linux/fs/btrfs/file.c

2844 lines
75 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/aio.h>
#include <linux/falloc.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/btrfs.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "print-tree.h"
#include "tree-log.h"
#include "locking.h"
#include "volumes.h"
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:30:47 +00:00
#include "qgroup.h"
static struct kmem_cache *btrfs_inode_defrag_cachep;
/*
* when auto defrag is enabled we
* queue up these defrag structs to remember which
* inodes need defragging passes
*/
struct inode_defrag {
struct rb_node rb_node;
/* objectid */
u64 ino;
/*
* transid where the defrag was added, we search for
* extents newer than this
*/
u64 transid;
/* root objectid */
u64 root;
/* last offset we were able to defrag */
u64 last_offset;
/* if we've wrapped around back to zero once already */
int cycled;
};
static int __compare_inode_defrag(struct inode_defrag *defrag1,
struct inode_defrag *defrag2)
{
if (defrag1->root > defrag2->root)
return 1;
else if (defrag1->root < defrag2->root)
return -1;
else if (defrag1->ino > defrag2->ino)
return 1;
else if (defrag1->ino < defrag2->ino)
return -1;
else
return 0;
}
/* pop a record for an inode into the defrag tree. The lock
* must be held already
*
* If you're inserting a record for an older transid than an
* existing record, the transid already in the tree is lowered
*
* If an existing record is found the defrag item you
* pass in is freed
*/
static int __btrfs_add_inode_defrag(struct inode *inode,
struct inode_defrag *defrag)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct inode_defrag *entry;
struct rb_node **p;
struct rb_node *parent = NULL;
int ret;
p = &root->fs_info->defrag_inodes.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = __compare_inode_defrag(defrag, entry);
if (ret < 0)
p = &parent->rb_left;
else if (ret > 0)
p = &parent->rb_right;
else {
/* if we're reinserting an entry for
* an old defrag run, make sure to
* lower the transid of our existing record
*/
if (defrag->transid < entry->transid)
entry->transid = defrag->transid;
if (defrag->last_offset > entry->last_offset)
entry->last_offset = defrag->last_offset;
return -EEXIST;
}
}
set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
rb_link_node(&defrag->rb_node, parent, p);
rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
return 0;
}
static inline int __need_auto_defrag(struct btrfs_root *root)
{
if (!btrfs_test_opt(root, AUTO_DEFRAG))
return 0;
if (btrfs_fs_closing(root->fs_info))
return 0;
return 1;
}
/*
* insert a defrag record for this inode if auto defrag is
* enabled
*/
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
struct inode *inode)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct inode_defrag *defrag;
u64 transid;
int ret;
if (!__need_auto_defrag(root))
return 0;
if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
return 0;
if (trans)
transid = trans->transid;
else
transid = BTRFS_I(inode)->root->last_trans;
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
if (!defrag)
return -ENOMEM;
defrag->ino = btrfs_ino(inode);
defrag->transid = transid;
defrag->root = root->root_key.objectid;
spin_lock(&root->fs_info->defrag_inodes_lock);
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
/*
* If we set IN_DEFRAG flag and evict the inode from memory,
* and then re-read this inode, this new inode doesn't have
* IN_DEFRAG flag. At the case, we may find the existed defrag.
*/
ret = __btrfs_add_inode_defrag(inode, defrag);
if (ret)
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
} else {
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
spin_unlock(&root->fs_info->defrag_inodes_lock);
return 0;
}
/*
* Requeue the defrag object. If there is a defrag object that points to
* the same inode in the tree, we will merge them together (by
* __btrfs_add_inode_defrag()) and free the one that we want to requeue.
*/
static void btrfs_requeue_inode_defrag(struct inode *inode,
struct inode_defrag *defrag)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret;
if (!__need_auto_defrag(root))
goto out;
/*
* Here we don't check the IN_DEFRAG flag, because we need merge
* them together.
*/
spin_lock(&root->fs_info->defrag_inodes_lock);
ret = __btrfs_add_inode_defrag(inode, defrag);
spin_unlock(&root->fs_info->defrag_inodes_lock);
if (ret)
goto out;
return;
out:
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
/*
* pick the defragable inode that we want, if it doesn't exist, we will get
* the next one.
*/
static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
{
struct inode_defrag *entry = NULL;
struct inode_defrag tmp;
struct rb_node *p;
struct rb_node *parent = NULL;
int ret;
tmp.ino = ino;
tmp.root = root;
spin_lock(&fs_info->defrag_inodes_lock);
p = fs_info->defrag_inodes.rb_node;
while (p) {
parent = p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = __compare_inode_defrag(&tmp, entry);
if (ret < 0)
p = parent->rb_left;
else if (ret > 0)
p = parent->rb_right;
else
goto out;
}
if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
parent = rb_next(parent);
if (parent)
entry = rb_entry(parent, struct inode_defrag, rb_node);
else
entry = NULL;
}
out:
if (entry)
rb_erase(parent, &fs_info->defrag_inodes);
spin_unlock(&fs_info->defrag_inodes_lock);
return entry;
}
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag;
struct rb_node *node;
spin_lock(&fs_info->defrag_inodes_lock);
node = rb_first(&fs_info->defrag_inodes);
while (node) {
rb_erase(node, &fs_info->defrag_inodes);
defrag = rb_entry(node, struct inode_defrag, rb_node);
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
if (need_resched()) {
spin_unlock(&fs_info->defrag_inodes_lock);
cond_resched();
spin_lock(&fs_info->defrag_inodes_lock);
}
node = rb_first(&fs_info->defrag_inodes);
}
spin_unlock(&fs_info->defrag_inodes_lock);
}
#define BTRFS_DEFRAG_BATCH 1024
static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
struct inode_defrag *defrag)
{
struct btrfs_root *inode_root;
struct inode *inode;
struct btrfs_key key;
struct btrfs_ioctl_defrag_range_args range;
int num_defrag;
int index;
int ret;
/* get the inode */
key.objectid = defrag->root;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
index = srcu_read_lock(&fs_info->subvol_srcu);
inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
if (IS_ERR(inode_root)) {
ret = PTR_ERR(inode_root);
goto cleanup;
}
key.objectid = defrag->ino;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto cleanup;
}
srcu_read_unlock(&fs_info->subvol_srcu, index);
/* do a chunk of defrag */
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
memset(&range, 0, sizeof(range));
range.len = (u64)-1;
range.start = defrag->last_offset;
sb_start_write(fs_info->sb);
num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
BTRFS_DEFRAG_BATCH);
sb_end_write(fs_info->sb);
/*
* if we filled the whole defrag batch, there
* must be more work to do. Queue this defrag
* again
*/
if (num_defrag == BTRFS_DEFRAG_BATCH) {
defrag->last_offset = range.start;
btrfs_requeue_inode_defrag(inode, defrag);
} else if (defrag->last_offset && !defrag->cycled) {
/*
* we didn't fill our defrag batch, but
* we didn't start at zero. Make sure we loop
* around to the start of the file.
*/
defrag->last_offset = 0;
defrag->cycled = 1;
btrfs_requeue_inode_defrag(inode, defrag);
} else {
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
iput(inode);
return 0;
cleanup:
srcu_read_unlock(&fs_info->subvol_srcu, index);
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
return ret;
}
/*
* run through the list of inodes in the FS that need
* defragging
*/
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag;
u64 first_ino = 0;
u64 root_objectid = 0;
atomic_inc(&fs_info->defrag_running);
while (1) {
/* Pause the auto defragger. */
if (test_bit(BTRFS_FS_STATE_REMOUNTING,
&fs_info->fs_state))
break;
if (!__need_auto_defrag(fs_info->tree_root))
break;
/* find an inode to defrag */
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
first_ino);
if (!defrag) {
if (root_objectid || first_ino) {
root_objectid = 0;
first_ino = 0;
continue;
} else {
break;
}
}
first_ino = defrag->ino + 1;
root_objectid = defrag->root;
__btrfs_run_defrag_inode(fs_info, defrag);
}
atomic_dec(&fs_info->defrag_running);
/*
* during unmount, we use the transaction_wait queue to
* wait for the defragger to stop
*/
wake_up(&fs_info->transaction_wait);
return 0;
}
/* simple helper to fault in pages and copy. This should go away
* and be replaced with calls into generic code.
*/
static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
size_t write_bytes,
struct page **prepared_pages,
struct iov_iter *i)
{
size_t copied = 0;
size_t total_copied = 0;
int pg = 0;
int offset = pos & (PAGE_CACHE_SIZE - 1);
while (write_bytes > 0) {
size_t count = min_t(size_t,
PAGE_CACHE_SIZE - offset, write_bytes);
struct page *page = prepared_pages[pg];
/*
* Copy data from userspace to the current page
*/
copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
/* Flush processor's dcache for this page */
flush_dcache_page(page);
/*
* if we get a partial write, we can end up with
* partially up to date pages. These add
* a lot of complexity, so make sure they don't
* happen by forcing this copy to be retried.
*
* The rest of the btrfs_file_write code will fall
* back to page at a time copies after we return 0.
