2006-08-29 22:12:40 +00:00
|
|
|
/*
|
2007-03-02 23:17:22 +00:00
|
|
|
* pata_cmd64x.c - CMD64x PATA for new ATA layer
|
2006-08-29 22:12:40 +00:00
|
|
|
* (C) 2005 Red Hat Inc
|
2008-10-27 15:09:10 +00:00
|
|
|
* Alan Cox <alan@lxorguk.ukuu.org.uk>
|
2010-01-18 17:14:55 +00:00
|
|
|
* (C) 2009-2010 Bartlomiej Zolnierkiewicz
|
2012-03-11 19:25:30 +00:00
|
|
|
* (C) 2012 MontaVista Software, LLC <source@mvista.com>
|
2006-08-29 22:12:40 +00:00
|
|
|
*
|
|
|
|
* Based upon
|
|
|
|
* linux/drivers/ide/pci/cmd64x.c Version 1.30 Sept 10, 2002
|
|
|
|
*
|
|
|
|
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
|
|
|
|
* Note, this driver is not used at all on other systems because
|
|
|
|
* there the "BIOS" has done all of the following already.
|
|
|
|
* Due to massive hardware bugs, UltraDMA is only supported
|
|
|
|
* on the 646U2 and not on the 646U.
|
|
|
|
*
|
|
|
|
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
|
|
|
|
* Copyright (C) 1998 David S. Miller (davem@redhat.com)
|
|
|
|
*
|
|
|
|
* Copyright (C) 1999-2002 Andre Hedrick <andre@linux-ide.org>
|
|
|
|
*
|
|
|
|
* TODO
|
|
|
|
* Testing work
|
|
|
|
*/
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <scsi/scsi_host.h>
|
|
|
|
#include <linux/libata.h>
|
|
|
|
|
|
|
|
#define DRV_NAME "pata_cmd64x"
|
2012-03-11 19:28:18 +00:00
|
|
|
#define DRV_VERSION "0.2.18"
|
2006-08-29 22:12:40 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* CMD64x specific registers definition.
|
|
|
|
*/
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
enum {
|
|
|
|
CFR = 0x50,
|
2010-01-18 17:15:11 +00:00
|
|
|
CFR_INTR_CH0 = 0x04,
|
2011-04-24 19:30:14 +00:00
|
|
|
CNTRL = 0x51,
|
|
|
|
CNTRL_CH0 = 0x04,
|
|
|
|
CNTRL_CH1 = 0x08,
|
2006-08-29 22:12:40 +00:00
|
|
|
CMDTIM = 0x52,
|
|
|
|
ARTTIM0 = 0x53,
|
|
|
|
DRWTIM0 = 0x54,
|
|
|
|
ARTTIM1 = 0x55,
|
|
|
|
DRWTIM1 = 0x56,
|
|
|
|
ARTTIM23 = 0x57,
|
|
|
|
ARTTIM23_DIS_RA2 = 0x04,
|
|
|
|
ARTTIM23_DIS_RA3 = 0x08,
|
|
|
|
ARTTIM23_INTR_CH1 = 0x10,
|
|
|
|
DRWTIM2 = 0x58,
|
|
|
|
BRST = 0x59,
|
|
|
|
DRWTIM3 = 0x5b,
|
|
|
|
BMIDECR0 = 0x70,
|
|
|
|
MRDMODE = 0x71,
|
|
|
|
MRDMODE_INTR_CH0 = 0x04,
|
|
|
|
MRDMODE_INTR_CH1 = 0x08,
|
|
|
|
BMIDESR0 = 0x72,
|
|
|
|
UDIDETCR0 = 0x73,
|
|
|
|
DTPR0 = 0x74,
|
|
|
|
BMIDECR1 = 0x78,
|
|
|
|
BMIDECSR = 0x79,
|
|
|
|
UDIDETCR1 = 0x7B,
|
|
|
|
DTPR1 = 0x7C
|
|
|
|
};
|
|
|
|
|
2007-03-09 13:37:46 +00:00
|
|
|
static int cmd648_cable_detect(struct ata_port *ap)
|
2006-08-29 22:12:40 +00:00
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
u8 r;
|
|
|
|
|
|
|
|
/* Check cable detect bits */
|
|
|
|
pci_read_config_byte(pdev, BMIDECSR, &r);
|
|
|
|
if (r & (1 << ap->port_no))
|
2007-03-09 13:37:46 +00:00
|
|
|
return ATA_CBL_PATA80;
|
|
|
|
return ATA_CBL_PATA40;
|
