc # wipefs -f /dev/sdc # mount /dev/sdb -o degraded,rw If using btrfs-debug-tree to check /dev/sdb, one should find that the data chunk is only in sdb, so in fact it should allow degraded mount. This patchset will introduce a new per-chunk degradable check for btrfs, allow above case to succeed, and it's quite small anyway. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ copied text from cover letter with more details about the problem being solved ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-03-09 01:34:36 +00:00
}
out:
return ret;
}
static void readahead_tree_node_children(struct extent_buffer *node)
{
int i;
const int nr_items = btrfs_header_nritems(node);
for (i = 0; i < nr_items; i++)
btrfs_readahead_node_child(node, i);
}
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
int ret;
int slot;
int iter_ret = 0;
u64 total_dev = 0;
u64 last_ra_node = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* uuid_mutex is needed only if we are mounting a sprout FS
* otherwise we don't need it.
*/
mutex_lock(&uuid_mutex);
btrfs: fix mount failure caused by race with umount It is possible to cause a btrfs mount to fail by racing it with a slow umount. The crux of the sequence is generic_shutdown_super not yet calling sop->put_super before btrfs_mount_root calls btrfs_open_devices. If that occurs, btrfs_open_devices will decide the opened counter is non-zero, increment it, and skip resetting fs_devices->total_rw_bytes to 0. From here, mount will call sget which will result in grab_super trying to take the super block umount semaphore. That semaphore will be held by the slow umount, so mount will block. Before up-ing the semaphore, umount will delete the super block, resulting in mount's sget reliably allocating a new one, which causes the mount path to dutifully fill it out, and increment total_rw_bytes a second time, which causes the mount to fail, as we see double the expected bytes. Here is the sequence laid out in greater detail: CPU0 CPU1 down_write sb->s_umount btrfs_kill_super kill_anon_super(sb) generic_shutdown_super(sb); shrink_dcache_for_umount(sb); sync_filesystem(sb); evict_inodes(sb); // SLOW btrfs_mount_root btrfs_scan_one_device fs_devices = device->fs_devices fs_info->fs_devices = fs_devices // fs_devices-opened makes this a no-op btrfs_open_devices(fs_devices, mode, fs_type) s = sget(fs_type, test, set, flags, fs_info); find sb in s_instances grab_super(sb); down_write(&s->s_umount); // blocks sop->put_super(sb) // sb->fs_devices->opened == 2; no-op spin_lock(&sb_lock); hlist_del_init(&sb->s_instances); spin_unlock(&sb_lock); up_write(&sb->s_umount); return 0; retry lookup don't find sb in s_instances (deleted by CPU0) s = alloc_super return s; btrfs_fill_super(s, fs_devices, data) open_ctree // fs_devices total_rw_bytes improperly set! btrfs_read_chunk_tree read_one_dev // increment total_rw_bytes again!! super_total_bytes < fs_devices->total_rw_bytes // ERROR!!! To fix this, we clear total_rw_bytes from within btrfs_read_chunk_tree before the calls to read_one_dev, while holding the sb umount semaphore and the uuid mutex. To reproduce, it is sufficient to dirty a decent number of inodes, then quickly umount and mount. for i in $(seq 0 500) do dd if=/dev/zero of="/mnt/foo/$i" bs=1M count=1 done umount /mnt/foo& mount /mnt/foo does the trick for me. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-16 20:29:46 +00:00
/*
* It is possible for mount and umount to race in such a way that
* we execute this code path, but open_fs_devices failed to clear
* total_rw_bytes. We certainly want it cleared before reading the
* device items, so clear it here.
*/
fs_info->fs_devices->total_rw_bytes = 0;
btrfs: silence lockdep when reading chunk tree during mount Often some test cases like btrfs/161 trigger lockdep splats that complain about possible unsafe lock scenario due to the fact that during mount, when reading the chunk tree we end up calling blkdev_get_by_path() while holding a read lock on a leaf of the chunk tree. That produces a lockdep splat like the following: [ 3653.683975] ====================================================== [ 3653.685148] WARNING: possible circular locking dependency detected [ 3653.686301] 5.15.0-rc7-btrfs-next-103 #1 Not tainted [ 3653.687239] ------------------------------------------------------ [ 3653.688400] mount/447465 is trying to acquire lock: [ 3653.689320] ffff8c6b0c76e528 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.691054] but task is already holding lock: [ 3653.692155] ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.693978] which lock already depends on the new lock. [ 3653.695510] the existing dependency chain (in reverse order) is: [ 3653.696915] -> #3 (btrfs-chunk-00){++++}-{3:3}: [ 3653.698053] down_read_nested+0x4b/0x140 [ 3653.698893] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.699988] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 3653.701205] btrfs_search_slot+0x537/0xc00 [btrfs] [ 3653.702234] btrfs_insert_empty_items+0x32/0x70 [btrfs] [ 3653.703332] btrfs_init_new_device+0x563/0x15b0 [btrfs] [ 3653.704439] btrfs_ioctl+0x2110/0x3530 [btrfs] [ 3653.705405] __x64_sys_ioctl+0x83/0xb0 [ 3653.706215] do_syscall_64+0x3b/0xc0 [ 3653.706990] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.708040] -> #2 (sb_internal#2){.+.+}-{0:0}: [ 3653.708994] lock_release+0x13d/0x4a0 [ 3653.709533] up_write+0x18/0x160 [ 3653.710017] btrfs_sync_file+0x3f3/0x5b0 [btrfs] [ 3653.710699] __loop_update_dio+0xbd/0x170 [loop] [ 3653.711360] lo_ioctl+0x3b1/0x8a0 [loop] [ 3653.711929] block_ioctl+0x48/0x50 [ 3653.712442] __x64_sys_ioctl+0x83/0xb0 [ 3653.712991] do_syscall_64+0x3b/0xc0 [ 3653.713519] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.714233] -> #1 (&lo->lo_mutex){+.