*/
if (!PageUptodate(page) && copied < count)
copied = 0;
iov_iter_advance(i, copied);
write_bytes -= copied;
total_copied += copied;
/* Return to btrfs_file_write_iter to fault page */
if (unlikely(copied == 0))
break;
if (copied < PAGE_CACHE_SIZE - offset) {
offset += copied;
} else {
pg++;
offset = 0;
}
}
return total_copied;
}
/*
* unlocks pages after btrfs_file_write is done with them
*/
static void btrfs_drop_pages(struct page **pages, size_t num_pages)
{
size_t i;
for (i = 0; i < num_pages; i++) {
/* page checked is some magic around finding pages that
* have been modified without going through btrfs_set_page_dirty
mm: non-atomically mark page accessed during page cache allocation where possible aops->write_begin may allocate a new page and make it visible only to have mark_page_accessed called almost immediately after. Once the page is visible the atomic operations are necessary which is noticable overhead when writing to an in-memory filesystem like tmpfs but should also be noticable with fast storage. The objective of the patch is to initialse the accessed information with non-atomic operations before the page is visible. The bulk of filesystems directly or indirectly use grab_cache_page_write_begin or find_or_create_page for the initial allocation of a page cache page. This patch adds an init_page_accessed() helper which behaves like the first call to mark_page_accessed() but may called before the page is visible and can be done non-atomically. The primary APIs of concern in this care are the following and are used by most filesystems. find_get_page find_lock_page find_or_create_page grab_cache_page_nowait grab_cache_page_write_begin All of them are very similar in detail to the patch creates a core helper pagecache_get_page() which takes a flags parameter that affects its behavior such as whether the page should be marked accessed or not. Then old API is preserved but is basically a thin wrapper around this core function. Each of the filesystems are then updated to avoid calling mark_page_accessed when it is known that the VM interfaces have already done the job. There is a slight snag in that the timing of the mark_page_accessed() has now changed so in rare cases it's possible a page gets to the end of the LRU as PageReferenced where as previously it might have been repromoted. This is expected to be rare but it's worth the filesystem people thinking about it in case they see a problem with the timing change. It is also the case that some filesystems may be marking pages accessed that previously did not but it makes sense that filesystems have consistent behaviour in this regard. The test case used to evaulate this is a simple dd of a large file done multiple times with the file deleted on each iterations. The size of the file is 1/10th physical memory to avoid dirty page balancing. In the async case it will be possible that the workload completes without even hitting the disk and will have variable results but highlight the impact of mark_page_accessed for async IO. The sync results are expected to be more stable. The exception is tmpfs where the normal case is for the "IO" to not hit the disk. The test machine was single socket and UMA to avoid any scheduling or NUMA artifacts. Throughput and wall times are presented for sync IO, only wall times are shown for async as the granularity reported by dd and the variability is unsuitable for comparison. As async results were variable do to writback timings, I'm only reporting the maximum figures. The sync results were stable enough to make the mean and stddev uninteresting. The performance results are reported based on a run with no profiling. Profile data is based on a separate run with oprofile running. async dd 3.15.0-rc3 3.15.0-rc3 vanilla accessed-v2 ext3 Max elapsed 13.9900 ( 0.00%) 11.5900 ( 17.16%) tmpfs Max elapsed 0.5100 ( 0.00%) 0.4900 ( 3.92%) btrfs Max elapsed 12.8100 ( 0.00%) 12.7800 ( 0.23%) ext4 Max elapsed 18.6000 ( 0.00%) 13.3400 ( 28.28%) xfs Max elapsed 12.5600 ( 0.00%) 2.0900 ( 83.36%) The XFS figure is a bit strange as it managed to avoid a worst case by sheer luck but the average figures looked reasonable. samples percentage ext3 86107 0.9783 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext3 23833 0.2710 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext3 5036 0.0573 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed ext4 64566 0.8961 vmlinux-3.15.0-rc4-vanilla mark_page_accessed ext4 5322 0.0713 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed ext4 2869 0.0384 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 62126 1.7675 vmlinux-3.15.0-rc4-vanilla mark_page_accessed xfs 1904 0.0554 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed xfs 103 0.0030 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed btrfs 10655 0.1338 vmlinux-3.15.0-rc4-vanilla mark_page_accessed btrfs 2020 0.0273 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed btrfs 587 0.0079 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed tmpfs 59562 3.2628 vmlinux-3.15.0-rc4-vanilla mark_page_accessed tmpfs 1210 0.0696 vmlinux-3.15.0-rc4-accessed-v3r25 init_page_accessed tmpfs 94 0.0054 vmlinux-3.15.0-rc4-accessed-v3r25 mark_page_accessed [akpm@linux-foundation.org: don't run init_page_accessed() against an uninitialised pointer] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Tested-by: Prabhakar Lad <prabhakar.csengg@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:10:31 +00:00
* clear it here. There should be no need to mark the pages
* accessed as prepare_pages should have marked them accessed
* in prepare_pages via find_or_create_page()
*/
ClearPageChecked(pages[i]);
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
}
/*
* after copy_from_user, pages need to be dirtied and we need to make
* sure holes are created between the current EOF and the start of
* any next extents (if required).
*
* this also makes the decision about creating an inline extent vs
* doing real data extents, marking pages dirty and delalloc as required.
*/
int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
struct page **pages, size_t num_pages,
loff_t pos, size_t write_bytes,
struct extent_state **cached)
{
int err = 0;
int i;
u64 num_bytes;
u64 start_pos;
u64 end_of_last_block;
u64 end_pos = pos + write_bytes;
loff_t isize = i_size_read(inode);
start_pos = pos & ~((u64)root->sectorsize - 1);
num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
end_of_last_block = start_pos + num_bytes - 1;
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
cached);
if (err)
return err;
Btrfs: proper -ENOSPC handling At the start of a transaction we do a btrfs_reserve_metadata_space() and specify how many items we plan on modifying. Then once we've done our modifications and such, just call btrfs_unreserve_metadata_space() for the same number of items we reserved. For keeping track of metadata needed for data I've had to add an extent_io op for when we merge extents. This lets us track space properly when we are doing sequential writes, so we don't end up reserving way more metadata space than what we need. The only place where the metadata space accounting is not done is in the relocation code. This is because Yan is going to be reworking that code in the near future, so running btrfs-vol -b could still possibly result in a ENOSPC related panic. This patch also turns off the metadata_ratio stuff in order to allow users to more efficiently use their disk space. This patch makes it so we track how much metadata we need for an inode's delayed allocation extents by tracking how many extents are currently waiting for allocation. It introduces two new callbacks for the extent_io tree's, merge_extent_hook and split_extent_hook. These help us keep track of when we merge delalloc extents together and split them up. Reservations are handled prior to any actually dirty'ing occurs, and then we unreserve after we dirty. btrfs_unreserve_metadata_for_delalloc() will make the appropriate unreservations as needed based on the number of reservations we currently have and the number of extents we currently have. Doing the reservation outside of doing any of the actual dirty'ing lets us do things like filemap_flush() the inode to try and force delalloc to happen, or as a last resort actually start allocation on all delalloc inodes in the fs. This has survived dbench, fs_mark and an fsx torture test. Signed-off-by: Josef Bacik <jbacik@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 20:12:44 +00:00
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
for (i = 0; i < num_pages; i++) {
struct page *p = pages[i];
SetPageUptodate(p);
ClearPageChecked(p);
set_page_dirty(p);
}
/*
* we've only changed i_size in ram, and we haven't updated
* the disk i_size. There is no need to log the inode
* at this time.
*/
if (end_pos > isize)
i_size_write(inode, end_pos);
return 0;
}
/*
* this drops all the extents in the cache that intersect the range
* [start, end]. Existing extents are split as required.
*/
void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
int skip_pinned)
{
struct extent_map *em;
struct extent_map *split = NULL;
struct extent_map *split2 = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 len = end - start + 1;
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
u64 gen;
int ret;
int testend = 1;
unsigned long flags;
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
int compressed = 0;
2013-04-05 20:51:15 +00:00
bool modified;
WARN_ON(end < start);
if (end == (u64)-1) {
len = (u64)-1;
testend = 0;
}
while (1) {
int no_splits = 0;
2013-04-05 20:51:15 +00:00
modified = false;
if (!split)
split = alloc_extent_map();
if (!split2)
split2 = alloc_extent_map();
if (!split || !split2)
no_splits = 1;
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (!em) {
write_unlock(&em_tree->lock);
break;
}
flags = em->flags;
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
gen = em->generation;
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
if (testend && em->start + em->len >= start + len) {
free_extent_map(em);
write_unlock(&em_tree->lock);
break;
}
start = em->start + em->len;
if (testend)
len = start + len - (em->start + em->len);
free_extent_map(em);
write_unlock(&em_tree->lock);
continue;
}
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
clear_bit(EXTENT_FLAG_LOGGING, &flags);
2013-04-05 20:51:15 +00:00
modified = !list_empty(&em->list);
if (no_splits)
goto next;
if (em->start < start) {
split->start = em->start;
split->len = start - em->start;
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
split->orig_start = em->orig_start;
split->block_start = em->block_start;
if (compressed)
split->block_len = em->block_len;
else
split->block_len = split->len;
split->orig_block_len = max(split->block_len,
em->orig_block_len);
split->ram_bytes = em->ram_bytes;
} else {
split->orig_start = split->start;
split->block_len = 0;
split->block_start = em->block_start;
split->orig_block_len = 0;
split->ram_bytes = split->len;
}
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
split->generation = gen;
split->bdev = em->bdev;
split->flags = flags;
split->compress_type = em->compress_type;
Btrfs: more efficient btrfs_drop_extent_cache While droping extent map structures from the extent cache that cover our target range, we would remove each extent map structure from the red black tree and then add either 1 or 2 new extent map structures if the former extent map covered sections outside our target range. This change simply attempts to replace the existing extent map structure with a new one that covers the subsection we're not interested in, instead of doing a red black remove operation followed by an insertion operation. The number of elements in an inode's extent map tree can get very high for large files under random writes. For example, while running the following test: sysbench --test=fileio --file-num=1 --file-total-size=10G \ --file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \ --max-requests=500000 --file-rw-ratio=2 [prepare|run] I captured the following histogram capturing the number of extent_map items in the red black tree while that test was running: Count: 122462 Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981 Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000 1.000 - 5.231: 452 | 5.231 - 187.392: 87 | 187.392 - 585.911: 206 | 585.911 - 1827.438: 623 | 1827.438 - 5695.245: 1962 # 5695.245 - 17744.861: 6204 #### 17744.861 - 55283.764: 21115 ############ 55283.764 - 172231.000: 91813 ##################################################### Benchmark: sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \ --num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \ --file-io-mode=sync --file-fsync-freq=0 [prepare|run] Before this change: 122.1Mb/sec After this change: 125.07Mb/sec (averages of 5 test runs) Test machine: quad core intel i5-3570K, 32Gb of ram, SSD Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-02-25 14:15:13 +00:00
replace_extent_mapping(em_tree, em, split, modified);
free_extent_map(split);
split = split2;
split2 = NULL;
}
if (testend && em->start + em->len > start + len) {
u64 diff = start + len - em->start;
split->start = start + len;
split->len = em->start + em->len - (start + len);
split->bdev = em->bdev;
split->flags = flags;
split->compress_type = em->compress_type;
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
split->generation = gen;
if (em->block_start < EXTENT_MAP_LAST_BYTE) {
split->orig_block_len = max(em->block_len,
em->orig_block_len);
split->ram_bytes = em->ram_bytes;
if (compressed) {
split->block_len = em->block_len;
split->block_start = em->block_start;
split->orig_start = em->orig_start;
} else {
split->block_len = split->len;
split->block_start = em->block_start
+ diff;
split->orig_start = em->orig_start;
}
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
} else {
split->ram_bytes = split->len;
split->orig_start = split->start;
split->block_len = 0;
split->block_start = em->block_start;
split->orig_block_len = 0;
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
}
Btrfs: more efficient btrfs_drop_extent_cache While droping extent map structures from the extent cache that cover our target range, we would remove each extent map structure from the red black tree and then add either 1 or 2 new extent map structures if the former extent map covered sections outside our target range. This change simply attempts to replace the existing extent map structure with a new one that covers the subsection we're not interested in, instead of doing a red black remove operation followed by an insertion operation. The number of elements in an inode's extent map tree can get very high for large files under random writes. For example, while running the following test: sysbench --test=fileio --file-num=1 --file-total-size=10G \ --file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \ --max-requests=500000 --file-rw-ratio=2 [prepare|run] I captured the following histogram capturing the number of extent_map items in the red black tree while that test was running: Count: 122462 Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981 Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000 1.000 - 5.231: 452 | 5.231 - 187.392: 87 | 187.392 - 585.911: 206 | 585.911 - 1827.438: 623 | 1827.438 - 5695.245: 1962 # 5695.245 - 17744.861: 6204 #### 17744.861 - 55283.764: 21115 ############ 55283.764 - 172231.000: 91813 ##################################################### Benchmark: sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \ --num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \ --file-io-mode=sync --file-fsync-freq=0 [prepare|run] Before this change: 122.1Mb/sec After this change: 125.07Mb/sec (averages of 5 test runs) Test machine: quad core intel i5-3570K, 32Gb of ram, SSD Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-02-25 14:15:13 +00:00
if (extent_map_in_tree(em)) {
replace_extent_mapping(em_tree, em, split,
modified);
} else {
ret = add_extent_mapping(em_tree, split,
modified);
ASSERT(ret == 0); /* Logic error */
}
free_extent_map(split);
split = NULL;
}
next:
Btrfs: more efficient btrfs_drop_extent_cache While droping extent map structures from the extent cache that cover our target range, we would remove each extent map structure from the red black tree and then add either 1 or 2 new extent map structures if the former extent map covered sections outside our target range. This change simply attempts to replace the existing extent map structure with a new one that covers the subsection we're not interested in, instead of doing a red black remove operation followed by an insertion operation. The number of elements in an inode's extent map tree can get very high for large files under random writes. For example, while running the following test: sysbench --test=fileio --file-num=1 --file-total-size=10G \ --file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \ --max-requests=500000 --file-rw-ratio=2 [prepare|run] I captured the following histogram capturing the number of extent_map items in the red black tree while that test was running: Count: 122462 Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981 Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000 1.000 - 5.231: 452 | 5.231 - 187.392: 87 | 187.392 - 585.911: 206 | 585.911 - 1827.438: 623 | 1827.438 - 5695.245: 1962 # 5695.245 - 17744.861: 6204 #### 17744.861 - 55283.764: 21115 ############ 55283.764 - 172231.000: 91813 ##################################################### Benchmark: sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \ --num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \ --file-io-mode=sync --file-fsync-freq=0 [prepare|run] Before this change: 122.1Mb/sec After this change: 125.07Mb/sec (averages of 5 test runs) Test machine: quad core intel i5-3570K, 32Gb of ram, SSD Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-02-25 14:15:13 +00:00
if (extent_map_in_tree(em))
remove_extent_mapping(em_tree, em);
write_unlock(&em_tree->lock);
/* once for us */
free_extent_map(em);
/* once for the tree*/
free_extent_map(em);
}
if (split)
free_extent_map(split);
if (split2)
free_extent_map(split2);
}
/*
* this is very complex, but the basic idea is to drop all extents
* in the range start - end. hint_block is filled in with a block number
* that would be a good hint to the block allocator for this file.