2006-08-29 22:12:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2011-10-11 17:57:40 +00:00
|
|
|
* cmd64x_set_timing - set PIO and MWDMA timing
|
2006-08-29 22:12:40 +00:00
|
|
|
* @ap: ATA interface
|
|
|
|
* @adev: ATA device
|
2007-08-10 20:59:49 +00:00
|
|
|
* @mode: mode
|
2006-08-29 22:12:40 +00:00
|
|
|
*
|
2007-08-10 20:59:49 +00:00
|
|
|
* Called to do the PIO and MWDMA mode setup.
|
2006-08-29 22:12:40 +00:00
|
|
|
*/
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2007-08-10 20:59:49 +00:00
|
|
|
static void cmd64x_set_timing(struct ata_port *ap, struct ata_device *adev, u8 mode)
|
2006-08-29 22:12:40 +00:00
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
struct ata_timing t;
|
|
|
|
const unsigned long T = 1000000 / 33;
|
|
|
|
const u8 setup_data[] = { 0x40, 0x40, 0x40, 0x80, 0x00 };
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
u8 reg;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/* Port layout is not logical so use a table */
|
2006-08-31 04:03:49 +00:00
|
|
|
const u8 arttim_port[2][2] = {
|
2006-08-29 22:12:40 +00:00
|
|
|
{ ARTTIM0, ARTTIM1 },
|
|
|
|
{ ARTTIM23, ARTTIM23 }
|
|
|
|
};
|
|
|
|
const u8 drwtim_port[2][2] = {
|
|
|
|
{ DRWTIM0, DRWTIM1 },
|
|
|
|
{ DRWTIM2, DRWTIM3 }
|
|
|
|
};
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
int arttim = arttim_port[ap->port_no][adev->devno];
|
|
|
|
int drwtim = drwtim_port[ap->port_no][adev->devno];
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2007-08-10 20:59:49 +00:00
|
|
|
/* ata_timing_compute is smart and will produce timings for MWDMA
|
|
|
|
that don't violate the drives PIO capabilities. */
|
|
|
|
if (ata_timing_compute(adev, mode, &t, T, 0) < 0) {
|
2006-08-29 22:12:40 +00:00
|
|
|
printk(KERN_ERR DRV_NAME ": mode computation failed.\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (ap->port_no) {
|
|
|
|
/* Slave has shared address setup */
|
|
|
|
struct ata_device *pair = ata_dev_pair(adev);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
if (pair) {
|
|
|
|
struct ata_timing tp;
|
|
|
|
ata_timing_compute(pair, pair->pio_mode, &tp, T, 0);
|
|
|
|
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
|
|
|
|
}
|
|
|
|
}
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
printk(KERN_DEBUG DRV_NAME ": active %d recovery %d setup %d.\n",
|
|
|
|
t.active, t.recover, t.setup);
|
|
|
|
if (t.recover > 16) {
|
|
|
|
t.active += t.recover - 16;
|
|
|
|
t.recover = 16;
|
|
|
|
}
|
|
|
|
if (t.active > 16)
|
|
|
|
t.active = 16;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/* Now convert the clocks into values we can actually stuff into
|
|
|
|
the chip */
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2010-01-18 17:14:55 +00:00
|
|
|
if (t.recover == 16)
|
|
|
|
t.recover = 0;
|
|
|
|
else if (t.recover > 1)
|
2006-08-29 22:12:40 +00:00
|
|
|