+.}-{3:3}: [ 3653.715026] __mutex_lock+0x92/0x900 [ 3653.715648] lo_open+0x28/0x60 [loop] [ 3653.716275] blkdev_get_whole+0x28/0x90 [ 3653.716867] blkdev_get_by_dev.part.0+0x142/0x320 [ 3653.717537] blkdev_open+0x5e/0xa0 [ 3653.718043] do_dentry_open+0x163/0x390 [ 3653.718604] path_openat+0x3f0/0xa80 [ 3653.719128] do_filp_open+0xa9/0x150 [ 3653.719652] do_sys_openat2+0x97/0x160 [ 3653.720197] __x64_sys_openat+0x54/0x90 [ 3653.720766] do_syscall_64+0x3b/0xc0 [ 3653.721285] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.721986] -> #0 (&disk->open_mutex){+.+.}-{3:3}: [ 3653.722775] __lock_acquire+0x130e/0x2210 [ 3653.723348] lock_acquire+0xd7/0x310 [ 3653.723867] __mutex_lock+0x92/0x900 [ 3653.724394] blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.725041] blkdev_get_by_path+0xb8/0xd0 [ 3653.725614] btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] [ 3653.726332] open_fs_devices+0xd7/0x2c0 [btrfs] [ 3653.726999] btrfs_read_chunk_tree+0x3ad/0x870 [btrfs] [ 3653.727739] open_ctree+0xb8e/0x17bf [btrfs] [ 3653.728384] btrfs_mount_root.cold+0x12/0xde [btrfs] [ 3653.729130] legacy_get_tree+0x30/0x50 [ 3653.729676] vfs_get_tree+0x28/0xc0 [ 3653.730192] vfs_kern_mount.part.0+0x71/0xb0 [ 3653.730800] btrfs_mount+0x11d/0x3a0 [btrfs] [ 3653.731427] legacy_get_tree+0x30/0x50 [ 3653.731970] vfs_get_tree+0x28/0xc0 [ 3653.732486] path_mount+0x2d4/0xbe0 [ 3653.732997] __x64_sys_mount+0x103/0x140 [ 3653.733560] do_syscall_64+0x3b/0xc0 [ 3653.734080] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.734782] other info that might help us debug this: [ 3653.735784] Chain exists of: &disk->open_mutex --> sb_internal#2 --> btrfs-chunk-00 [ 3653.737123] Possible unsafe locking scenario: [ 3653.737865] CPU0 CPU1 [ 3653.738435] ---- ---- [ 3653.739007] lock(btrfs-chunk-00); [ 3653.739449] lock(sb_internal#2); [ 3653.740193] lock(btrfs-chunk-00); [ 3653.740955] lock(&disk->open_mutex); [ 3653.741431] *** DEADLOCK *** [ 3653.742176] 3 locks held by mount/447465: [ 3653.742739] #0: ffff8c6acf85c0e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xd5/0x3b0 [ 3653.744114] #1: ffffffffc0b28f70 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x59/0x870 [btrfs] [ 3653.745563] #2: ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.747066] stack backtrace: [ 3653.747723] CPU: 4 PID: 447465 Comm: mount Not tainted 5.15.0-rc7-btrfs-next-103 #1 [ 3653.748873] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 3653.750592] Call Trace: [ 3653.750967] dump_stack_lvl+0x57/0x72 [ 3653.751526] check_noncircular+0xf3/0x110 [ 3653.752136] ? stack_trace_save+0x4b/0x70 [ 3653.752748] __lock_acquire+0x130e/0x2210 [ 3653.753356] lock_acquire+0xd7/0x310 [ 3653.753898] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.754596] ? lock_is_held_type+0xe8/0x140 [ 3653.755125] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.755729] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.756338] __mutex_lock+0x92/0x900 [ 3653.756794] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.757400] ? do_raw_spin_unlock+0x4b/0xa0 [ 3653.757930] ? _raw_spin_unlock+0x29/0x40 [ 3653.758437] ? bd_prepare_to_claim+0x129/0x150 [ 3653.758999] ? trace_module_get+0x2b/0xd0 [ 3653.759508] ? try_module_get.part.0+0x50/0x80 [ 3653.760072] blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.760661] ? devcgroup_check_permission+0xc1/0x1f0 [ 3653.761288] blkdev_get_by_path+0xb8/0xd0 [ 3653.761797] btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] [ 3653.762454] open_fs_devices+0xd7/0x2c0 [btrfs] [ 3653.763055] ? clone_fs_devices+0x8f/0x170 [btrfs] [ 3653.763689] btrfs_read_chunk_tree+0x3ad/0x870 [btrfs] [ 3653.764370] ? kvm_sched_clock_read+0x14/0x40 [ 3653.764922] open_ctree+0xb8e/0x17bf [btrfs] [ 3653.765493] ? super_setup_bdi_name+0x79/0xd0 [ 3653.766043] btrfs_mount_root.cold+0x12/0xde [btrfs] [ 3653.766780] ? rcu_read_lock_sched_held+0x3f/0x80 [ 3653.767488] ? kfree+0x1f2/0x3c0 [ 3653.767979] legacy_get_tree+0x30/0x50 [ 3653.768548] vfs_get_tree+0x28/0xc0 [ 3653.769076] vfs_kern_mount.part.0+0x71/0xb0 [ 3653.769718] btrfs_mount+0x11d/0x3a0 [btrfs] [ 3653.770381] ? rcu_read_lock_sched_held+0x3f/0x80 [ 3653.771086] ? kfree+0x1f2/0x3c0 [ 3653.771574] legacy_get_tree+0x30/0x50 [ 3653.772136] vfs_get_tree+0x28/0xc0 [ 3653.772673] path_mount+0x2d4/0xbe0 [ 3653.773201] __x64_sys_mount+0x103/0x140 [ 3653.773793] do_syscall_64+0x3b/0xc0 [ 3653.774333] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.775094] RIP: 0033:0x7f648bc45aaa This happens because through btrfs_read_chunk_tree(), which is called only during mount, ends up acquiring the mutex open_mutex of a block device while holding a read lock on a leaf of the chunk tree while other paths need to acquire other locks before locking extent buffers of the chunk tree. Since at mount time when we call btrfs_read_chunk_tree() we know that we don't have other tasks running in parallel and modifying the chunk tree, we can simply skip locking of chunk tree extent buffers. So do that and move the assertion that checks the fs is not yet mounted to the top block of btrfs_read_chunk_tree(), with a comment before doing it. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-04 12:43:08 +00:00
/*
* Lockdep complains about possible circular locking dependency between
* a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
* used for freeze procection of a fs (struct super_block.s_writers),
* which we take when starting a transaction, and extent buffers of the
* chunk tree if we call read_one_dev() while holding a lock on an
* extent buffer of the chunk tree. Since we are mounting the filesystem
* and at this point there can't be any concurrent task modifying the
* chunk tree, to keep it simple, just skip locking on the chunk tree.