*
* If an extent intersects the range but is not entirely inside the range
* it is either truncated or split. Anything entirely inside the range
* is deleted from the tree.
*/
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path, u64 start, u64 end,
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
u64 *drop_end, int drop_cache,
int replace_extent,
u32 extent_item_size,
int *key_inserted)
{
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
struct btrfs_key new_key;
u64 ino = btrfs_ino(inode);
u64 search_start = start;
u64 disk_bytenr = 0;
u64 num_bytes = 0;
u64 extent_offset = 0;
u64 extent_end = 0;
int del_nr = 0;
int del_slot = 0;
int extent_type;
int recow;
int ret;
int modify_tree = -1;
int update_refs;
int found = 0;
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
int leafs_visited = 0;
if (drop_cache)
btrfs_drop_extent_cache(inode, start, end - 1, 0);
if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
modify_tree = 0;
update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
root == root->fs_info->tree_root);
while (1) {
recow = 0;
ret = btrfs_lookup_file_extent(trans, root, path, ino,
search_start, modify_tree);
if (ret < 0)
break;
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == ino &&
key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
ret = 0;
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
leafs_visited++;
next_slot:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
BUG_ON(del_nr > 0);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
leafs_visited++;
leaf = path->nodes[0];
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid > ino ||
key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
extent_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = key.offset +
btrfs_file_extent_inline_len(leaf,
path->slots[0], fi);
} else {
WARN_ON(1);
extent_end = search_start;
}
Btrfs: fix leaf corruption caused by ENOSPC while hole punching While running a stress test with multiple threads writing to the same btrfs file system, I ended up with a situation where a leaf was corrupted in that it had 2 file extent item keys that had the same exact key. I was able to detect this quickly thanks to the following patch which triggers an assertion as soon as a leaf is marked dirty if there are duplicated keys or out of order keys: Btrfs: check if items are ordered when a leaf is marked dirty (https://patchwork.kernel.org/patch/3955431/) Basically while running the test, I got the following in dmesg: [28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]() (...) [28877.415917] Call Trace: [28877.415922] [<ffffffff816f1189>] dump_stack+0x4e/0x68 [28877.415926] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0 [28877.415929] [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20 [28877.415944] [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs] [28877.415949] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [28877.415962] [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs] [28877.415972] [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs] [28877.415984] [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs] (...) [29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24 [29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778 (...) [29854.132637] item 23 key (3486 108 667648) itemoff 2694 itemsize 53 [29854.132638] extent data disk bytenr 14574411776 nr 286720 [29854.132639] extent data offset 0 nr 286720 ram 286720 [29854.132640] item 24 key (3486 108 954368) itemoff 2641 itemsize 53 [29854.132641] extent data disk bytenr 0 nr 0 [29854.132643] extent data offset 0 nr 0 ram 0 [29854.132644] item 25 key (3486 108 954368) itemoff 2588 itemsize 53 [29854.132645] extent data disk bytenr 8699670528 nr 77824 [29854.132646] extent data offset 0 nr 77824 ram 77824 [29854.132647] item 26 key (3486 108 1146880) itemoff 2535 itemsize 53 [29854.132648] extent data disk bytenr 8699670528 nr 77824 [29854.132649] extent data offset 0 nr 77824 ram 77824 (...) [29854.132707] kernel BUG at fs/btrfs/ctree.h:3901! (...) [29854.132771] Call Trace: [29854.132779] [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs] [29854.132791] [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs] [29854.132794] [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0 [29854.132797] [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10 [29854.132800] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [29854.132810] [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs] [29854.132820] [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs] [29854.132830] [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs] (...) So this is caused by getting an -ENOSPC error while punching a file hole, more specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one or more file extent items due to lack of enough free space. When this happens, in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction block reservation object to root->fs_info->trans_block_rsv, end our transaction and start a new transaction basically - and, we keep increasing our current offset (cur_offset) as long as it's smaller than the end of the target range (lockend) - this makes use leave the loop with cur_offset == drop_end which in turn makes us call fill_holes() for inserting a file extent item that represents a 0 bytes range hole (and this insertion succeeds, as in the meanwhile more space became available). This 0 bytes file hole extent item is a problem because any subsequent caller of __btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a start file offset that is equal to the offset of the hole, will not remove this extent item due to the following conditional in the while loop of __btrfs_drop_extents: if (extent_end <= search_start) { path->slots[0]++; goto next_slot; } This later makes the call to setup_items_for_insert() (at the very end of __btrfs_drop_extents), insert a new file extent item with the same offset as the 0 bytes file hole extent item that follows it. Needless is to say that this causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook), where we perform leaf sanity checks or in subsequent operations that manipulate file extent items, as in the fallocate call as shown by the dmesg trace above. Without my other patch to perform the leaf sanity checks once a leaf is marked as dirty (if the integrity checker is enabled), it would have been much harder to debug this issue. This change might fix a few similar issues reported by users in the mailing list regarding assertion failures in btrfs_set_item_key_safe calls performed by __btrfs_drop_extents, such as the following report: http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938 Asking fill_holes() to create a 0 bytes wide file hole item also produced the first warning in the trace above, as we passed a range to btrfs_drop_extent_cache that has an end smaller (by -1) than its start. On 3.14 kernels this issue manifests itself through leaf corruption, as we get duplicated file extent item keys in a leaf when calling setup_items_for_insert(), but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(), instead we have callers of __btrfs_drop_extents(), namely the functions inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling btrfs_insert_empty_item() to insert the new file extent item, which would fail with error -EEXIST, instead of inserting a duplicated key - which is still a serious issue as it would make all similar file extent item replace operations keep failing if they target the same file range. Cc: stable@vger.kernel.org Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-04-29 12:18:40 +00:00
/*
* Don't skip extent items representing 0 byte lengths. They
* used to be created (bug) if while punching holes we hit
* -ENOSPC condition. So if we find one here, just ensure we
* delete it, otherwise we would insert a new file extent item
* with the same key (offset) as that 0 bytes length file
* extent item in the call to setup_items_for_insert() later
* in this function.