t.recover--;
|
|
|
|
else
|
|
|
|
t.recover = 15;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
if (t.setup > 4)
|
|
|
|
t.setup = 0xC0;
|
|
|
|
else
|
|
|
|
t.setup = setup_data[t.setup];
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
t.active &= 0x0F; /* 0 = 16 */
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/* Load setup timing */
|
|
|
|
pci_read_config_byte(pdev, arttim, ®);
|
|
|
|
reg &= 0x3F;
|
|
|
|
reg |= t.setup;
|
|
|
|
pci_write_config_byte(pdev, arttim, reg);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/* Load active/recovery */
|
2006-08-31 04:03:49 +00:00
|
|
|
pci_write_config_byte(pdev, drwtim, (t.active << 4) | t.recover);
|
2006-08-29 22:12:40 +00:00
|
|
|
}
|
|
|
|
|
2007-08-10 20:59:49 +00:00
|
|
|
/**
|
|
|
|
* cmd64x_set_piomode - set initial PIO mode data
|
|
|
|
* @ap: ATA interface
|
|
|
|
* @adev: ATA device
|
|
|
|
*
|
|
|
|
* Used when configuring the devices ot set the PIO timings. All the
|
|
|
|
* actual work is done by the PIO/MWDMA setting helper
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void cmd64x_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
|
|
{
|
|
|
|
cmd64x_set_timing(ap, adev, adev->pio_mode);
|
|
|
|
}
|
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/**
|
|
|
|
* cmd64x_set_dmamode - set initial DMA mode data
|
|
|
|
* @ap: ATA interface
|
|
|
|
* @adev: ATA device
|
|
|
|
*
|
|
|
|
* Called to do the DMA mode setup.
|
|
|
|
*/
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
static void cmd64x_set_dmamode(struct ata_port *ap, struct ata_device *adev)
|
|
|
|
{
|
|
|
|
static const u8 udma_data[] = {
|
2007-01-24 11:49:03 +00:00
|
|
|
0x30, 0x20, 0x10, 0x20, 0x10, 0x00
|
2006-08-29 22:12:40 +00:00
|
|
|
};
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
u8 regU, regD;
|
|
|
|
|
|
|
|
int pciU = UDIDETCR0 + 8 * ap->port_no;
|
|
|
|
int pciD = BMIDESR0 + 8 * ap->port_no;
|
|
|
|
int shift = 2 * adev->devno;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
pci_read_config_byte(pdev, pciD, ®D);
|
|
|
|
pci_read_config_byte(pdev, pciU, ®U);
|
|
|
|
|
2007-01-24 11:49:03 +00:00
|
|
|
/* DMA bits off */
|
|
|
|
regD &= ~(0x20 << adev->devno);
|
|
|
|
/* DMA control bits */
|
|
|
|
regU &= ~(0x30 << shift);
|
|
|
|
/* DMA timing bits */
|
|
|
|
regU &= ~(0x05 << adev->devno);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2007-01-24 11:49:03 +00:00
|
|
|
if (adev->dma_mode >= XFER_UDMA_0) {
|
2007-10-19 23:02:48 +00:00
|
|
|
/* Merge the timing value */
|
2006-08-29 22:12:40 +00:00
|
|
|
regU |= udma_data[adev->dma_mode - XFER_UDMA_0] << shift;
|
2007-01-24 11:49:03 +00:00
|
|
|
/* Merge the control bits */
|
|
|
|
regU |= 1 << adev->devno; /* UDMA on */
|
2009-12-20 18:22:33 +00:00
|
|
|
if (adev->dma_mode > XFER_UDMA_2) /* 15nS timing */