*/
ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
path->skip_locking = 1;
/*
* Read all device items, and then all the chunk items. All
* device items are found before any chunk item (their object id
* is smaller than the lowest possible object id for a chunk
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
*/
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.offset = 0;
key.type = 0;
btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
struct extent_buffer *node = path->nodes[1];
leaf = path->nodes[0];
slot = path->slots[0];
if (node) {
if (last_ra_node != node->start) {
readahead_tree_node_children(node);
last_ra_node = node->start;
}
}
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
struct btrfs_dev_item *dev_item;
dev_item = btrfs_item_ptr(leaf, slot,
struct btrfs_dev_item);
ret = read_one_dev(leaf, dev_item);
if (ret)
goto error;
total_dev++;
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
struct btrfs_chunk *chunk;
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-29 13:43:06 +00:00
/*
* We are only called at mount time, so no need to take
* fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
* we always lock first fs_info->chunk_mutex before
* acquiring any locks on the chunk tree. This is a
* requirement for chunk allocation, see the comment on
* top of btrfs_chunk_alloc() for details.
*/
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
ret = read_one_chunk(&found_key, leaf, chunk);
if (ret)
goto error;
}
}
/* Catch error found during iteration */
if (iter_ret < 0) {
ret = iter_ret;
goto error;
}
/*
* After loading chunk tree, we've got all device information,
* do another round of validation checks.
*/
if (total_dev != fs_info->fs_devices->total_devices) {
btrfs: repair super block num_devices automatically [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. This has been fixed by commit bbac58698a55 ("btrfs: remove device item and update super block in the same transaction"). [FIX] Make the super_num_devices check less strict, converting it from a hard error to a warning, and reset the value to a correct one for the current or next transaction commit. As the number of device items is the critical information where the super block num_devices is only a cached value (and also useful for cross checking), it's safe to automatically update it. Other device related problems like missing device are handled after that and may require other means to resolve, like degraded mount. With this fix, potentially affected filesystems won't fail mount and require the manual repair by btrfs check. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-28 07:05:53 +00:00
btrfs_warn(fs_info,
"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
btrfs_super_num_devices(fs_info->super_copy),
total_dev);
btrfs: repair super block num_devices automatically [BUG] There is a report that a btrfs has a bad super block num devices. This makes btrfs to reject the fs completely. BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here BTRFS error (device sdd3): failed to read chunk tree: -22 BTRFS error (device sdd3): open_ctree failed [CAUSE] During btrfs device removal, chunk tree and super block num devs are updated in two different transactions: btrfs_rm_device() |- btrfs_rm_dev_item(device) | |- trans = btrfs_start_transaction() | | Now we got transaction X | | | |- btrfs_del_item() | | Now device item is removed from chunk tree | | | |- btrfs_commit_transaction() | Transaction X got committed, super num devs untouched, | but device item removed from chunk tree. | (AKA, super num devs is already incorrect) | |- cur_devices->num_devices--; |- cur_devices->total_devices--; |- btrfs_set_super_num_devices() All those operations are not in transaction X, thus it will only be written back to disk in next transaction. So after the transaction X in btrfs_rm_dev_item() committed, but before transaction X+1 (which can be minutes away), a power loss happen, then we got the super num mismatch. This has been fixed by commit bbac58698a55 ("btrfs: remove device item and update super block in the same transaction"). [FIX] Make the super_num_devices check less strict, converting it from a hard error to a warning, and reset the value to a correct one for the current or next transaction commit. As the number of device items is the critical information where the super block num_devices is only a cached value (and also useful for cross checking), it's safe to automatically update it. Other device related problems like missing device are handled after that and may require other means to resolve, like degraded mount. With this fix, potentially affected filesystems won't fail mount and require the manual repair by btrfs check. Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/ CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-28 07:05:53 +00:00
fs_info->fs_devices->total_devices = total_dev;
btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
}
if (btrfs_super_total_bytes(fs_info->super_copy) <
fs_info->fs_devices->total_rw_bytes) {
btrfs_err(fs_info,
"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
btrfs_super_total_bytes(fs_info->super_copy),
fs_info->fs_devices->total_rw_bytes);
ret = -EINVAL;
goto error;
}
ret = 0;
error:
mutex_unlock(&uuid_mutex);
btrfs_free_path(path);
return ret;
}
int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
struct btrfs_device *device;
int ret = 0;
fs_devices->fs_info = fs_info;
