linux/arch/sparc/include/asm/tlbflush_64.h

70 lines
1.7 KiB
C
Raw Normal View History

sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
#ifndef _SPARC64_TLBFLUSH_H
#define _SPARC64_TLBFLUSH_H
#include <asm/mmu_context.h>
/* TSB flush operations. */
#define TLB_BATCH_NR 192
struct tlb_batch {
bool huge;
struct mm_struct *mm;
unsigned long tlb_nr;
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
unsigned long active;
unsigned long vaddrs[TLB_BATCH_NR];
};
void flush_tsb_kernel_range(unsigned long start, unsigned long end);
void flush_tsb_user(struct tlb_batch *tb);
void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, bool huge);
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
/* TLB flush operations. */
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
static inline void flush_tlb_mm(struct mm_struct *mm)
{
}
static inline void flush_tlb_page(struct vm_area_struct *vma,
unsigned long vmaddr)
{
}
static inline void flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
sparc64: Guard against flushing openfirmware mappings. Based almost entirely upon a patch by Christopher Alexander Tobias Schulze. In commit db64fe02258f1507e13fe5212a989922323685ce ("mm: rewrite vmap layer") lazy VMAP tlb flushing was added to the vmalloc layer. This causes problems on sparc64. Sparc64 has two VMAP mapped regions and they are not contiguous with eachother. First we have the malloc mapping area, then another unrelated region, then the vmalloc region. This "another unrelated region" is where the firmware is mapped. If the lazy TLB flushing logic in the vmalloc code triggers after we've had both a module unload and a vfree or similar, it will pass an address range that goes from somewhere inside the malloc region to somewhere inside the vmalloc region, and thus covering the openfirmware area entirely. The sparc64 kernel learns about openfirmware's dynamic mappings in this region early in the boot, and then services TLB misses in this area. But openfirmware has some locked TLB entries which are not mentioned in those dynamic mappings and we should thus not disturb them. These huge lazy TLB flush ranges causes those openfirmware locked TLB entries to be removed, resulting in all kinds of problems including hard hangs and crashes during reboot/reset. Besides causing problems like this, such huge TLB flush ranges are also incredibly inefficient. A plea has been made with the author of the VMAP lazy TLB flushing code, but for now we'll put a safety guard into our flush_tlb_kernel_range() implementation. Since the implementation has become non-trivial, stop defining it as a macro and instead make it a function in a C source file. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-05 03:07:37 +00:00
void flush_tlb_kernel_range(unsigned long start, unsigned long end);
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
#define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
void flush_tlb_pending(void);
void arch_enter_lazy_mmu_mode(void);
void arch_leave_lazy_mmu_mode(void);
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
#define arch_flush_lazy_mmu_mode() do {} while (0)
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
/* Local cpu only. */
void __flush_tlb_all(void);
void __flush_tlb_page(unsigned long context, unsigned long vaddr);
void __flush_tlb_kernel_range(unsigned long start, unsigned long end);
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
#ifndef CONFIG_SMP
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
static inline void global_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
{
__flush_tlb_page(CTX_HWBITS(mm->context), vaddr);
}
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
#else /* CONFIG_SMP */
void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end);
void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr);
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
sparc64: Fix race in TLB batch processing. As reported by Dave Kleikamp, when we emit cross calls to do batched TLB flush processing we have a race because we do not synchronize on the sibling cpus completing the cross call. So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.) and either flushes are missed or flushes will flush the wrong addresses. Fix this by using generic infrastructure to synchonize on the completion of the cross call. This first required getting the flush_tlb_pending() call out from switch_to() which operates with locks held and interrupts disabled. The problem is that smp_call_function_many() cannot be invoked with IRQs disabled and this is explicitly checked for with WARN_ON_ONCE(). We get the batch processing outside of locked IRQ disabled sections by using some ideas from the powerpc port. Namely, we only batch inside of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a region, we flush TLBs synchronously. 1) Get rid of xcall_flush_tlb_pending and per-cpu type implementations. 2) Do TLB batch cross calls instead via: smp_call_function_many() tlb_pending_func() __flush_tlb_pending() 3) Batch only in lazy mmu sequences: a) Add 'active' member to struct tlb_batch b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE c) Set 'active' in arch_enter_lazy_mmu_mode() d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode() e) Check 'active' in tlb_batch_add_one() and do a synchronous flush if it's clear. 4) Add infrastructure for synchronous TLB page flushes. a) Implement __flush_tlb_page and per-cpu variants, patch as needed. b) Likewise for xcall_flush_tlb_page. c) Implement smp_flush_tlb_page() to invoke the cross-call. d) Wire up global_flush_tlb_page() to the right routine based upon CONFIG_SMP 5) It turns out that singleton batches are very common, 2 out of every 3 batch flushes have only a single entry in them. The batch flush waiting is very expensive, both because of the poll on sibling cpu completeion, as well as because passing the tlb batch pointer to the sibling cpus invokes a shared memory dereference. Therefore, in flush_tlb_pending(), if there is only one entry in the batch perform a completely asynchronous global_flush_tlb_page() instead. Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2013-04-19 21:26:26 +00:00
#define global_flush_tlb_page(mm, vaddr) \
smp_flush_tlb_page(mm, vaddr)
sparc: join the remaining header files With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-18 04:55:51 +00:00
#endif /* ! CONFIG_SMP */
#endif /* _SPARC64_TLBFLUSH_H */