|
2007-01-24 11:49:03 +00:00
|
|
|
regU |= 4 << adev->devno;
|
2007-08-10 20:59:49 +00:00
|
|
|
} else {
|
|
|
|
regU &= ~ (1 << adev->devno); /* UDMA off */
|
|
|
|
cmd64x_set_timing(ap, adev, adev->dma_mode);
|
|
|
|
}
|
2006-08-29 22:12:40 +00:00
|
|
|
|
|
|
|
regD |= 0x20 << adev->devno;
|
|
|
|
|
|
|
|
pci_write_config_byte(pdev, pciU, regU);
|
|
|
|
pci_write_config_byte(pdev, pciD, regD);
|
|
|
|
}
|
|
|
|
|
2012-03-11 19:28:18 +00:00
|
|
|
/**
|
|
|
|
* cmd64x_sff_irq_check - check IDE interrupt
|
|
|
|
* @ap: ATA interface
|
|
|
|
*
|
|
|
|
* Check IDE interrupt in CFR/ARTTIM23 registers.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool cmd64x_sff_irq_check(struct ata_port *ap)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
int irq_mask = ap->port_no ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0;
|
|
|
|
int irq_reg = ap->port_no ? ARTTIM23 : CFR;
|
|
|
|
u8 irq_stat;
|
|
|
|
|
|
|
|
/* NOTE: reading the register should clear the interrupt */
|
|
|
|
pci_read_config_byte(pdev, irq_reg, &irq_stat);
|
|
|
|
|
|
|
|
return irq_stat & irq_mask;
|
|
|
|
}
|
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/**
|
2012-03-11 19:27:01 +00:00
|
|
|
* cmd64x_sff_irq_clear - clear IDE interrupt
|
|
|
|
* @ap: ATA interface
|
2012-03-11 19:25:30 +00:00
|
|
|
*
|
2012-03-11 19:27:01 +00:00
|
|
|
* Clear IDE interrupt in CFR/ARTTIM23 and DMA status registers.
|
2012-03-11 19:25:30 +00:00
|
|
|
*/
|
|
|
|
|
2012-03-11 19:27:01 +00:00
|
|
|
static void cmd64x_sff_irq_clear(struct ata_port *ap)
|
2012-03-11 19:25:30 +00:00
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
int irq_reg = ap->port_no ? ARTTIM23 : CFR;
|
|
|
|
u8 irq_stat;
|
|
|
|
|
2012-03-11 19:27:01 +00:00
|
|
|
ata_bmdma_irq_clear(ap);
|
2012-03-11 19:25:30 +00:00
|
|
|
|
|
|
|
/* Reading the register should be enough to clear the interrupt */
|
|
|
|
pci_read_config_byte(pdev, irq_reg, &irq_stat);
|
|
|
|
}
|
|
|
|
|
2012-03-11 19:28:18 +00:00
|
|
|
/**
|
|
|
|
* cmd648_sff_irq_check - check IDE interrupt
|
|
|
|
* @ap: ATA interface
|
|
|
|
*
|
|
|
|
* Check IDE interrupt in MRDMODE register.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static bool cmd648_sff_irq_check(struct ata_port *ap)
|
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
unsigned long base = pci_resource_start(pdev, 4);
|
|
|
|
int irq_mask = ap->port_no ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0;
|
|
|
|
u8 mrdmode = inb(base + 1);
|
|
|
|
|
|
|
|
return mrdmode & irq_mask;
|
|
|
|
}
|
|
|
|
|
2012-03-11 19:25:30 +00:00
|
|
|
/**
|
2012-03-11 19:27:01 +00:00
|
|
|
* cmd648_sff_irq_clear - clear IDE interrupt
|
|
|
|
* @ap: ATA interface
|
2006-08-29 22:12:40 +00:00
|
|
|
*
|
2012-03-11 19:27:01 +00:00
|
|
|
* Clear IDE interrupt in MRDMODE and DMA status registers.