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry(device, &fs_devices->devices, dev_list)
device->fs_info = fs_info;
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed_devs->devices, dev_list) {
device->fs_info = fs_info;
ret = btrfs_get_dev_zone_info(device, false);
if (ret)
break;
}
seed_devs->fs_info = fs_info;
}
mutex_unlock(&fs_devices->device_list_mutex);
return ret;
}
static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
const struct btrfs_dev_stats_item *ptr,
int index)
{
u64 val;
read_extent_buffer(eb, &val,
offsetof(struct btrfs_dev_stats_item, values) +
((unsigned long)ptr) + (index * sizeof(u64)),
sizeof(val));
return val;
}
static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
struct btrfs_dev_stats_item *ptr,
int index, u64 val)
{
write_extent_buffer(eb, &val,
offsetof(struct btrfs_dev_stats_item, values) +
((unsigned long)ptr) + (index * sizeof(u64)),
sizeof(val));
}
static int btrfs_device_init_dev_stats(struct btrfs_device *device,
struct btrfs_path *path)
{
struct btrfs_dev_stats_item *ptr;
struct extent_buffer *eb;
struct btrfs_key key;
int item_size;
int i, ret, slot;
btrfs: do not initialize dev stats if we have no dev_root Neal reported a panic trying to use -o rescue=all BUG: kernel NULL pointer dereference, address: 0000000000000030 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 0 PID: 4095 Comm: mount Not tainted 5.11.0-0.rc7.149.fc34.x86_64 #1 RIP: 0010:btrfs_device_init_dev_stats+0x4c/0x1f0 RSP: 0018:ffffa60285fbfb68 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88b88f806498 RCX: ffff88b82e7a2a10 RDX: ffffa60285fbfb97 RSI: ffff88b82e7a2a10 RDI: 0000000000000000 RBP: ffff88b88f806b3c R08: 0000000000000000 R09: 0000000000000000 R10: ffff88b82e7a2a10 R11: 0000000000000000 R12: ffff88b88f806a00 R13: ffff88b88f806478 R14: ffff88b88f806a00 R15: ffff88b82e7a2a10 FS: 00007f698be1ec40(0000) GS:ffff88b937e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000030 CR3: 0000000092c9c006 CR4: 00000000003706f0 Call Trace: ? btrfs_init_dev_stats+0x1f/0xf0 btrfs_init_dev_stats+0x62/0xf0 open_ctree+0x1019/0x15ff btrfs_mount_root.cold+0x13/0xfa legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x131/0x3d0 ? legacy_get_tree+0x27/0x40 ? btrfs_show_options+0x640/0x640 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x441/0xa80 __x64_sys_mount+0xf4/0x130 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f698c04e52e This happens because we unconditionally attempt to initialize device stats on mount, but we may not have been able to read the device root. Fix this by skipping initializing the device stats if we do not have a device root. Reported-by: Neal Gompa <ngompa13@gmail.com> CC: stable@vger.kernel.org # 5.11+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-11 16:23:15 +00:00
if (!device->fs_info->dev_root)
return 0;
key.objectid = BTRFS_DEV_STATS_OBJECTID;
key.type = BTRFS_PERSISTENT_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
if (ret) {
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
btrfs_dev_stat_set(device, i, 0);
device->dev_stats_valid = 1;
btrfs_release_path(path);
return ret < 0 ? ret : 0;
}
slot = path->slots[0];
eb = path->nodes[0];
item_size = btrfs_item_size(eb, slot);
ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
if (item_size >= (1 + i) * sizeof(__le64))
btrfs_dev_stat_set(device, i,
btrfs_dev_stats_value(eb, ptr, i));
else
btrfs_dev_stat_set(device, i, 0);
}
device->dev_stats_valid = 1;
btrfs_dev_stat_print_on_load(device);
btrfs_release_path(path);
return 0;
}
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
struct btrfs_device *device;
struct btrfs_path *path = NULL;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry(device, &fs_devices->devices, dev_list) {
ret = btrfs_device_init_dev_stats(device, path);
if (ret)
goto out;
}
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed_devs->devices, dev_list) {
ret = btrfs_device_init_dev_stats(device, path);
if (ret)
goto out;
}
}
out:
mutex_unlock(&fs_devices->device_list_mutex);
btrfs_free_path(path);
return ret;
}
static int update_dev_stat_item(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *dev_root = fs_info->dev_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *eb;
struct btrfs_dev_stats_item *ptr;
int ret;
int i;
key.objectid = BTRFS_DEV_STATS_OBJECTID;
key.type = BTRFS_PERSISTENT_ITEM_KEY;
key.offset = device->devid;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
if (ret < 0) {
btrfs_warn_in_rcu(fs_info,
"error %d while searching for dev_stats item for device %s",
ret, btrfs_dev_name(device));
goto out;
}
if (ret == 0 &&
btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
/* need to delete old one and insert a new one */
ret = btrfs_del_item(trans, dev_root, path);
if (ret != 0) {
btrfs_warn_in_rcu(fs_info,
"delete too small dev_stats item for device %s failed %d",
btrfs_dev_name(device), ret);
goto out;
}
ret = 1;
}
if (ret == 1) {
/* need to insert a new item */
btrfs_release_path(path);
ret = btrfs_insert_empty_item(trans, dev_root, path,
&key, sizeof(*ptr));
if (ret < 0) {
btrfs_warn_in_rcu(fs_info,
"insert dev_stats item for device %s failed %d",
btrfs_dev_name(device), ret);
goto out;
}
}
eb = path->nodes[0];
ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
btrfs_set_dev_stats_value(eb, ptr, i,
btrfs_dev_stat_read(device, i));
btrfs_mark_buffer_dirty(eb);
out:
btrfs_free_path(path);
return ret;
}
/*
* called from commit_transaction. Writes all changed device stats to disk.