*/
if (extent_end == key.offset && extent_end >= search_start)
goto delete_extent_item;
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
found = 1;
search_start = max(key.offset, start);
if (recow || !modify_tree) {
modify_tree = -1;
btrfs_release_path(path);
continue;
}
/*
* | - range to drop - |
* | -------- extent -------- |
*/
if (start > key.offset && end < extent_end) {
BUG_ON(del_nr > 0);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = start;
ret = btrfs_duplicate_item(trans, root, path,
&new_key);
if (ret == -EAGAIN) {
btrfs_release_path(path);
continue;
}
if (ret < 0)
break;
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_offset += start - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - start);
btrfs_mark_buffer_dirty(leaf);
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
if (update_refs && disk_bytenr > 0) {
ret = btrfs_inc_extent_ref(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
new_key.objectid,
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:30:47 +00:00
start - extent_offset, 1);
BUG_ON(ret); /* -ENOMEM */
}
key.offset = start;
}
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start <= key.offset && end < extent_end) {
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = end;
btrfs_set_item_key_safe(root, path, &new_key);
extent_offset += end - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_mark_buffer_dirty(leaf);
if (update_refs && disk_bytenr > 0)
inode_sub_bytes(inode, end - key.offset);
break;
}
search_start = extent_end;
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start > key.offset && end >= extent_end) {
BUG_ON(del_nr > 0);
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
ret = -EOPNOTSUPP;
break;
}
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_mark_buffer_dirty(leaf);
if (update_refs && disk_bytenr > 0)
inode_sub_bytes(inode, extent_end - start);
if (end == extent_end)
break;
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
path->slots[0]++;
goto next_slot;
}
/*
* | ---- range to drop ----- |
* | ------ extent ------ |
*/
if (start <= key.offset && end >= extent_end) {
Btrfs: fix leaf corruption caused by ENOSPC while hole punching While running a stress test with multiple threads writing to the same btrfs file system, I ended up with a situation where a leaf was corrupted in that it had 2 file extent item keys that had the same exact key. I was able to detect this quickly thanks to the following patch which triggers an assertion as soon as a leaf is marked dirty if there are duplicated keys or out of order keys: Btrfs: check if items are ordered when a leaf is marked dirty (https://patchwork.kernel.org/patch/3955431/) Basically while running the test, I got the following in dmesg: [28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]() (...) [28877.415917] Call Trace: [28877.415922] [<ffffffff816f1189>] dump_stack+0x4e/0x68 [28877.415926] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0 [28877.415929] [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20 [28877.415944] [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs] [28877.415949] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [28877.415962] [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs] [28877.415972] [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs] [28877.415984] [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs] (...) [29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24 [29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778 (...) [29854.132637] item 23 key (3486 108 667648) itemoff 2694 itemsize 53 [29854.132638] extent data disk bytenr 14574411776 nr 286720 [29854.132639] extent data offset 0 nr 286720 ram 286720 [29854.132640] item 24 key (3486 108 954368) itemoff 2641 itemsize 53 [29854.132641] extent data disk bytenr 0 nr 0 [29854.132643] extent data offset 0 nr 0 ram 0 [29854.132644] item 25 key (3486 108 954368) itemoff 2588 itemsize 53 [29854.132645] extent data disk bytenr 8699670528 nr 77824 [29854.132646] extent data offset 0 nr 77824 ram 77824 [29854.132647] item 26 key (3486 108 1146880) itemoff 2535 itemsize 53 [29854.132648] extent data disk bytenr 8699670528 nr 77824 [29854.132649] extent data offset 0 nr 77824 ram 77824 (...) [29854.132707] kernel BUG at fs/btrfs/ctree.h:3901! (...) [29854.132771] Call Trace: [29854.132779] [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs] [29854.132791] [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs] [29854.132794] [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0 [29854.132797] [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10 [29854.132800] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [29854.132810] [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs] [29854.132820] [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs] [29854.132830] [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs] (...) So this is caused by getting an -ENOSPC error while punching a file hole, more specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one or more file extent items due to lack of enough free space. When this happens, in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction block reservation object to root->fs_info->trans_block_rsv, end our transaction and start a new transaction basically - and, we keep increasing our current offset (cur_offset) as long as it's smaller than the end of the target range (lockend) - this makes use leave the loop with cur_offset == drop_end which in turn makes us call fill_holes() for inserting a file extent item that represents a 0 bytes range hole (and this insertion succeeds, as in the meanwhile more space became available). This 0 bytes file hole extent item is a problem because any subsequent caller of __btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a start file offset that is equal to the offset of the hole, will not remove this extent item due to the following conditional in the while loop of __btrfs_drop_extents: if (extent_end <= search_start) { path->slots[0]++; goto next_slot; } This later makes the call to setup_items_for_insert() (at the very end of __btrfs_drop_extents), insert a new file extent item with the same offset as the 0 bytes file hole extent item that follows it. Needless is to say that this causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook), where we perform leaf sanity checks or in subsequent operations that manipulate file extent items, as in the fallocate call as shown by the dmesg trace above. Without my other patch to perform the leaf sanity checks once a leaf is marked as dirty (if the integrity checker is enabled), it would have been much harder to debug this issue. This change might fix a few similar issues reported by users in the mailing list regarding assertion failures in btrfs_set_item_key_safe calls performed by __btrfs_drop_extents, such as the following report: http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938 Asking fill_holes() to create a 0 bytes wide file hole item also produced the first warning in the trace above, as we passed a range to btrfs_drop_extent_cache that has an end smaller (by -1) than its start. On 3.14 kernels this issue manifests itself through leaf corruption, as we get duplicated file extent item keys in a leaf when calling setup_items_for_insert(), but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(), instead we have callers of __btrfs_drop_extents(), namely the functions inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling btrfs_insert_empty_item() to insert the new file extent item, which would fail with error -EEXIST, instead of inserting a duplicated key - which is still a serious issue as it would make all similar file extent item replace operations keep failing if they target the same file range. Cc: stable@vger.kernel.org Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-04-29 12:18:40 +00:00
delete_extent_item:
if (del_nr == 0) {
del_slot = path->slots[0];
del_nr = 1;
} else {
BUG_ON(del_slot + del_nr != path->slots[0]);
del_nr++;
}
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
if (update_refs &&
extent_type == BTRFS_FILE_EXTENT_INLINE) {
inode_sub_bytes(inode,
extent_end - key.offset);
extent_end = ALIGN(extent_end,
root->sectorsize);
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
} else if (update_refs && disk_bytenr > 0) {
ret = btrfs_free_extent(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
key.objectid, key.offset -
extent_offset, 0);
BUG_ON(ret); /* -ENOMEM */
inode_sub_bytes(inode,
extent_end - key.offset);
}
if (end == extent_end)
break;
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
path->slots[0]++;
goto next_slot;
}
ret = btrfs_del_items(trans, root, path, del_slot,
del_nr);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
break;
}
del_nr = 0;
del_slot = 0;
btrfs_release_path(path);
continue;
}
BUG_ON(1);
}
if (!ret && del_nr > 0) {
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
/*
* Set path->slots[0] to first slot, so that after the delete
* if items are move off from our leaf to its immediate left or
* right neighbor leafs, we end up with a correct and adjusted
* path->slots[0] for our insertion (if replace_extent != 0).
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
*/
path->slots[0] = del_slot;
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
if (ret)
btrfs_abort_transaction(trans, root, ret);
}
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
leaf = path->nodes[0];
/*
* If btrfs_del_items() was called, it might have deleted a leaf, in
* which case it unlocked our path, so check path->locks[0] matches a
* write lock.
*/
if (!ret && replace_extent && leafs_visited == 1 &&
(path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
path->locks[0] == BTRFS_WRITE_LOCK) &&
btrfs_leaf_free_space(root, leaf) >=
sizeof(struct btrfs_item) + extent_item_size) {
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = start;
if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
struct btrfs_key slot_key;
btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
path->slots[0]++;
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
}
setup_items_for_insert(root, path, &key,
&extent_item_size,
extent_item_size,
sizeof(struct btrfs_item) +
extent_item_size, 1);
*key_inserted = 1;
}
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
if (!replace_extent || !(*key_inserted))
btrfs_release_path(path);
if (drop_end)
*drop_end = found ? min(end, extent_end) : end;
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
return ret;
}
int btrfs_drop_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode, u64 start,
u64 end, int drop_cache)
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
{
struct btrfs_path *path;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
drop_cache, 0, 0, NULL);
btrfs_free_path(path);
return ret;
}
static int extent_mergeable(struct extent_buffer *leaf, int slot,
u64 objectid, u64 bytenr, u64 orig_offset,
u64 *start, u64 *end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 extent_end;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
return 0;
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if ((*start && *start != key.offset) || (*end && *end != extent_end))
return 0;
*start = key.offset;
*end = extent_end;
return 1;
}
/*
* Mark extent in the range start - end as written.
*
* This changes extent type from 'pre-allocated' to 'regular'. If only
* part of extent is marked as written, the extent will be split into
* two or three.
*/
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct inode *inode, u64 start, u64 end)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
struct btrfs_key new_key;
u64 bytenr;
u64 num_bytes;
u64 extent_end;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
u64 orig_offset;
u64 other_start;
u64 other_end;
u64 split;
int del_nr = 0;
int del_slot = 0;
int recow;
int ret;
u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
recow = 0;
split = start;
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = split;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0 && path->slots[0] > 0)
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
BUG_ON(btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_PREALLOC);
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
BUG_ON(key.offset > start || extent_end < end);
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
memcpy(&new_key, &key, sizeof(new_key));
if (start == key.offset && end < extent_end) {
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
new_key.offset = end;
btrfs_set_item_key_safe(root, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_set_file_extent_offset(leaf, fi,
end - orig_offset);
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
end - other_start);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
if (start > key.offset && end == extent_end) {
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
path->slots[0]++;
new_key.offset = start;
btrfs_set_item_key_safe(root, path, &new_key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
other_end - start);
btrfs_set_file_extent_offset(leaf, fi,
start - orig_offset);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
}
while (start > key.offset || end < extent_end) {
if (key.offset == start)
split = end;
new_key.offset = split;
ret = btrfs_duplicate_item(trans, root, path, &new_key);
if (ret == -EAGAIN) {
btrfs_release_path(path);
goto again;
}
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
split - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - split);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
root->root_key.objectid,
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:30:47 +00:00
ino, orig_offset, 1);
BUG_ON(ret); /* -ENOMEM */
if (split == start) {
key.offset = start;
} else {
BUG_ON(start != key.offset);
path->slots[0]--;
extent_end = end;
}
recow = 1;
}
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
extent_end = other_end;
del_slot = path->slots[0] + 1;
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
ino, orig_offset, 0);
BUG_ON(ret); /* -ENOMEM */
}
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1,
ino, bytenr, orig_offset,
&other_start, &other_end)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
key.offset = other_start;
del_slot = path->slots[0];
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
ino, orig_offset, 0);
BUG_ON(ret); /* -ENOMEM */
}
if (del_nr == 0) {
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_mark_buffer_dirty(leaf);
} else {
fi = btrfs_item_ptr(leaf, del_slot - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - key.offset);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
if (ret < 0) {
btrfs_abort_transaction(trans, root, ret);
goto out;
}
}
out:
btrfs_free_path(path);
return 0;
}
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
/*
* on error we return an unlocked page and the error value
* on success we return a locked page and 0
*/
static int prepare_uptodate_page(struct page *page, u64 pos,
bool force_uptodate)
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
{
int ret = 0;
if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
!PageUptodate(page)) {
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
ret = btrfs_readpage(NULL, page);
if (ret)
return ret;
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
return -EIO;
}
}
return 0;
}
/*
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
* this just gets pages into the page cache and locks them down.
*/
static noinline int prepare_pages(struct inode *inode, struct page **pages,
size_t num_pages, loff_t pos,
size_t write_bytes, bool force_uptodate)
{
int i;
unsigned long index = pos >> PAGE_CACHE_SHIFT;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
int err = 0;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
int faili;
for (i = 0; i < num_pages; i++) {
pages[i] = find_or_create_page(inode->i_mapping, index + i,
mask | __GFP_WRITE);
if (!pages[i]) {
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
faili = i - 1;
err = -ENOMEM;
goto fail;
}
if (i == 0)
err = prepare_uptodate_page(pages[i], pos,
force_uptodate);
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
if (i == num_pages - 1)
err = prepare_uptodate_page(pages[i],
pos + write_bytes, false);
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
if (err) {
page_cache_release(pages[i]);
faili = i - 1;
goto fail;
}
wait_on_page_writeback(pages[i]);
}
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
return 0;
fail:
while (faili >= 0) {
unlock_page(pages[faili]);
page_cache_release(pages[faili]);
faili--;
}
return err;
}
/*
* This function locks the extent and properly waits for data=ordered extents
* to finish before allowing the pages to be modified if need.