|
2006-08-29 22:12:40 +00:00
|
|
|
*/
|
|
|
|
|
2012-03-11 19:27:01 +00:00
|
|
|
static void cmd648_sff_irq_clear(struct ata_port *ap)
|
2006-08-29 22:12:40 +00:00
|
|
|
{
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
2012-03-11 19:25:30 +00:00
|
|
|
unsigned long base = pci_resource_start(pdev, 4);
|
|
|
|
int irq_mask = ap->port_no ? MRDMODE_INTR_CH1 : MRDMODE_INTR_CH0;
|
|
|
|
u8 mrdmode;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2012-03-11 19:27:01 +00:00
|
|
|
ata_bmdma_irq_clear(ap);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2012-03-11 19:25:30 +00:00
|
|
|
/* Clear this port's interrupt bit (leaving the other port alone) */
|
|
|
|
mrdmode = inb(base + 1);
|
|
|
|
mrdmode &= ~(MRDMODE_INTR_CH0 | MRDMODE_INTR_CH1);
|
|
|
|
outb(mrdmode | irq_mask, base + 1);
|
2006-08-29 22:12:40 +00:00
|
|
|
}
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
/**
|
2012-03-11 19:25:30 +00:00
|
|
|
* cmd646r1_bmdma_stop - DMA stop callback
|
2006-08-29 22:12:40 +00:00
|
|
|
* @qc: Command in progress
|
|
|
|
*
|
2009-12-20 20:39:55 +00:00
|
|
|
* Stub for now while investigating the r1 quirk in the old driver.
|
2006-08-29 22:12:40 +00:00
|
|
|
*/
|
|
|
|
|
2009-12-20 20:39:55 +00:00
|
|
|
static void cmd646r1_bmdma_stop(struct ata_queued_cmd *qc)
|
2006-08-29 22:12:40 +00:00
|
|
|
{
|
|
|
|
ata_bmdma_stop(qc);
|
|
|
|
}
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
static struct scsi_host_template cmd64x_sht = {
|
2008-03-25 03:22:49 +00:00
|
|
|
ATA_BMDMA_SHT(DRV_NAME),
|
2006-08-29 22:12:40 +00:00
|
|
|
};
|
|
|
|
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
static const struct ata_port_operations cmd64x_base_ops = {
|
|
|
|
.inherits = &ata_bmdma_port_ops,
|
2006-08-29 22:12:40 +00:00
|
|
|
.set_piomode = cmd64x_set_piomode,
|
|
|
|
.set_dmamode = cmd64x_set_dmamode,
|
2006-08-31 04:03:49 +00:00
|
|
|
};
|
2006-08-29 22:12:40 +00:00
|
|
|
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
static struct ata_port_operations cmd64x_port_ops = {
|
|
|
|
.inherits = &cmd64x_base_ops,
|
2012-03-11 19:28:18 +00:00
|
|
|
.sff_irq_check = cmd64x_sff_irq_check,
|
2012-03-11 19:27:01 +00:00
|
|
|
.sff_irq_clear = cmd64x_sff_irq_clear,
|
2007-03-09 13:37:46 +00:00
|
|
|
.cable_detect = ata_cable_40wire,
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
};
|
2006-08-29 22:12:40 +00:00
|
|
|
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
static struct ata_port_operations cmd646r1_port_ops = {
|
|
|
|
.inherits = &cmd64x_base_ops,
|
2012-03-11 19:28:18 +00:00
|
|
|
.sff_irq_check = cmd64x_sff_irq_check,
|
2012-03-11 19:27:01 +00:00
|
|
|
.sff_irq_clear = cmd64x_sff_irq_clear,
|
2009-12-20 20:39:55 +00:00
|
|
|
.bmdma_stop = cmd646r1_bmdma_stop,