*/
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
struct btrfs_device *device;
int stats_cnt;
int ret = 0;
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry(device, &fs_devices->devices, dev_list) {
stats_cnt = atomic_read(&device->dev_stats_ccnt);
if (!device->dev_stats_valid || stats_cnt == 0)
continue;
/*
* There is a LOAD-LOAD control dependency between the value of
* dev_stats_ccnt and updating the on-disk values which requires
* reading the in-memory counters. Such control dependencies
* require explicit read memory barriers.
*
* This memory barriers pairs with smp_mb__before_atomic in
* btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
* barrier implied by atomic_xchg in
* btrfs_dev_stats_read_and_reset
*/
smp_rmb();
ret = update_dev_stat_item(trans, device);
if (!ret)
atomic_sub(stats_cnt, &device->dev_stats_ccnt);
}
mutex_unlock(&fs_devices->device_list_mutex);
return ret;
}
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
btrfs_dev_stat_inc(dev, index);
if (!dev->dev_stats_valid)
return;
btrfs_err_rl_in_rcu(dev->fs_info,
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
btrfs_dev_name(dev),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
int i;
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
if (btrfs_dev_stat_read(dev, i) != 0)
break;
if (i == BTRFS_DEV_STAT_VALUES_MAX)
return; /* all values == 0, suppress message */
btrfs_info_in_rcu(dev->fs_info,
"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
btrfs_dev_name(dev),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_get_dev_stats *stats)
{
BTRFS_DEV_LOOKUP_ARGS(args);
struct btrfs_device *dev;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
int i;
mutex_lock(&fs_devices->device_list_mutex);
args.devid = stats->devid;
dev = btrfs_find_device(fs_info->fs_devices, &args);
mutex_unlock(&fs_devices->device_list_mutex);
if (!dev) {
btrfs_warn(fs_info, "get dev_stats failed, device not found");
return -ENODEV;
} else if (!dev->dev_stats_valid) {
btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
return -ENODEV;
} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
if (stats->nr_items > i)
stats->values[i] =
btrfs_dev_stat_read_and_reset(dev, i);
else
btrfs_dev_stat_set(dev, i, 0);
}
btrfs_info(fs_info, "device stats zeroed by %s (%d)",
current->comm, task_pid_nr(current));
} else {
for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
if (stats->nr_items > i)
stats->values[i] = btrfs_dev_stat_read(dev, i);
}
if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
return 0;
}
/*
* Update the size and bytes used for each device where it changed. This is
* delayed since we would otherwise get errors while writing out the
* superblocks.
*
* Must be invoked during transaction commit.
*/
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
{
struct btrfs_device *curr, *next;
ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
if (list_empty(&trans->dev_update_list))
return;
/*
* We don't need the device_list_mutex here. This list is owned by the
* transaction and the transaction must complete before the device is
* released.
*/
mutex_lock(&trans->fs_info->chunk_mutex);
list_for_each_entry_safe(curr, next, &trans->dev_update_list,
post_commit_list) {
list_del_init(&curr->post_commit_list);
curr->commit_total_bytes = curr->disk_total_bytes;
curr->commit_bytes_used = curr->bytes_used;
}
mutex_unlock(&trans->fs_info->chunk_mutex);
}
/*
* Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
*/
int btrfs_bg_type_to_factor(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].ncopies;
}
static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
u64 chunk_offset, u64 devid,
u64 physical_offset, u64 physical_len)
{
struct btrfs_dev_lookup_args args = { .devid = devid };
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct map_lookup *map;
struct btrfs_device *dev;
u64 stripe_len;
bool found = false;
int ret = 0;
int i;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
read_unlock(&em_tree->lock);
if (!em) {
btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
physical_offset, devid);
ret = -EUCLEAN;
goto out;
}
map = em->map_lookup;
stripe_len = btrfs_calc_stripe_length(em);
if (physical_len != stripe_len) {
btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
physical_offset, devid, em->start, physical_len,
stripe_len);
ret = -EUCLEAN;
goto out;
}
/*
* Very old mkfs.btrfs (before v4.1) will not respect the reserved
* space. Although kernel can handle it without problem, better to warn
* the users.
*/
if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
btrfs_warn(fs_info,
"devid %llu physical %llu len %llu inside the reserved space",
devid, physical_offset, physical_len);
for (i = 0; i < map->num_stripes; i++) {
if (map->stripes[i].dev->devid == devid &&
map->stripes[i].physical == physical_offset) {
found = true;
if (map->verified_stripes >= map->num_stripes) {
btrfs_err(fs_info,
"too many dev extents for chunk %llu found",
em->start);
ret = -EUCLEAN;
goto out;
}
map->verified_stripes++;
break;
}
}
if (!found) {
btrfs_err(fs_info,
"dev extent physical offset %llu devid %llu has no corresponding chunk",
physical_offset, devid);
ret = -EUCLEAN;
}
/* Make sure no dev extent is beyond device boundary */
dev = btrfs_find_device(fs_info->fs_devices, &args);
if (!dev) {
btrfs_err(fs_info, "failed to find devid %llu", devid);
ret = -EUCLEAN;
goto out;
}
if (physical_offset + physical_len > dev->disk_total_bytes) {
btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
devid, physical_offset, physical_len,
dev->disk_total_bytes);
ret = -EUCLEAN;
goto out;
}
if (dev->zone_info) {
u64 zone_size = dev->zone_info->zone_size;
if (!IS_ALIGNED(physical_offset, zone_size) ||
!IS_ALIGNED(physical_len, zone_size)) {
btrfs_err(fs_info,
"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
devid, physical_offset, physical_len);
ret = -EUCLEAN;
goto out;
}
}
out:
free_extent_map(em);
return ret;
}
static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
struct extent_map_tree *em_tree = &fs_info->mapping_tree;
struct extent_map *em;
struct rb_node *node;
int ret = 0;
read_lock(&em_tree->lock);
for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
em = rb_entry(node, struct extent_map, rb_node);
if (em->map_lookup->num_stripes !=
em->map_lookup->verified_stripes) {
btrfs_err(fs_info,
"chunk %llu has missing dev extent, have %d expect %d",
em->start, em->map_lookup->verified_stripes,
em->map_lookup->num_stripes);
ret = -EUCLEAN;
goto out;
}
}
out:
read_unlock(&em_tree->lock);
return ret;
}
/*
* Ensure that all dev extents are mapped to correct chunk, otherwise
* later chunk allocation/free would cause unexpected behavior.