*
* The return value:
* 1 - the extent is locked
* 0 - the extent is not locked, and everything is OK
* -EAGAIN - need re-prepare the pages
* the other < 0 number - Something wrong happens
*/
static noinline int
lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
size_t num_pages, loff_t pos,
u64 *lockstart, u64 *lockend,
struct extent_state **cached_state)
{
u64 start_pos;
u64 last_pos;
int i;
int ret = 0;
start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
if (start_pos < inode->i_size) {
struct btrfs_ordered_extent *ordered;
lock_extent_bits(&BTRFS_I(inode)->io_tree,
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
start_pos, last_pos, 0, cached_state);
ordered = btrfs_lookup_ordered_range(inode, start_pos,
last_pos - start_pos + 1);
if (ordered &&
ordered->file_offset + ordered->len > start_pos &&
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
ordered->file_offset <= last_pos) {
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
start_pos, last_pos,
cached_state, GFP_NOFS);
for (i = 0; i < num_pages; i++) {
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
return -EAGAIN;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
0, 0, cached_state, GFP_NOFS);
*lockstart = start_pos;
*lockend = last_pos;
ret = 1;
}
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
for (i = 0; i < num_pages; i++) {
if (clear_page_dirty_for_io(pages[i]))
account_page_redirty(pages[i]);
set_page_extent_mapped(pages[i]);
WARN_ON(!PageLocked(pages[i]));
}
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
return ret;
}
static noinline int check_can_nocow(struct inode *inode, loff_t pos,
size_t *write_bytes)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ordered_extent *ordered;
u64 lockstart, lockend;
u64 num_bytes;
int ret;
Btrfs: fix snapshot inconsistency after a file write followed by truncate If right after starting the snapshot creation ioctl we perform a write against a file followed by a truncate, with both operations increasing the file's size, we can get a snapshot tree that reflects a state of the source subvolume's tree where the file truncation happened but the write operation didn't. This leaves a gap between 2 file extent items of the inode, which makes btrfs' fsck complain about it. For example, if we perform the following file operations: $ mkfs.btrfs -f /dev/vdd $ mount /dev/vdd /mnt $ xfs_io -f \ -c "pwrite -S 0xaa -b 32K 0 32K" \ -c "fsync" \ -c "pwrite -S 0xbb -b 32770 16K 32770" \ -c "truncate 90123" \ /mnt/foobar and the snapshot creation ioctl was just called before the second write, we often can get the following inode items in the snapshot's btree: item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160 inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0 item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20 inode ref index 282 namelen 10 name: foobar item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53 extent data disk byte 1104855040 nr 32768 extent data offset 0 nr 32768 ram 32768 extent compression 0 item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53 extent data disk byte 0 nr 0 extent data offset 0 nr 40960 ram 40960 extent compression 0 There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[ for which there's no file extent item covering it. This is because the file write and file truncate operations happened both right after the snapshot creation ioctl called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the ordered extent that matches the write and, in btrfs_setsize(), we were able to call btrfs_cont_expand() before being able to commit the current transaction in the snapshot creation ioctl. So this made it possibe to insert the hole file extent item in the source subvolume (which represents the region added by the truncate) right before the transaction commit from the snapshot creation ioctl. Btrfs' fsck tool complains about such cases with a message like the following: "root 331 inode 257 errors 100, file extent discount" >From a user perspective, the expectation when a snapshot is created while those file operations are being performed is that the snapshot will have a file that either: 1) is empty 2) only the first write was captured 3) only the 2 writes were captured 4) both writes and the truncation were captured But never capture a state where only the first write and the truncation were captured (since the second write was performed before the truncation). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-29 11:57:59 +00:00
ret = btrfs_start_write_no_snapshoting(root);
if (!ret)
return -ENOSPC;
lockstart = round_down(pos, root->sectorsize);
lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
while (1) {
lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
ordered = btrfs_lookup_ordered_range(inode, lockstart,
lockend - lockstart + 1);
if (!ordered) {
break;
}
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
}
num_bytes = lockend - lockstart + 1;
ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
if (ret <= 0) {
ret = 0;
Btrfs: fix snapshot inconsistency after a file write followed by truncate If right after starting the snapshot creation ioctl we perform a write against a file followed by a truncate, with both operations increasing the file's size, we can get a snapshot tree that reflects a state of the source subvolume's tree where the file truncation happened but the write operation didn't. This leaves a gap between 2 file extent items of the inode, which makes btrfs' fsck complain about it. For example, if we perform the following file operations: $ mkfs.btrfs -f /dev/vdd $ mount /dev/vdd /mnt $ xfs_io -f \ -c "pwrite -S 0xaa -b 32K 0 32K" \ -c "fsync" \ -c "pwrite -S 0xbb -b 32770 16K 32770" \ -c "truncate 90123" \ /mnt/foobar and the snapshot creation ioctl was just called before the second write, we often can get the following inode items in the snapshot's btree: item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160 inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0 item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20 inode ref index 282 namelen 10 name: foobar item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53 extent data disk byte 1104855040 nr 32768 extent data offset 0 nr 32768 ram 32768 extent compression 0 item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53 extent data disk byte 0 nr 0 extent data offset 0 nr 40960 ram 40960 extent compression 0 There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[ for which there's no file extent item covering it. This is because the file write and file truncate operations happened both right after the snapshot creation ioctl called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the ordered extent that matches the write and, in btrfs_setsize(), we were able to call btrfs_cont_expand() before being able to commit the current transaction in the snapshot creation ioctl. So this made it possibe to insert the hole file extent item in the source subvolume (which represents the region added by the truncate) right before the transaction commit from the snapshot creation ioctl. Btrfs' fsck tool complains about such cases with a message like the following: "root 331 inode 257 errors 100, file extent discount" >From a user perspective, the expectation when a snapshot is created while those file operations are being performed is that the snapshot will have a file that either: 1) is empty 2) only the first write was captured 3) only the 2 writes were captured 4) both writes and the truncation were captured But never capture a state where only the first write and the truncation were captured (since the second write was performed before the truncation). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-29 11:57:59 +00:00
btrfs_end_write_no_snapshoting(root);
} else {
*write_bytes = min_t(size_t, *write_bytes ,
num_bytes - pos + lockstart);
}
unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
return ret;
}
static noinline ssize_t __btrfs_buffered_write(struct file *file,
struct iov_iter *i,
loff_t pos)
{
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct page **pages = NULL;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
struct extent_state *cached_state = NULL;
u64 release_bytes = 0;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
u64 lockstart;
u64 lockend;
unsigned long first_index;
size_t num_written = 0;
int nrptrs;
int ret = 0;
bool only_release_metadata = false;
bool force_page_uptodate = false;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
bool need_unlock;
nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
PAGE_CACHE_SIZE / (sizeof(struct page *)));
nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
nrptrs = max(nrptrs, 8);
pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
first_index = pos >> PAGE_CACHE_SHIFT;
while (iov_iter_count(i) > 0) {
size_t offset = pos & (PAGE_CACHE_SIZE - 1);
size_t write_bytes = min(iov_iter_count(i),
nrptrs * (size_t)PAGE_CACHE_SIZE -
offset);
size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
PAGE_CACHE_SIZE);
size_t reserve_bytes;
size_t dirty_pages;
size_t copied;
WARN_ON(num_pages > nrptrs);
/*
* Fault pages before locking them in prepare_pages
* to avoid recursive lock
*/
if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
ret = -EFAULT;
break;
}
reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
ret = btrfs_check_data_free_space(inode, reserve_bytes);
if (ret == -ENOSPC &&
(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
BTRFS_INODE_PREALLOC))) {
ret = check_can_nocow(inode, pos, &write_bytes);
if (ret > 0) {
only_release_metadata = true;
/*
* our prealloc extent may be smaller than
* write_bytes, so scale down.
*/
num_pages = DIV_ROUND_UP(write_bytes + offset,
PAGE_CACHE_SIZE);
reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
ret = 0;
} else {
ret = -ENOSPC;
}
}
if (ret)
break;
ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
if (ret) {
if (!only_release_metadata)
btrfs_free_reserved_data_space(inode,
reserve_bytes);
else
Btrfs: fix snapshot inconsistency after a file write followed by truncate If right after starting the snapshot creation ioctl we perform a write against a file followed by a truncate, with both operations increasing the file's size, we can get a snapshot tree that reflects a state of the source subvolume's tree where the file truncation happened but the write operation didn't. This leaves a gap between 2 file extent items of the inode, which makes btrfs' fsck complain about it. For example, if we perform the following file operations: $ mkfs.btrfs -f /dev/vdd $ mount /dev/vdd /mnt $ xfs_io -f \ -c "pwrite -S 0xaa -b 32K 0 32K" \ -c "fsync" \ -c "pwrite -S 0xbb -b 32770 16K 32770" \ -c "truncate 90123" \ /mnt/foobar and the snapshot creation ioctl was just called before the second write, we often can get the following inode items in the snapshot's btree: item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160 inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0 item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20 inode ref index 282 namelen 10 name: foobar item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53 extent data disk byte 1104855040 nr 32768 extent data offset 0 nr 32768 ram 32768 extent compression 0 item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53 extent data disk byte 0 nr 0 extent data offset 0 nr 40960 ram 40960 extent compression 0 There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[ for which there's no file extent item covering it. This is because the file write and file truncate operations happened both right after the snapshot creation ioctl called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the ordered extent that matches the write and, in btrfs_setsize(), we were able to call btrfs_cont_expand() before being able to commit the current transaction in the snapshot creation ioctl. So this made it possibe to insert the hole file extent item in the source subvolume (which represents the region added by the truncate) right before the transaction commit from the snapshot creation ioctl. Btrfs' fsck tool complains about such cases with a message like the following: "root 331 inode 257 errors 100, file extent discount" >From a user perspective, the expectation when a snapshot is created while those file operations are being performed is that the snapshot will have a file that either: 1) is empty 2) only the first write was captured 3) only the 2 writes were captured 4) both writes and the truncation were captured But never capture a state where only the first write and the truncation were captured (since the second write was performed before the truncation). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-29 11:57:59 +00:00
btrfs_end_write_no_snapshoting(root);
break;
}
release_bytes = reserve_bytes;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
need_unlock = false;
again:
/*
* This is going to setup the pages array with the number of
* pages we want, so we don't really need to worry about the
* contents of pages from loop to loop
*/
ret = prepare_pages(inode, pages, num_pages,
pos, write_bytes,
force_page_uptodate);
if (ret)
break;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
pos, &lockstart, &lockend,
&cached_state);
if (ret < 0) {
if (ret == -EAGAIN)
goto again;
break;
} else if (ret > 0) {
need_unlock = true;
ret = 0;
}
copied = btrfs_copy_from_user(pos, num_pages,
write_bytes, pages, i);
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
/*
* if we have trouble faulting in the pages, fall
* back to one page at a time
*/
if (copied < write_bytes)
nrptrs = 1;
if (copied == 0) {
force_page_uptodate = true;
Btrfs: fix regressions in copy_from_user handling Commit 914ee295af418e936ec20a08c1663eaabe4cd07a fixed deadlocks in btrfs_file_write where we would catch page faults on pages we had locked. But, there were a few problems: 1) The x86-32 iov_iter_copy_from_user_atomic code always fails to copy data when the amount to copy is more than 4K and the offset to start copying from is not page aligned. The result was btrfs_file_write looping forever retrying the iov_iter_copy_from_user_atomic We deal with this by changing btrfs_file_write to drop down to single page copies when iov_iter_copy_from_user_atomic starts returning failure. 2) The btrfs_file_write code was leaking delalloc reservations when iov_iter_copy_from_user_atomic returned zero. The looping above would result in the entire filesystem running out of delalloc reservations and constantly trying to flush things to disk. 3) btrfs_file_write will lock down page cache pages, make sure any writeback is finished, do the copy_from_user and then release them. Before the loop runs we check the first and last pages in the write to see if they are only being partially modified. If the start or end of the write isn't aligned, we make sure the corresponding pages are up to date so that we don't introduce garbage into the file. With the copy_from_user changes, we're allowing the VM to reclaim the pages after a partial update from copy_from_user, but we're not making sure the page cache page is up to date when we loop around to resume the write. We deal with this by pushing the up to date checks down into the page prep code. This fits better with how the rest of file_write works. Signed-off-by: Chris Mason <chris.mason@oracle.com> Reported-by: Mitch Harder <mitch.harder@sabayonlinux.org> cc: stable@kernel.org
2011-02-28 14:52:08 +00:00
dirty_pages = 0;
} else {
force_page_uptodate = false;
dirty_pages = DIV_ROUND_UP(copied + offset,
PAGE_CACHE_SIZE);
}
/*
* If we had a short copy we need to release the excess delaloc
* bytes we reserved. We need to increment outstanding_extents
* because btrfs_delalloc_release_space will decrement it, but
* we still have an outstanding extent for the chunk we actually
* managed to copy.