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
.cable_detect = ata_cable_40wire,
|
2006-08-31 04:03:49 +00:00
|
|
|
};
|
2006-08-29 22:12:40 +00:00
|
|
|
|
2012-03-11 19:25:30 +00:00
|
|
|
static struct ata_port_operations cmd646r3_port_ops = {
|
|
|
|
.inherits = &cmd64x_base_ops,
|
2012-03-11 19:28:18 +00:00
|
|
|
.sff_irq_check = cmd648_sff_irq_check,
|
2012-03-11 19:27:01 +00:00
|
|
|
.sff_irq_clear = cmd648_sff_irq_clear,
|
2012-03-11 19:25:30 +00:00
|
|
|
.cable_detect = ata_cable_40wire,
|
|
|
|
};
|
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
static struct ata_port_operations cmd648_port_ops = {
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
.inherits = &cmd64x_base_ops,
|
2012-03-11 19:28:18 +00:00
|
|
|
.sff_irq_check = cmd648_sff_irq_check,
|
2012-03-11 19:27:01 +00:00
|
|
|
.sff_irq_clear = cmd648_sff_irq_clear,
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 03:22:49 +00:00
|
|
|
.cable_detect = cmd648_cable_detect,
|
2006-08-31 04:03:49 +00:00
|
|
|
};
|
|
|
|
|
2011-10-11 17:56:03 +00:00
|
|
|
static void cmd64x_fixup(struct pci_dev *pdev)
|
|
|
|
{
|
|
|
|
u8 mrdmode;
|
|
|
|
|
|
|
|
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
|
|
|
|
pci_read_config_byte(pdev, MRDMODE, &mrdmode);
|
|
|
|
mrdmode &= ~0x30; /* IRQ set up */
|
|
|
|
mrdmode |= 0x02; /* Memory read line enable */
|
|
|
|
pci_write_config_byte(pdev, MRDMODE, mrdmode);
|
|
|
|
|
|
|
|
/* PPC specific fixup copied from old driver */
|
|
|
|
#ifdef CONFIG_PPC
|
|
|
|
pci_write_config_byte(pdev, UDIDETCR0, 0xF0);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
static int cmd64x_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
|
|
{
|
2012-03-11 19:25:30 +00:00
|
|
|
static const struct ata_port_info cmd_info[7] = {
|
2006-08-29 22:12:40 +00:00
|
|
|
{ /* CMD 643 - no UDMA */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2006-08-29 22:12:40 +00:00
|
|
|
.port_ops = &cmd64x_port_ops
|
|
|
|
},
|
|
|
|
{ /* CMD 646 with broken UDMA */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2006-08-29 22:12:40 +00:00
|
|
|
.port_ops = &cmd64x_port_ops
|
|
|
|
},
|
2012-03-11 19:25:30 +00:00
|
|
|
{ /* CMD 646U with broken UDMA */
|
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
|
|
|
.port_ops = &cmd646r3_port_ops
|
|
|
|
},
|
|
|
|
{ /* CMD 646U2 with working UDMA */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2007-07-26 17:43:01 +00:00
|
|
|
.udma_mask = ATA_UDMA2,
|
2012-03-11 19:25:30 +00:00
|
|
|
.port_ops = &cmd646r3_port_ops
|
2006-08-29 22:12:40 +00:00
|
|
|
},
|
|
|
|
{ /* CMD 646 rev 1 */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2006-08-29 22:12:40 +00:00
|
|
|
.port_ops = &cmd646r1_port_ops
|
|
|
|
},
|
|
|
|
{ /* CMD 648 */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2007-07-26 17:43:01 +00:00
