mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 19:01:37 +00:00
384 lines
11 KiB
C
384 lines
11 KiB
C
|
/*
|
||
|
* Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
|
||
|
* August 2002: added remote node KVA remap - Martin J. Bligh
|
||
|
*
|
||
|
* Copyright (C) 2002, IBM Corp.
|
||
|
*
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
||
|
* details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/bootmem.h>
|
||
|
#include <linux/mmzone.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/initrd.h>
|
||
|
#include <linux/nodemask.h>
|
||
|
#include <asm/e820.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <asm/mmzone.h>
|
||
|
#include <bios_ebda.h>
|
||
|
|
||
|
struct pglist_data *node_data[MAX_NUMNODES];
|
||
|
bootmem_data_t node0_bdata;
|
||
|
|
||
|
/*
|
||
|
* numa interface - we expect the numa architecture specfic code to have
|
||
|
* populated the following initialisation.
|
||
|
*
|
||
|
* 1) node_online_map - the map of all nodes configured (online) in the system
|
||
|
* 2) physnode_map - the mapping between a pfn and owning node
|
||
|
* 3) node_start_pfn - the starting page frame number for a node
|
||
|
* 3) node_end_pfn - the ending page fram number for a node
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* physnode_map keeps track of the physical memory layout of a generic
|
||
|
* numa node on a 256Mb break (each element of the array will
|
||
|
* represent 256Mb of memory and will be marked by the node id. so,
|
||
|
* if the first gig is on node 0, and the second gig is on node 1
|
||
|
* physnode_map will contain:
|
||
|
*
|
||
|
* physnode_map[0-3] = 0;
|
||
|
* physnode_map[4-7] = 1;
|
||
|
* physnode_map[8- ] = -1;
|
||
|
*/
|
||
|
s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
|
||
|
|
||
|
void memory_present(int nid, unsigned long start, unsigned long end)
|
||
|
{
|
||
|
unsigned long pfn;
|
||
|
|
||
|
printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
|
||
|
nid, start, end);
|
||
|
printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
|
||
|
printk(KERN_DEBUG " ");
|
||
|
for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
|
||
|
physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
|
||
|
printk("%ld ", pfn);
|
||
|
}
|
||
|
printk("\n");
|
||
|
}
|
||
|
|
||
|
unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
||
|
unsigned long end_pfn)
|
||
|
{
|
||
|
unsigned long nr_pages = end_pfn - start_pfn;
|
||
|
|
||
|
if (!nr_pages)
|
||
|
return 0;
|
||
|
|
||
|
return (nr_pages + 1) * sizeof(struct page);
|
||
|
}
|
||
|
|
||
|
unsigned long node_start_pfn[MAX_NUMNODES];
|
||
|
unsigned long node_end_pfn[MAX_NUMNODES];
|
||
|
|
||
|
extern unsigned long find_max_low_pfn(void);
|
||
|
extern void find_max_pfn(void);
|
||
|
extern void one_highpage_init(struct page *, int, int);
|
||
|
|
||
|
extern struct e820map e820;
|
||
|
extern unsigned long init_pg_tables_end;
|
||
|
extern unsigned long highend_pfn, highstart_pfn;
|
||
|
extern unsigned long max_low_pfn;
|
||
|
extern unsigned long totalram_pages;
|
||
|
extern unsigned long totalhigh_pages;
|
||
|
|
||
|
#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
|
||
|
|
||
|
unsigned long node_remap_start_pfn[MAX_NUMNODES];
|
||
|
unsigned long node_remap_size[MAX_NUMNODES];
|
||
|
unsigned long node_remap_offset[MAX_NUMNODES];
|
||
|
void *node_remap_start_vaddr[MAX_NUMNODES];
|
||
|
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
|
||
|
|
||
|
/*
|
||
|
* FLAT - support for basic PC memory model with discontig enabled, essentially
|
||
|
* a single node with all available processors in it with a flat
|
||
|
* memory map.
|
||
|
*/
|
||
|
int __init get_memcfg_numa_flat(void)
|
||
|
{
|
||
|
printk("NUMA - single node, flat memory mode\n");
|
||
|
|
||
|
/* Run the memory configuration and find the top of memory. */
|
||
|
find_max_pfn();
|
||
|
node_start_pfn[0] = 0;
|
||
|
node_end_pfn[0] = max_pfn;
|
||
|
memory_present(0, 0, max_pfn);
|
||
|
|
||
|
/* Indicate there is one node available. */
|
||
|
nodes_clear(node_online_map);
|
||
|
node_set_online(0);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find the highest page frame number we have available for the node
|
||
|
*/
|
||
|
static void __init find_max_pfn_node(int nid)
|
||
|
{
|
||
|
if (node_end_pfn[nid] > max_pfn)
|
||
|
node_end_pfn[nid] = max_pfn;
|
||
|
/*
|
||
|
* if a user has given mem=XXXX, then we need to make sure
|
||
|
* that the node _starts_ before that, too, not just ends
|
||
|
*/
|
||
|
if (node_start_pfn[nid] > max_pfn)
|
||
|
node_start_pfn[nid] = max_pfn;
|
||
|
if (node_start_pfn[nid] > node_end_pfn[nid])
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate memory for the pg_data_t for this node via a crude pre-bootmem
|
||
|
* method. For node zero take this from the bottom of memory, for
|
||
|
* subsequent nodes place them at node_remap_start_vaddr which contains
|
||
|
* node local data in physically node local memory. See setup_memory()
|
||
|
* for details.