*/
if (num_pages > dirty_pages) {
release_bytes = (num_pages - dirty_pages) <<
PAGE_CACHE_SHIFT;
if (copied > 0) {
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->outstanding_extents++;
spin_unlock(&BTRFS_I(inode)->lock);
}
if (only_release_metadata)
btrfs_delalloc_release_metadata(inode,
release_bytes);
else
btrfs_delalloc_release_space(inode,
release_bytes);
}
release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
if (copied > 0)
ret = btrfs_dirty_pages(root, inode, pages,
dirty_pages, pos, copied,
NULL);
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
if (need_unlock)
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
lockstart, lockend, &cached_state,
GFP_NOFS);
if (ret) {
btrfs_drop_pages(pages, num_pages);
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
break;
}
Btrfs: fix the reserved space leak caused by the race between nonlock dio and buffered io When we ran sysbench on the fs with compression, the following WARN_ONs were triggered: fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents); fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents); fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes); Steps to reproduce: # mkfs.btrfs -f <dev> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync prepare # cd - # umount <mnt> # mount -o compress <dev> <mnt> # cd <mnt> # sysbench --test=fileio --num-threads=8 --file-total-size=8G \ > --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \ > --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \ > --file-test-mode=sync run # cd - # umount <mnt> The reason of this problem is: Task0 Task1 btrfs_direct_IO unlock(&inode->i_mutex) lock(&inode->i_mutex) reserve_space() prepare_pages() lock_extent() clear_extent() unlock_extent() lock_extent() test_extent(uptodate) return false copy_data() set_delalloc_extent() extent need compress go back to buffered write clear_extent(DELALLOC | DIRTY) unlock_extent() Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which was set by task1, it made the dirty pages in that extents couldn't be flushed into the disk, so the reserved space for that extent was not released at the end. This patch fixes the above bug by unlocking the extent after the delalloc. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-12-10 11:25:04 +00:00
release_bytes = 0;
if (only_release_metadata)
Btrfs: fix snapshot inconsistency after a file write followed by truncate If right after starting the snapshot creation ioctl we perform a write against a file followed by a truncate, with both operations increasing the file's size, we can get a snapshot tree that reflects a state of the source subvolume's tree where the file truncation happened but the write operation didn't. This leaves a gap between 2 file extent items of the inode, which makes btrfs' fsck complain about it. For example, if we perform the following file operations: $ mkfs.btrfs -f /dev/vdd $ mount /dev/vdd /mnt $ xfs_io -f \ -c "pwrite -S 0xaa -b 32K 0 32K" \ -c "fsync" \ -c "pwrite -S 0xbb -b 32770 16K 32770" \ -c "truncate 90123" \ /mnt/foobar and the snapshot creation ioctl was just called before the second write, we often can get the following inode items in the snapshot's btree: item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160 inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0 item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20 inode ref index 282 namelen 10 name: foobar item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53 extent data disk byte 1104855040 nr 32768 extent data offset 0 nr 32768 ram 32768 extent compression 0 item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53 extent data disk byte 0 nr 0 extent data offset 0 nr 40960 ram 40960 extent compression 0 There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[ for which there's no file extent item covering it. This is because the file write and file truncate operations happened both right after the snapshot creation ioctl called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the ordered extent that matches the write and, in btrfs_setsize(), we were able to call btrfs_cont_expand() before being able to commit the current transaction in the snapshot creation ioctl. So this made it possibe to insert the hole file extent item in the source subvolume (which represents the region added by the truncate) right before the transaction commit from the snapshot creation ioctl. Btrfs' fsck tool complains about such cases with a message like the following: "root 331 inode 257 errors 100, file extent discount" >From a user perspective, the expectation when a snapshot is created while those file operations are being performed is that the snapshot will have a file that either: 1) is empty 2) only the first write was captured 3) only the 2 writes were captured 4) both writes and the truncation were captured But never capture a state where only the first write and the truncation were captured (since the second write was performed before the truncation). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-29 11:57:59 +00:00
btrfs_end_write_no_snapshoting(root);
if (only_release_metadata && copied > 0) {
u64 lockstart = round_down(pos, root->sectorsize);
u64 lockend = lockstart +
(dirty_pages << PAGE_CACHE_SHIFT) - 1;
set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
lockend, EXTENT_NORESERVE, NULL,
NULL, GFP_NOFS);
only_release_metadata = false;
}
btrfs_drop_pages(pages, num_pages);
cond_resched();
balance_dirty_pages_ratelimited(inode->i_mapping);
if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
btrfs_btree_balance_dirty(root);
pos += copied;
num_written += copied;
}
kfree(pages);
if (release_bytes) {
if (only_release_metadata) {
Btrfs: fix snapshot inconsistency after a file write followed by truncate If right after starting the snapshot creation ioctl we perform a write against a file followed by a truncate, with both operations increasing the file's size, we can get a snapshot tree that reflects a state of the source subvolume's tree where the file truncation happened but the write operation didn't. This leaves a gap between 2 file extent items of the inode, which makes btrfs' fsck complain about it. For example, if we perform the following file operations: $ mkfs.btrfs -f /dev/vdd $ mount /dev/vdd /mnt $ xfs_io -f \ -c "pwrite -S 0xaa -b 32K 0 32K" \ -c "fsync" \ -c "pwrite -S 0xbb -b 32770 16K 32770" \ -c "truncate 90123" \ /mnt/foobar and the snapshot creation ioctl was just called before the second write, we often can get the following inode items in the snapshot's btree: item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160 inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0 item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20 inode ref index 282 namelen 10 name: foobar item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53 extent data disk byte 1104855040 nr 32768 extent data offset 0 nr 32768 ram 32768 extent compression 0 item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53 extent data disk byte 0 nr 0 extent data offset 0 nr 40960 ram 40960 extent compression 0 There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[ for which there's no file extent item covering it. This is because the file write and file truncate operations happened both right after the snapshot creation ioctl called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the ordered extent that matches the write and, in btrfs_setsize(), we were able to call btrfs_cont_expand() before being able to commit the current transaction in the snapshot creation ioctl. So this made it possibe to insert the hole file extent item in the source subvolume (which represents the region added by the truncate) right before the transaction commit from the snapshot creation ioctl. Btrfs' fsck tool complains about such cases with a message like the following: "root 331 inode 257 errors 100, file extent discount" >From a user perspective, the expectation when a snapshot is created while those file operations are being performed is that the snapshot will have a file that either: 1) is empty 2) only the first write was captured 3) only the 2 writes were captured 4) both writes and the truncation were captured But never capture a state where only the first write and the truncation were captured (since the second write was performed before the truncation). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-10-29 11:57:59 +00:00
btrfs_end_write_no_snapshoting(root);
btrfs_delalloc_release_metadata(inode, release_bytes);
} else {
btrfs_delalloc_release_space(inode, release_bytes);
}
}
return num_written ? num_written : ret;
}
static ssize_t __btrfs_direct_write(struct kiocb *iocb,
struct iov_iter *from,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
ssize_t written;
ssize_t written_buffered;
loff_t endbyte;
int err;
written = generic_file_direct_write(iocb, from, pos);
if (written < 0 || !iov_iter_count(from))
return written;
pos += written;
written_buffered = __btrfs_buffered_write(file, from, pos);
if (written_buffered < 0) {
err = written_buffered;
goto out;
}
/*
* Ensure all data is persisted. We want the next direct IO read to be
* able to read what was just written.
*/
endbyte = pos + written_buffered - 1;
err = btrfs_fdatawrite_range(inode, pos, endbyte);
if (err)
goto out;
err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
if (err)
goto out;
written += written_buffered;
iocb->ki_pos = pos + written_buffered;
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
endbyte >> PAGE_CACHE_SHIFT);
out:
return written ? written : err;
}
static void update_time_for_write(struct inode *inode)
{
struct timespec now;
if (IS_NOCMTIME(inode))
return;
now = current_fs_time(inode->i_sb);
if (!timespec_equal(&inode->i_mtime, &now))
inode->i_mtime = now;
if (!timespec_equal(&inode->i_ctime, &now))
inode->i_ctime = now;
if (IS_I_VERSION(inode))
inode_inc_iversion(inode);
}
static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 start_pos;
u64 end_pos;
ssize_t num_written = 0;
ssize_t err = 0;
size_t count = iov_iter_count(from);
bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
loff_t pos = iocb->ki_pos;
mutex_lock(&inode->i_mutex);
current->backing_dev_info = inode->i_mapping->backing_dev_info;
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
if (count == 0) {
mutex_unlock(&inode->i_mutex);
goto out;
}
iov_iter_truncate(from, count);
err = file_remove_suid(file);
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
/*
* If BTRFS flips readonly due to some impossible error
* (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
* although we have opened a file as writable, we have
* to stop this write operation to ensure FS consistency.