|
|
|
.udma_mask = ATA_UDMA4,
|
2006-08-29 22:12:40 +00:00
|
|
|
.port_ops = &cmd648_port_ops
|
|
|
|
},
|
|
|
|
{ /* CMD 649 */
|
2007-05-28 10:59:48 +00:00
|
|
|
.flags = ATA_FLAG_SLAVE_POSS,
|
2009-03-14 20:38:24 +00:00
|
|
|
.pio_mask = ATA_PIO4,
|
|
|
|
.mwdma_mask = ATA_MWDMA2,
|
2007-07-26 17:43:01 +00:00
|
|
|
.udma_mask = ATA_UDMA5,
|
2006-08-29 22:12:40 +00:00
|
|
|
.port_ops = &cmd648_port_ops
|
|
|
|
}
|
|
|
|
};
|
2012-07-25 20:07:40 +00:00
|
|
|
const struct ata_port_info *ppi[] = {
|
2011-04-24 19:30:14 +00:00
|
|
|
&cmd_info[id->driver_data],
|
|
|
|
&cmd_info[id->driver_data],
|
|
|
|
NULL
|
|
|
|
};
|
2011-10-11 17:56:03 +00:00
|
|
|
u8 reg;
|
2008-03-25 03:22:47 +00:00
|
|
|
int rc;
|
2011-04-24 19:30:14 +00:00
|
|
|
struct pci_dev *bridge = pdev->bus->self;
|
|
|
|
/* mobility split bridges don't report enabled ports correctly */
|
|
|
|
int port_ok = !(bridge && bridge->vendor ==
|
|
|
|
PCI_VENDOR_ID_MOBILITY_ELECTRONICS);
|
|
|
|
/* all (with exceptions below) apart from 643 have CNTRL_CH0 bit */
|
|
|
|
int cntrl_ch0_ok = (id->driver_data != 0);
|
2008-03-25 03:22:47 +00:00
|
|
|
|
|
|
|
rc = pcim_enable_device(pdev);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2006-08-29 22:12:40 +00:00
|
|
|
if (id->driver_data == 0) /* 643 */
|
2008-04-07 13:47:16 +00:00
|
|
|
ata_pci_bmdma_clear_simplex(pdev);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2012-03-11 19:29:02 +00:00
|
|
|
if (pdev->device == PCI_DEVICE_ID_CMD_646)
|
|
|
|
switch (pdev->revision) {
|
|
|
|
/* UDMA works since rev 5 */
|
|
|
|
default:
|
2012-03-11 19:25:30 +00:00
|
|
|
ppi[0] = &cmd_info[3];
|
|
|
|
ppi[1] = &cmd_info[3];
|
2012-03-11 19:29:02 +00:00
|
|
|
break;
|
2012-03-11 19:25:30 +00:00
|
|
|
/* Interrupts in MRDMODE since rev 3 */
|
2012-03-11 19:29:02 +00:00
|
|
|
case 3:
|
|
|
|
case 4:
|
2012-03-11 19:25:30 +00:00
|
|
|
ppi[0] = &cmd_info[2];
|
|
|
|
ppi[1] = &cmd_info[2];
|
2012-03-11 19:29:02 +00:00
|
|
|
break;
|
|
|
|
/* Rev 1 with other problems? */
|
|
|
|
case 1:
|
2012-03-11 19:25:30 +00:00
|
|
|
ppi[0] = &cmd_info[4];
|
|
|
|
ppi[1] = &cmd_info[4];
|
2012-03-11 19:29:02 +00:00
|
|
|
/* FALL THRU */
|
|
|
|
/* Early revs have no CNTRL_CH0 */
|
|
|
|
case 2:
|
|
|
|
case 0:
|
2011-04-24 19:30:14 +00:00
|
|
|
cntrl_ch0_ok = 0;
|
2012-03-11 19:29:02 +00:00
|
|
|
break;
|
|
|
|
}
|
2006-08-29 22:12:40 +00:00
|
|
|
|
2011-10-11 17:56:03 +00:00
|
|
|
cmd64x_fixup(pdev);
|
2006-08-31 04:03:49 +00:00
|
|
|
|
2011-04-24 19:30:14 +00:00
|
|
|
/* check for enabled ports */
|
|
|
|
pci_read_config_byte(pdev, CNTRL, ®);
|
|
|
|
if (!port_ok)
|
2012-10-28 08:05:40 +00:00
|
|
|
dev_notice(&pdev->dev, "Mobility Bridge detected, ignoring CNTRL port enable/disable\n");
|