|
||
|
*/
|
||
|
static void __init allocate_pgdat(int nid)
|
||
|
{
|
||
|
if (nid && node_has_online_mem(nid))
|
||
|
NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
|
||
|
else {
|
||
|
NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
|
||
|
min_low_pfn += PFN_UP(sizeof(pg_data_t));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init remap_numa_kva(void)
|
||
|
{
|
||
|
void *vaddr;
|
||
|
unsigned long pfn;
|
||
|
int node;
|
||
|
|
||
|
for_each_online_node(node) {
|
||
|
if (node == 0)
|
||
|
continue;
|
||
|
for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
|
||
|
vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
|
||
|
set_pmd_pfn((ulong) vaddr,
|
||
|
node_remap_start_pfn[node] + pfn,
|
||
|
PAGE_KERNEL_LARGE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static unsigned long calculate_numa_remap_pages(void)
|
||
|
{
|
||
|
int nid;
|
||
|
unsigned long size, reserve_pages = 0;
|
||
|
|
||
|
for_each_online_node(nid) {
|
||
|
if (nid == 0)
|
||
|
continue;
|
||
|
if (!node_remap_size[nid])
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* The acpi/srat node info can show hot-add memroy zones
|
||
|
* where memory could be added but not currently present.
|
||
|
*/
|
||
|
if (node_start_pfn[nid] > max_pfn)
|
||
|
continue;
|
||
|
if (node_end_pfn[nid] > max_pfn)
|
||
|
node_end_pfn[nid] = max_pfn;
|
||
|
|
||
|
/* ensure the remap includes space for the pgdat. */
|
||
|
size = node_remap_size[nid] + sizeof(pg_data_t);
|
||
|
|
||
|
/* convert size to large (pmd size) pages, rounding up */
|
||
|
size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
|
||
|
/* now the roundup is correct, convert to PAGE_SIZE pages */
|
||
|
size = size * PTRS_PER_PTE;
|
||
|
printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
|
||
|
size, nid);
|
||
|
node_remap_size[nid] = size;
|
||
|
reserve_pages += size;
|
||
|
node_remap_offset[nid] = reserve_pages;
|
||
|
printk("Shrinking node %d from %ld pages to %ld pages\n",
|
||
|
nid, node_end_pfn[nid], node_end_pfn[nid] - size);
|
||
|
node_end_pfn[nid] -= size;
|
||
|
node_remap_start_pfn[nid] = node_end_pfn[nid];
|
||
|
}
|
||
|
printk("Reserving total of %ld pages for numa KVA remap\n",
|
||
|
reserve_pages);
|
||
|
return reserve_pages;
|
||
|
}
|
||
|
|
||
|
extern void setup_bootmem_allocator(void);
|
||
|
unsigned long __init setup_memory(void)
|
||
|
{
|
||
|
int nid;
|
||
|
unsigned long system_start_pfn, system_max_low_pfn;
|
||
|
unsigned long reserve_pages;
|
||
|
|
||
|
/*
|
||
|
* When mapping a NUMA machine we allocate the node_mem_map arrays
|
||
|
* from node local memory. They are then mapped directly into KVA
|
||
|
* between zone normal and vmalloc space. Calculate the size of
|
||
|
* this space and use it to adjust the boundry between ZONE_NORMAL
|
||
|
* and ZONE_HIGHMEM.