*
* NOTE: This will iterate through the whole device tree, which should be of
* the same size level as the chunk tree. This slightly increases mount time.
*/
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
struct btrfs_path *path;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_key key;
btrfs: volumes: Make sure there is no overlap of dev extents at mount time Enhance btrfs_verify_dev_extents() to remember previous checked dev extents, so it can verify no dev extents can overlap. Analysis from Hans: "Imagine allocating a DATA|DUP chunk. In the chunk allocator, we first set... max_stripe_size = SZ_1G; max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE ... which is 10GiB. Then... /* we don't want a chunk larger than 10% of writeable space */ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), max_chunk_size); Imagine we only have one 7880MiB block device in this filesystem. Now max_chunk_size is down to 788MiB. The next step in the code is to search for max_stripe_size * dev_stripes amount of free space on the device, which is in our example 1GiB * 2 = 2GiB. Imagine the device has exactly 1578MiB free in one contiguous piece. This amount of bytes will be put in devices_info[ndevs - 1].max_avail Next we recalculate the stripe_size (which is actually the device extent length), based on the actual maximum amount of available raw disk space: stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); stripe_size is now 789MiB Next we do... data_stripes = num_stripes / ncopies ...where data_stripes ends up as 1, because num_stripes is 2 (the amount of device extents we're going to have), and DUP has ncopies 2. Next there's a check... if (stripe_size * data_stripes > max_chunk_size) ...which matches because 789MiB * 1 > 788MiB. We go into the if code, and next is... stripe_size = div_u64(max_chunk_size, data_stripes); ...which resets stripe_size to max_chunk_size: 788MiB Next is a fun one... /* bump the answer up to a 16MB boundary */ stripe_size = round_up(stripe_size, SZ_16M); ...which changes stripe_size from 788MiB to 800MiB. We're not done changing stripe_size yet... /* But don't go higher than the limits we found while searching * for free extents */ stripe_size = min(devices_info[ndevs - 1].max_avail, stripe_size); This is bad. max_avail is twice the stripe_size (we need to fit 2 device extents on the same device for DUP). The result here is that 800MiB < 1578MiB, so it's unchanged. However, the resulting DUP chunk will need 1600MiB disk space, which isn't there, and the second dev_extent might extend into the next thing (next dev_extent? end of device?) for 22MiB. The last shown line of code relies on a situation where there's twice the value of stripe_size present as value for the variable stripe_size when it's DUP. This was actually the case before commit 92e222df7b "btrfs: alloc_chunk: fix DUP stripe size handling", from which I quote: "[...] in the meantime there's a check to see if the stripe_size does not exceed max_chunk_size. Since during this check stripe_size is twice the amount as intended, the check will reduce the stripe_size to max_chunk_size if the actual correct to be used stripe_size is more than half the amount of max_chunk_size." In the previous version of the code, the 16MiB alignment (why is this done, by the way?) would result in a 50% chance that it would actually do an 8MiB alignment for the individual dev_extents, since it was operating on double the size. Does this matter? Does it matter that stripe_size can be set to anything which is not 16MiB aligned because of the amount of remaining available disk space which is just taken? What is the main purpose of this round_up? The most straightforward thing to do seems something like... stripe_size = min( div_u64(devices_info[ndevs - 1].max_avail, dev_stripes), stripe_size ) ..just putting half of the max_avail into stripe_size." Link: https://lore.kernel.org/linux-btrfs/b3461a38-e5f8-f41d-c67c-2efac8129054@mendix.com/ Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Qu Wenruo <wqu@suse.com> [ add analysis from report ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-05 09:45:54 +00:00
u64 prev_devid = 0;
u64 prev_dev_ext_end = 0;
int ret = 0;
/*
* We don't have a dev_root because we mounted with ignorebadroots and
* failed to load the root, so we want to skip the verification in this
* case for sure.
*
* However if the dev root is fine, but the tree itself is corrupted
* we'd still fail to mount. This verification is only to make sure
* writes can happen safely, so instead just bypass this check
* completely in the case of IGNOREBADROOTS.