2011-04-24 19:30:14 +00:00
|
|
|
if (port_ok && cntrl_ch0_ok && !(reg & CNTRL_CH0)) {
|
2012-10-28 08:05:40 +00:00
|
|
|
dev_notice(&pdev->dev, "Primary port is disabled\n");
|
2011-04-24 19:30:14 +00:00
|
|
|
ppi[0] = &ata_dummy_port_info;
|
2012-07-25 20:07:40 +00:00
|
|
|
|
2011-04-24 19:30:14 +00:00
|
|
|
}
|
|
|
|
if (port_ok && !(reg & CNTRL_CH1)) {
|
2012-10-28 08:05:40 +00:00
|
|
|
dev_notice(&pdev->dev, "Secondary port is disabled\n");
|
2011-04-24 19:30:14 +00:00
|
|
|
ppi[1] = &ata_dummy_port_info;
|
|
|
|
}
|
|
|
|
|
2010-05-19 20:10:22 +00:00
|
|
|
return ata_pci_bmdma_init_one(pdev, ppi, &cmd64x_sht, NULL, 0);
|
2006-08-29 22:12:40 +00:00
|
|
|
}
|
|
|
|
|
2014-05-07 15:17:44 +00:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
2006-11-22 16:59:07 +00:00
|
|
|
static int cmd64x_reinit_one(struct pci_dev *pdev)
|
|
|
|
{
|
2013-06-03 05:05:36 +00:00
|
|
|
struct ata_host *host = pci_get_drvdata(pdev);
|
2008-03-25 03:22:47 +00:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = ata_pci_device_do_resume(pdev);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
2011-10-11 17:56:03 +00:00
|
|
|
cmd64x_fixup(pdev);
|
|
|
|
|
2008-03-25 03:22:47 +00:00
|
|
|
ata_host_resume(host);
|
|
|
|
return 0;
|
2006-11-22 16:59:07 +00:00
|
|
|
}
|
2007-03-02 08:31:26 +00:00
|
|
|
#endif
|
2006-11-22 16:59:07 +00:00
|
|
|
|
2006-09-29 00:21:59 +00:00
|
|
|
static const struct pci_device_id cmd64x[] = {
|
|
|
|
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_643), 0 },
|
|
|
|
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_646), 1 },
|
2012-03-11 19:25:30 +00:00
|
|
|
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_648), 5 },
|
|
|
|
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_649), 6 },
|
2006-09-29 00:21:59 +00:00
|
|
|
|
|
|
|
{ },
|
2006-08-29 22:12:40 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static struct pci_driver cmd64x_pci_driver = {
|
2006-09-29 00:21:59 +00:00
|
|
|
.name = DRV_NAME,
|
2006-08-29 22:12:40 +00:00
|
|
|
.id_table = cmd64x,
|
|
|
|
.probe = cmd64x_init_one,
|
2006-11-22 16:59:07 +00:00
|
|
|
.remove = ata_pci_remove_one,
|
2014-05-07 15:17:44 +00:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
2006-11-22 16:59:07 +00:00
|
|
|
.suspend = ata_pci_device_suspend,
|
|
|
|
.resume = cmd64x_reinit_one,
|
2007-03-02 08:31:26 +00:00
|
|
|
#endif
|
2006-08-29 22:12:40 +00:00
|
|
|
};
|
|
|
|
|
2012-04-19 05:43:05 +00:00
|
|
|
module_pci_driver(cmd64x_pci_driver);
|
2006-08-29 22:12:40 +00:00
|
|
|
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
|
|
MODULE_DESCRIPTION("low-level driver for CMD64x series PATA controllers");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DEVICE_TABLE(pci, cmd64x);
|
|
|
|
MODULE_VERSION(DRV_VERSION);
|