|
||
|
*/
|
||
|
find_max_pfn();
|
||
|
get_memcfg_numa();
|
||
|
|
||
|
reserve_pages = calculate_numa_remap_pages();
|
||
|
|
||
|
/* partially used pages are not usable - thus round upwards */
|
||
|
system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
|
||
|
|
||
|
system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
|
||
|
printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
|
||
|
reserve_pages, max_low_pfn + reserve_pages);
|
||
|
printk("max_pfn = %ld\n", max_pfn);
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
highstart_pfn = highend_pfn = max_pfn;
|
||
|
if (max_pfn > system_max_low_pfn)
|
||
|
highstart_pfn = system_max_low_pfn;
|
||
|
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
|
||
|
pages_to_mb(highend_pfn - highstart_pfn));
|
||
|
#endif
|
||
|
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
|
||
|
pages_to_mb(system_max_low_pfn));
|
||
|
printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
|
||
|
min_low_pfn, max_low_pfn, highstart_pfn);
|
||
|
|
||
|
printk("Low memory ends at vaddr %08lx\n",
|
||
|
(ulong) pfn_to_kaddr(max_low_pfn));
|
||
|
for_each_online_node(nid) {
|
||
|
node_remap_start_vaddr[nid] = pfn_to_kaddr(
|
||
|
(highstart_pfn + reserve_pages) - node_remap_offset[nid]);
|
||
|
allocate_pgdat(nid);
|
||
|
printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
|
||
|
(ulong) node_remap_start_vaddr[nid],
|
||
|
(ulong) pfn_to_kaddr(highstart_pfn + reserve_pages
|
||
|
- node_remap_offset[nid] + node_remap_size[nid]));
|
||
|
}
|
||
|
printk("High memory starts at vaddr %08lx\n",
|
||
|
(ulong) pfn_to_kaddr(highstart_pfn));
|
||
|
vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
|
||
|
for_each_online_node(nid)
|
||
|
find_max_pfn_node(nid);
|
||
|
|
||
|
memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
|
||
|
NODE_DATA(0)->bdata = &node0_bdata;
|
||
|
setup_bootmem_allocator();
|
||
|
return max_low_pfn;
|
||
|
}
|
||
|
|
||
|
void __init zone_sizes_init(void)
|
||
|
{
|
||
|
int nid;
|
||
|
|
||
|
/*
|
||
|
* Insert nodes into pgdat_list backward so they appear in order.
|
||
|
* Clobber node 0's links and NULL out pgdat_list before starting.
|
||
|
*/
|
||
|
pgdat_list = NULL;
|
||
|
for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
|
||
|
if (!node_online(nid))
|
||
|
continue;
|
||
|
NODE_DATA(nid)->pgdat_next = pgdat_list;
|
||
|
pgdat_list = NODE_DATA(nid);
|
||
|
}
|
||
|
|
||
|
for_each_online_node(nid) {
|
||
|
unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
|
||
|
unsigned long *zholes_size;
|
||
|
unsigned int max_dma;
|
||
|
|
||
|
unsigned long low = max_low_pfn;
|
||
|
unsigned long start = node_start_pfn[nid];
|
||
|
unsigned long high = node_end_pfn[nid];
|
||
|
|
||
|
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
||
|
|
||
|
if (node_has_online_mem(nid)){
|
||
|
if (start > low) {
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
BUG_ON(start > high);
|
||
|
zones_size[ZONE_HIGHMEM] = high - start;
|
||
|
#endif
|
||
|
} else {
|
||
|
if (low < max_dma)
|
||
|
zones_size[ZONE_DMA] = low;
|
||
|
else {
|
||
|
BUG_ON(max_dma > low);
|
||
|
BUG_ON(low > high);
|
||
|
zones_size[ZONE_DMA] = max_dma;
|
||
|
zones_size[ZONE_NORMAL] = low - max_dma;
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
zones_size[ZONE_HIGHMEM] = high - low;
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
zholes_size = get_zholes_size(nid);
|
||
|
/*
|
||
|
* We let the lmem_map for node 0 be allocated from the
|
||
|
* normal bootmem allocator, but other nodes come from the
|
||
|
* remapped KVA area - mbligh
|
||
|
*/
|
||
|
if (!nid)
|
||
|
free_area_init_node(nid, NODE_DATA(nid),
|
||
|
zones_size, start, zholes_size);
|
||
|
else {
|
||
|
unsigned long lmem_map;
|
||
|
lmem_map = (unsigned long)node_remap_start_vaddr[nid];
|
||
|
lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1;
|
||
|
lmem_map &= PAGE_MASK;
|
||
|
NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map;
|
||
|
free_area_init_node(nid, NODE_DATA(nid), zones_size,
|
||
|
start, zholes_size);
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void __init set_highmem_pages_init(int bad_ppro)
|
||
|
{
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
struct zone *zone;
|
||
|
|
||
|
for_each_zone(zone) {
|
||
|
unsigned long node_pfn, node_high_size, zone_start_pfn;
|
||
|
struct page * zone_mem_map;
|
||
|
|
||
|
if (!is_highmem(zone))
|
||
|
continue;
|
||
|
|
||
|
printk("Initializing %s for node %d\n", zone->name,
|
||
|
zone->zone_pgdat->node_id);
|
||
|
|
||
|
node_high_size = zone->spanned_pages;
|
||
|
zone_mem_map = zone->zone_mem_map;
|
||
|
zone_start_pfn = zone->zone_start_pfn;
|
||
|
|
||
|
for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) {
|
||
|
one_highpage_init((struct page *)(zone_mem_map + node_pfn),
|
||
|
zone_start_pfn + node_pfn, bad_ppro);
|
||
|
}
|
||
|
}
|
||
|
totalram_pages += totalhigh_pages;
|
||
|
#endif
|
||
|
}
|