*/
if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
return 0;
key.objectid = 1;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_FORWARD;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
/* No dev extents at all? Not good */
if (ret > 0) {
ret = -EUCLEAN;
goto out;
}
}
while (1) {
struct extent_buffer *leaf = path->nodes[0];
struct btrfs_dev_extent *dext;
int slot = path->slots[0];
u64 chunk_offset;
u64 physical_offset;
u64 physical_len;
u64 devid;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.type != BTRFS_DEV_EXTENT_KEY)
break;
devid = key.objectid;
physical_offset = key.offset;
dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
physical_len = btrfs_dev_extent_length(leaf, dext);
btrfs: volumes: Make sure there is no overlap of dev extents at mount time Enhance btrfs_verify_dev_extents() to remember previous checked dev extents, so it can verify no dev extents can overlap. Analysis from Hans: "Imagine allocating a DATA|DUP chunk. In the chunk allocator, we first set... max_stripe_size = SZ_1G; max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE ... which is 10GiB. Then... /* we don't want a chunk larger than 10% of writeable space */ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), max_chunk_size); Imagine we only have one 7880MiB block device in this filesystem. Now max_chunk_size is down to 788MiB. The next step in the code is to search for max_stripe_size * dev_stripes amount of free space on the device, which is in our example 1GiB * 2 = 2GiB. Imagine the device has exactly 1578MiB free in one contiguous piece. This amount of bytes will be put in devices_info[ndevs - 1].max_avail Next we recalculate the stripe_size (which is actually the device extent length), based on the actual maximum amount of available raw disk space: stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); stripe_size is now 789MiB Next we do... data_stripes = num_stripes / ncopies ...where data_stripes ends up as 1, because num_stripes is 2 (the amount of device extents we're going to have), and DUP has ncopies 2. Next there's a check... if (stripe_size * data_stripes > max_chunk_size) ...which matches because 789MiB * 1 > 788MiB. We go into the if code, and next is... stripe_size = div_u64(max_chunk_size, data_stripes); ...which resets stripe_size to max_chunk_size: 788MiB Next is a fun one... /* bump the answer up to a 16MB boundary */ stripe_size = round_up(stripe_size, SZ_16M); ...which changes stripe_size from 788MiB to 800MiB. We're not done changing stripe_size yet... /* But don't go higher than the limits we found while searching * for free extents */ stripe_size = min(devices_info[ndevs - 1].max_avail, stripe_size); This is bad. max_avail is twice the stripe_size (we need to fit 2 device extents on the same device for DUP). The result here is that 800MiB < 1578MiB, so it's unchanged. However, the resulting DUP chunk will need 1600MiB disk space, which isn't there, and the second dev_extent might extend into the next thing (next dev_extent? end of device?) for 22MiB. The last shown line of code relies on a situation where there's twice the value of stripe_size present as value for the variable stripe_size when it's DUP. This was actually the case before commit 92e222df7b "btrfs: alloc_chunk: fix DUP stripe size handling", from which I quote: "[...] in the meantime there's a check to see if the stripe_size does not exceed max_chunk_size. Since during this check stripe_size is twice the amount as intended, the check will reduce the stripe_size to max_chunk_size if the actual correct to be used stripe_size is more than half the amount of max_chunk_size." In the previous version of the code, the 16MiB alignment (why is this done, by the way?) would result in a 50% chance that it would actually do an 8MiB alignment for the individual dev_extents, since it was operating on double the size. Does this matter? Does it matter that stripe_size can be set to anything which is not 16MiB aligned because of the amount of remaining available disk space which is just taken? What is the main purpose of this round_up? The most straightforward thing to do seems something like... stripe_size = min( div_u64(devices_info[ndevs - 1].max_avail, dev_stripes), stripe_size ) ..just putting half of the max_avail into stripe_size." Link: https://lore.kernel.org/linux-btrfs/b3461a38-e5f8-f41d-c67c-2efac8129054@mendix.com/ Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Qu Wenruo <wqu@suse.com> [ add analysis from report ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-05 09:45:54 +00:00
/* Check if this dev extent overlaps with the previous one */
if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
devid, physical_offset, prev_dev_ext_end);
ret = -EUCLEAN;
goto out;
}
ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
physical_offset, physical_len);
if (ret < 0)
goto out;
btrfs: volumes: Make sure there is no overlap of dev extents at mount time Enhance btrfs_verify_dev_extents() to remember previous checked dev extents, so it can verify no dev extents can overlap. Analysis from Hans: "Imagine allocating a DATA|DUP chunk. In the chunk allocator, we first set... max_stripe_size = SZ_1G; max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE ... which is 10GiB. Then... /* we don't want a chunk larger than 10% of writeable space */ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), max_chunk_size); Imagine we only have one 7880MiB block device in this filesystem. Now max_chunk_size is down to 788MiB. The next step in the code is to search for max_stripe_size * dev_stripes amount of free space on the device, which is in our example 1GiB * 2 = 2GiB. Imagine the device has exactly 1578MiB free in one contiguous piece. This amount of bytes will be put in devices_info[ndevs - 1].max_avail Next we recalculate the stripe_size (which is actually the device extent length), based on the actual maximum amount of available raw disk space: stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); stripe_size is now 789MiB Next we do... data_stripes = num_stripes / ncopies ...where data_stripes ends up as 1, because num_stripes is 2 (the amount of device extents we're going to have), and DUP has ncopies 2. Next there's a check... if (stripe_size * data_stripes > max_chunk_size) ...which matches because 789MiB * 1 > 788MiB. We go into the if code, and next is... stripe_size = div_u64(max_chunk_size, data_stripes); ...which resets stripe_size to max_chunk_size: 788MiB Next is a fun one... /* bump the answer up to a 16MB boundary */ stripe_size = round_up(stripe_size, SZ_16M); ...which changes stripe_size from 788MiB to 800MiB. We're not done changing stripe_size yet... /* But don't go higher than the limits we found while searching * for free extents */ stripe_size = min(devices_info[ndevs - 1].max_avail, stripe_size); This is bad. max_avail is twice the stripe_size (we need to fit 2 device extents on the same device for DUP). The result here is that 800MiB < 1578MiB, so it's unchanged. However, the resulting DUP chunk will need 1600MiB disk space, which isn't there, and the second dev_extent might extend into the next thing (next dev_extent? end of device?) for 22MiB. The last shown line of code relies on a situation where there's twice the value of stripe_size present as value for the variable stripe_size when it's DUP. This was actually the case before commit 92e222df7b "btrfs: alloc_chunk: fix DUP stripe size handling", from which I quote: "[...] in the meantime there's a check to see if the stripe_size does not exceed max_chunk_size. Since during this check stripe_size is twice the amount as intended, the check will reduce the stripe_size to max_chunk_size if the actual correct to be used stripe_size is more than half the amount of max_chunk_size." In the previous version of the code, the 16MiB alignment (why is this done, by the way?) would result in a 50% chance that it would actually do an 8MiB alignment for the individual dev_extents, since it was operating on double the size. Does this matter? Does it matter that stripe_size can be set to anything which is not 16MiB aligned because of the amount of remaining available disk space which is just taken? What is the main purpose of this round_up? The most straightforward thing to do seems something like... stripe_size = min( div_u64(devices_info[ndevs - 1].max_avail, dev_stripes), stripe_size ) ..just putting half of the max_avail into stripe_size." Link: https://lore.kernel.org/linux-btrfs/b3461a38-e5f8-f41d-c67c-2efac8129054@mendix.com/ Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Qu Wenruo <wqu@suse.com> [ add analysis from report ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-05 09:45:54 +00:00
prev_devid = devid;
prev_dev_ext_end = physical_offset + physical_len;
ret = btrfs_next_item(root, path);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
}
/* Ensure all chunks have corresponding dev extents */
ret = verify_chunk_dev_extent_mapping(fs_info);
out:
btrfs_free_path(path);
return ret;
}
/*
* Check whether the given block group or device is pinned by any inode being
* used as a swapfile.