*/
if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
mutex_unlock(&inode->i_mutex);
err = -EROFS;
goto out;
}
/*
* We reserve space for updating the inode when we reserve space for the
* extent we are going to write, so we will enospc out there. We don't
* need to start yet another transaction to update the inode as we will
* update the inode when we finish writing whatever data we write.
*/
update_time_for_write(inode);
start_pos = round_down(pos, root->sectorsize);
if (start_pos > i_size_read(inode)) {
/* Expand hole size to cover write data, preventing empty gap */
end_pos = round_up(pos + count, root->sectorsize);
err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
if (err) {
mutex_unlock(&inode->i_mutex);
goto out;
}
}
if (sync)
atomic_inc(&BTRFS_I(inode)->sync_writers);
if (file->f_flags & O_DIRECT) {
num_written = __btrfs_direct_write(iocb, from, pos);
} else {
num_written = __btrfs_buffered_write(file, from, pos);
if (num_written > 0)
iocb->ki_pos = pos + num_written;
}
mutex_unlock(&inode->i_mutex);
Btrfs: add extra flushing for renames and truncates Renames and truncates are both common ways to replace old data with new data. The filesystem can make an effort to make sure the new data is on disk before actually replacing the old data. This is especially important for rename, which many application use as though it were atomic for both the data and the metadata involved. The current btrfs code will happily replace a file that is fully on disk with one that was just created and still has pending IO. If we crash after transaction commit but before the IO is done, we'll end up replacing a good file with a zero length file. The solution used here is to create a list of inodes that need special ordering and force them to disk before the commit is done. This is similar to the ext3 style data=ordering, except it is only done on selected files. Btrfs is able to get away with this because it does not wait on commits very often, even for fsync (which use a sub-commit). For renames, we order the file when it wasn't already on disk and when it is replacing an existing file. Larger files are sent to filemap_flush right away (before the transaction handle is opened). For truncates, we order if the file goes from non-zero size down to zero size. This is a little different, because at the time of the truncate the file has no dirty bytes to order. But, we flag the inode so that it is added to the ordered list on close (via release method). We also immediately add it to the ordered list of the current transaction so that we can try to flush down any writes the application sneaks in before commit. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-31 17:27:11 +00:00
/*
* we want to make sure fsync finds this change
* but we haven't joined a transaction running right now.
*
* Later on, someone is sure to update the inode and get the
* real transid recorded.
*
* We set last_trans now to the fs_info generation + 1,
* this will either be one more than the running transaction
* or the generation used for the next transaction if there isn't
* one running right now.
*
* We also have to set last_sub_trans to the current log transid,
* otherwise subsequent syncs to a file that's been synced in this
* transaction will appear to have already occured.
Btrfs: add extra flushing for renames and truncates Renames and truncates are both common ways to replace old data with new data. The filesystem can make an effort to make sure the new data is on disk before actually replacing the old data. This is especially important for rename, which many application use as though it were atomic for both the data and the metadata involved. The current btrfs code will happily replace a file that is fully on disk with one that was just created and still has pending IO. If we crash after transaction commit but before the IO is done, we'll end up replacing a good file with a zero length file. The solution used here is to create a list of inodes that need special ordering and force them to disk before the commit is done. This is similar to the ext3 style data=ordering, except it is only done on selected files. Btrfs is able to get away with this because it does not wait on commits very often, even for fsync (which use a sub-commit). For renames, we order the file when it wasn't already on disk and when it is replacing an existing file. Larger files are sent to filemap_flush right away (before the transaction handle is opened). For truncates, we order if the file goes from non-zero size down to zero size. This is a little different, because at the time of the truncate the file has no dirty bytes to order. But, we flag the inode so that it is added to the ordered list on close (via release method). We also immediately add it to the ordered list of the current transaction so that we can try to flush down any writes the application sneaks in before commit. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-31 17:27:11 +00:00
*/
BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
BTRFS_I(inode)->last_sub_trans = root->log_transid;
if (num_written > 0) {
err = generic_write_sync(file, pos, num_written);
if (err < 0)
num_written = err;
}
if (sync)
atomic_dec(&BTRFS_I(inode)->sync_writers);
out:
current->backing_dev_info = NULL;
return num_written ? num_written : err;
}
int btrfs_release_file(struct inode *inode, struct file *filp)
{
if (filp->private_data)
btrfs_ioctl_trans_end(filp);
/*
* ordered_data_close is set by settattr when we are about to truncate
* a file from a non-zero size to a zero size. This tries to
* flush down new bytes that may have been written if the
* application were using truncate to replace a file in place.
*/
if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
&BTRFS_I(inode)->runtime_flags))
filemap_flush(inode->i_mapping);
return 0;
}
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
{
int ret;
atomic_inc(&BTRFS_I(inode)->sync_writers);
ret = btrfs_fdatawrite_range(inode, start, end);
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
atomic_dec(&BTRFS_I(inode)->sync_writers);
return ret;
}
/*
* fsync call for both files and directories. This logs the inode into
* the tree log instead of forcing full commits whenever possible.
*
* It needs to call filemap_fdatawait so that all ordered extent updates are
* in the metadata btree are up to date for copying to the log.
*
* It drops the inode mutex before doing the tree log commit. This is an
* important optimization for directories because holding the mutex prevents
* new operations on the dir while we write to disk.
*/
int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_trans_handle *trans;
struct btrfs_log_ctx ctx;
int ret = 0;
bool full_sync = 0;
Btrfs: add initial tracepoint support for btrfs Tracepoints can provide insight into why btrfs hits bugs and be greatly helpful for debugging, e.g dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0 dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0 btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0) btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0) btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8 flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0) flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0) flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0) btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0) Here is what I have added: 1) ordere_extent: btrfs_ordered_extent_add btrfs_ordered_extent_remove btrfs_ordered_extent_start btrfs_ordered_extent_put These provide critical information to understand how ordered_extents are updated. 2) extent_map: btrfs_get_extent extent_map is used in both read and write cases, and it is useful for tracking how btrfs specific IO is running. 3) writepage: __extent_writepage btrfs_writepage_end_io_hook Pages are cirtical resourses and produce a lot of corner cases during writeback, so it is valuable to know how page is written to disk. 4) inode: btrfs_inode_new btrfs_inode_request btrfs_inode_evict These can show where and when a inode is created, when a inode is evicted. 5) sync: btrfs_sync_file btrfs_sync_fs These show sync arguments. 6) transaction: btrfs_transaction_commit In transaction based filesystem, it will be useful to know the generation and who does commit. 7) back reference and cow: btrfs_delayed_tree_ref btrfs_delayed_data_ref btrfs_delayed_ref_head btrfs_cow_block Btrfs natively supports back references, these tracepoints are helpful on understanding btrfs's COW mechanism. 8) chunk: btrfs_chunk_alloc btrfs_chunk_free Chunk is a link between physical offset and logical offset, and stands for space infomation in btrfs, and these are helpful on tracing space things. 9) reserved_extent: btrfs_reserved_extent_alloc btrfs_reserved_extent_free These can show how btrfs uses its space. Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-03-24 11:18:59 +00:00
trace_btrfs_sync_file(file, datasync);
/*
* We write the dirty pages in the range and wait until they complete
* out of the ->i_mutex. If so, we can flush the dirty pages by
* multi-task, and make the performance up. See
* btrfs_wait_ordered_range for an explanation of the ASYNC check.
*/
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
ret = start_ordered_ops(inode, start, end);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
atomic_inc(&root->log_batch);
full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
/*
* We might have have had more pages made dirty after calling
* start_ordered_ops and before acquiring the inode's i_mutex.
*/
if (full_sync) {
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
/*
* For a full sync, we need to make sure any ordered operations
* start and finish before we start logging the inode, so that
* all extents are persisted and the respective file extent
* items are in the fs/subvol btree.
*/
ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
Btrfs: fix fsync race leading to invalid data after log replay When the fsync callback (btrfs_sync_file) starts, it first waits for the writeback of any dirty pages to start and finish without holding the inode's mutex (to reduce contention). After this it acquires the inode's mutex and repeats that process via btrfs_wait_ordered_range only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag is set on the inode). This is not safe for a non full sync - we need to start and wait for writeback to finish for any pages that might have been made dirty before acquiring the inode's mutex and after that first step mentioned before. Why this is needed is explained by the following comment added to btrfs_sync_file: "Right before acquiring the inode's mutex, we might have new writes dirtying pages, which won't immediately start the respective ordered operations - that is done through the fill_delalloc callbacks invoked from the writepage and writepages address space operations. So make sure we start all ordered operations before starting to log our inode. Not doing this means that while logging the inode, writeback could start and invoke writepage/writepages, which would call the fill_delalloc callbacks (cow_file_range, submit_compressed_extents). These callbacks add first an extent map to the modified list of extents and then create the respective ordered operation, which means in tree-log.c:btrfs_log_inode() we might capture all existing ordered operations (with btrfs_get_logged_extents()) before the fill_delalloc callback adds its ordered operation, and by the time we visit the modified list of extent maps (with btrfs_log_changed_extents()), we see and process the extent map they created. We then use the extent map to construct a file extent item for logging without waiting for the respective ordered operation to finish - this file extent item points to a disk location that might not have yet been written to, containing random data - so after a crash a log replay will make our inode have file extent items that point to disk locations containing invalid data, as we returned success to userspace without waiting for the respective ordered operation to finish, because it wasn't captured by btrfs_get_logged_extents()." Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-02 10:09:58 +00:00
} else {
/*
* Start any new ordered operations before starting to log the
* inode. We will wait for them to finish in btrfs_sync_log().
*
* Right before acquiring the inode's mutex, we might have new
* writes dirtying pages, which won't immediately start the
* respective ordered operations - that is done through the
* fill_delalloc callbacks invoked from the writepage and
* writepages address space operations. So make sure we start
* all ordered operations before starting to log our inode. Not
* doing this means that while logging the inode, writeback
* could start and invoke writepage/writepages, which would call
* the fill_delalloc callbacks (cow_file_range,
* submit_compressed_extents). These callbacks add first an
* extent map to the modified list of extents and then create
* the respective ordered operation, which means in
* tree-log.c:btrfs_log_inode() we might capture all existing
* ordered operations (with btrfs_get_logged_extents()) before
* the fill_delalloc callback adds its ordered operation, and by
* the time we visit the modified list of extent maps (with
* btrfs_log_changed_extents()), we see and process the extent
* map they created. We then use the extent map to construct a
* file extent item for logging without waiting for the
* respective ordered operation to finish - this file extent
* item points to a disk location that might not have yet been
* written to, containing random data - so after a crash a log
* replay will make our inode have file extent items that point
* to disk locations containing invalid data, as we returned
* success to userspace without waiting for the respective
* ordered operation to finish, because it wasn't captured by
* btrfs_get_logged_extents().