*/
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
struct btrfs_swapfile_pin *sp;
struct rb_node *node;
spin_lock(&fs_info->swapfile_pins_lock);
node = fs_info->swapfile_pins.rb_node;
while (node) {
sp = rb_entry(node, struct btrfs_swapfile_pin, node);
if (ptr < sp->ptr)
node = node->rb_left;
else if (ptr > sp->ptr)
node = node->rb_right;
else
break;
}
spin_unlock(&fs_info->swapfile_pins_lock);
return node != NULL;
}
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
static int relocating_repair_kthread(void *data)
{
struct btrfs_block_group *cache = data;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
struct btrfs_fs_info *fs_info = cache->fs_info;
u64 target;
int ret = 0;
target = cache->start;
btrfs_put_block_group(cache);
sb_start_write(fs_info->sb);
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
btrfs_info(fs_info,
"zoned: skip relocating block group %llu to repair: EBUSY",
target);
sb_end_write(fs_info->sb);
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
return -EBUSY;
}
mutex_lock(&fs_info->reclaim_bgs_lock);
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
/* Ensure block group still exists */
cache = btrfs_lookup_block_group(fs_info, target);
if (!cache)
goto out;
if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
goto out;
ret = btrfs_may_alloc_data_chunk(fs_info, target);
if (ret < 0)
goto out;
btrfs_info(fs_info,
"zoned: relocating block group %llu to repair IO failure",
target);
ret = btrfs_relocate_chunk(fs_info, target);
out:
if (cache)
btrfs_put_block_group(cache);
mutex_unlock(&fs_info->reclaim_bgs_lock);
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
btrfs_exclop_finish(fs_info);
sb_end_write(fs_info->sb);
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
return ret;
}
bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
{
struct btrfs_block_group *cache;
if (!btrfs_is_zoned(fs_info))
return false;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
/* Do not attempt to repair in degraded state */
if (btrfs_test_opt(fs_info, DEGRADED))
return true;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
cache = btrfs_lookup_block_group(fs_info, logical);
if (!cache)
return true;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
btrfs_put_block_group(cache);
return true;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
}
kthread_run(relocating_repair_kthread, cache,
"btrfs-relocating-repair");
return true;
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-04 10:22:16 +00:00
}
static void map_raid56_repair_block(struct btrfs_io_context *bioc,
struct btrfs_io_stripe *smap,
u64 logical)
{
int data_stripes = nr_bioc_data_stripes(bioc);
int i;
for (i = 0; i < data_stripes; i++) {
u64 stripe_start = bioc->full_stripe_logical +
btrfs_stripe_nr_to_offset(i);
if (logical >= stripe_start &&
logical < stripe_start + BTRFS_STRIPE_LEN)
break;
}
ASSERT(i < data_stripes);
smap->dev = bioc->stripes[i].dev;
smap->physical = bioc->stripes[i].physical +
((logical - bioc->full_stripe_logical) &
BTRFS_STRIPE_LEN_MASK);
}
/*
* Map a repair write into a single device.
*
* A repair write is triggered by read time repair or scrub, which would only
* update the contents of a single device.
* Not update any other mirrors nor go through RMW path.
*
* Callers should ensure:
*
* - Call btrfs_bio_counter_inc_blocked() first
* - The range does not cross stripe boundary
* - Has a valid @mirror_num passed in.
*/
int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
struct btrfs_io_stripe *smap, u64 logical,
u32 length, int mirror_num)
{
struct btrfs_io_context *bioc = NULL;
u64 map_length = length;
int mirror_ret = mirror_num;
int ret;
ASSERT(mirror_num > 0);
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
&bioc, smap, &mirror_ret, true);
if (ret < 0)
return ret;
/* The map range should not cross stripe boundary. */
ASSERT(map_length >= length);
/* Already mapped to single stripe. */
if (!bioc)
goto out;
/* Map the RAID56 multi-stripe writes to a single one. */
if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
map_raid56_repair_block(bioc, smap, logical);
goto out;
}
ASSERT(mirror_num <= bioc->num_stripes);
smap->dev = bioc->stripes[mirror_num - 1].dev;
smap->physical = bioc->stripes[mirror_num - 1].physical;
out:
btrfs_put_bioc(bioc);
ASSERT(smap->dev);
return 0;
}