*/
ret = start_ordered_ops(inode, start, end);
}
if (ret) {
mutex_unlock(&inode->i_mutex);
goto out;
}
atomic_inc(&root->log_batch);
/*
* check the transaction that last modified this inode
* and see if its already been committed
*/
if (!BTRFS_I(inode)->last_trans) {
mutex_unlock(&inode->i_mutex);
goto out;
}
/*
* if the last transaction that changed this file was before
* the current transaction, we can bail out now without any
* syncing
*/
Btrfs: kill trans_mutex We use trans_mutex for lots of things, here's a basic list 1) To serialize trans_handles joining the currently running transaction 2) To make sure that no new trans handles are started while we are committing 3) To protect the dead_roots list and the transaction lists Really the serializing trans_handles joining is not too hard, and can really get bogged down in acquiring a reference to the transaction. So replace the trans_mutex with a trans_lock spinlock and use it to do the following 1) Protect fs_info->running_transaction. All trans handles have to do is check this, and then take a reference of the transaction and keep on going. 2) Protect the fs_info->trans_list. This doesn't get used too much, basically it just holds the current transactions, which will usually just be the currently committing transaction and the currently running transaction at most. 3) Protect the dead roots list. This is only ever processed by splicing the list so this is relatively simple. 4) Protect the fs_info->reloc_ctl stuff. This is very lightweight and was using the trans_mutex before, so this is a pretty straightforward change. 5) Protect fs_info->no_trans_join. Because we don't hold the trans_lock over the entirety of the commit we need to have a way to block new people from creating a new transaction while we're doing our work. So we set no_trans_join and in join_transaction we test to see if that is set, and if it is we do a wait_on_commit. 6) Make the transaction use count atomic so we don't need to take locks to modify it when we're dropping references. 7) Add a commit_lock to the transaction to make sure multiple people trying to commit the same transaction don't race and commit at the same time. 8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl trans. I have tested this with xfstests, but obviously it is a pretty hairy change so lots of testing is greatly appreciated. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
2011-04-11 21:25:13 +00:00
smp_mb();
if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
BTRFS_I(inode)->last_trans <=
root->fs_info->last_trans_committed) {
BTRFS_I(inode)->last_trans = 0;
Btrfs: turbo charge fsync At least for the vm workload. Currently on fsync we will 1) Truncate all items in the log tree for the given inode if they exist and 2) Copy all items for a given inode into the log The problem with this is that for things like VMs you can have lots of extents from the fragmented writing behavior, and worst yet you may have only modified a few extents, not the entire thing. This patch fixes this problem by tracking which transid modified our extent, and then when we do the tree logging we find all of the extents we've modified in our current transaction, sort them and commit them. We also only truncate up to the xattrs of the inode and copy that stuff in normally, and then just drop any extents in the range we have that exist in the log already. Here are some numbers of a 50 meg fio job that does random writes and fsync()s after every write Original Patched SATA drive 82KB/s 140KB/s Fusion drive 431KB/s 2532KB/s So around 2-6 times faster depending on your hardware. There are a few corner cases, for example if you truncate at all we have to do it the old way since there is no way to be sure what is in the log is ok. This probably could be done smarter, but if you write-fsync-truncate-write-fsync you deserve what you get. All this work is in RAM of course so if your inode gets evicted from cache and you read it in and fsync it we'll do it the slow way if we are still in the same transaction that we last modified the inode in. The biggest cool part of this is that it requires no changes to the recovery code, so if you fsync with this patch and crash and load an old kernel, it will run the recovery and be a-ok. I have tested this pretty thoroughly with an fsync tester and everything comes back fine, as well as xfstests. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-08-17 17:14:17 +00:00
/*
* We'v had everything committed since the last time we were
* modified so clear this flag in case it was set for whatever
* reason, it's no longer relevant.
*/
clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
mutex_unlock(&inode->i_mutex);
goto out;
}
/*
* ok we haven't committed the transaction yet, lets do a commit
*/
if (file->private_data)
btrfs_ioctl_trans_end(file);
/*
* We use start here because we will need to wait on the IO to complete
* in btrfs_sync_log, which could require joining a transaction (for
* example checking cross references in the nocow path). If we use join
* here we could get into a situation where we're waiting on IO to
* happen that is blocked on a transaction trying to commit. With start
* we inc the extwriter counter, so we wait for all extwriters to exit
* before we start blocking join'ers. This comment is to keep somebody
* from thinking they are super smart and changing this to
* btrfs_join_transaction *cough*Josef*cough*.
*/
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
mutex_unlock(&inode->i_mutex);
goto out;
}
trans->sync = true;
btrfs_init_log_ctx(&ctx);
ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
if (ret < 0) {
/* Fallthrough and commit/free transaction. */
ret = 1;
}
/* we've logged all the items and now have a consistent
* version of the file in the log. It is possible that
* someone will come in and modify the file, but that's
* fine because the log is consistent on disk, and we
* have references to all of the file's extents
*
* It is possible that someone will come in and log the
* file again, but that will end up using the synchronization
* inside btrfs_sync_log to keep things safe.
*/
mutex_unlock(&inode->i_mutex);
Btrfs: fix data corruption after fast fsync and writeback error When we do a fast fsync, we start all ordered operations and then while they're running in parallel we visit the list of modified extent maps and construct their matching file extent items and write them to the log btree. After that, in btrfs_sync_log() we wait for all the ordered operations to finish (via btrfs_wait_logged_extents). The problem with this is that we were completely ignoring errors that can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM or -EIO errors for example. When such error happens, it means we have parts of the on disk extent that weren't written to, and so we end up logging file extent items that point to these extents that contain garbage/random data - so after a crash/reboot plus log replay, we get our inode's metadata pointing to those extents. This worked in contrast with the full (non-fast) fsync path, where we start all ordered operations, wait for them to finish and then write to the log btree. In this path, after each ordered operation completes we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return -EIO if so (via btrfs_wait_ordered_range). So if an error happens with any ordered operation, just return a -EIO error to userspace, so that it knows that not all of its previous writes were durably persisted and the application can take proper action (like redo the writes for e.g.) - and definitely not leave any file extent items in the log refer to non fully written extents. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-05 14:14:39 +00:00
/*
* If any of the ordered extents had an error, just return it to user
* space, so that the application knows some writes didn't succeed and
* can take proper action (retry for e.g.). Blindly committing the
* transaction in this case, would fool userspace that everything was
* successful. And we also want to make sure our log doesn't contain
* file extent items pointing to extents that weren't fully written to -
* just like in the non fast fsync path, where we check for the ordered
* operation's error flag before writing to the log tree and return -EIO
* if any of them had this flag set (btrfs_wait_ordered_range) -
* therefore we need to check for errors in the ordered operations,
* which are indicated by ctx.io_err.
*/
if (ctx.io_err) {
btrfs_end_transaction(trans, root);
ret = ctx.io_err;
goto out;
}
if (ret != BTRFS_NO_LOG_SYNC) {
if (!ret) {
ret = btrfs_sync_log(trans, root, &ctx);
if (!ret) {
ret = btrfs_end_transaction(trans, root);
goto out;
}
}
if (!full_sync) {
ret = btrfs_wait_ordered_range(inode, start,
end - start + 1);
if (ret) {
btrfs_end_transaction(trans, root);
goto out;
}
}
ret = btrfs_commit_transaction(trans, root);
} else {
ret = btrfs_end_transaction(trans, root);
}
out:
return ret > 0 ? -EIO : ret;
}
static const struct vm_operations_struct btrfs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = btrfs_page_mkwrite,
.remap_pages = generic_file_remap_pages,
};
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct address_space *mapping = filp->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(filp);
vma->vm_ops = &btrfs_file_vm_ops;
return 0;
}
static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
int slot, u64 start, u64 end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != btrfs_ino(inode) ||
key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
return 0;
if (btrfs_file_extent_disk_bytenr(leaf, fi))
return 0;
if (key.offset == end)
return 1;
if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
return 1;
return 0;
}
static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
struct btrfs_path *path, u64 offset, u64 end)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct extent_map *hole_em;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct btrfs_key key;
int ret;
if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
goto out;
key.objectid = btrfs_ino(inode);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = offset;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
return ret;
BUG_ON(!ret);
leaf = path->nodes[0];
if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
u64 num_bytes;
path->slots[0]--;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
end - offset;
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
u64 num_bytes;
key.offset = offset;
btrfs_set_item_key_safe(root, path, &key);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
offset;
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
btrfs_release_path(path);
ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
0, 0, end - offset, 0, end - offset,
0, 0, 0);
if (ret)
return ret;
out:
btrfs_release_path(path);
hole_em = alloc_extent_map();
if (!hole_em) {
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
} else {
hole_em->start = offset;
hole_em->len = end - offset;
hole_em->ram_bytes = hole_em->len;
hole_em->orig_start = offset;
hole_em->block_start = EXTENT_MAP_HOLE;
hole_em->block_len = 0;
hole_em->orig_block_len = 0;
hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
hole_em->compress_type = BTRFS_COMPRESS_NONE;
hole_em->generation = trans->transid;
do {
btrfs_drop_extent_cache(inode, offset, end - 1, 0);
write_lock(&em_tree->lock);
2013-04-05 20:51:15 +00:00
ret = add_extent_mapping(em_tree, hole_em, 1);
write_unlock(&em_tree->lock);
} while (ret == -EEXIST);
free_extent_map(hole_em);
if (ret)
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
}
return 0;
}
/*
* Find a hole extent on given inode and change start/len to the end of hole
* extent.(hole/vacuum extent whose em->start <= start &&
* em->start + em->len > start)
* When a hole extent is found, return 1 and modify start/len.
*/
static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
{
struct extent_map *em;
int ret = 0;
em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
if (IS_ERR_OR_NULL(em)) {
if (!em)
ret = -ENOMEM;
else
ret = PTR_ERR(em);
return ret;
}
/* Hole or vacuum extent(only exists in no-hole mode) */
if (em->block_start == EXTENT_MAP_HOLE) {
ret = 1;
*len = em->start + em->len > *start + *len ?
0 : *start + *len - em->start - em->len;
*start = em->start + em->len;
}
free_extent_map(em);
return ret;
}
static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_state *cached_state = NULL;
struct btrfs_path *path;
struct btrfs_block_rsv *rsv;
struct btrfs_trans_handle *trans;
u64 lockstart;
u64 lockend;
u64 tail_start;
u64 tail_len;
u64 orig_start = offset;
u64 cur_offset;
u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
u64 drop_end;
int ret = 0;
int err = 0;
int rsv_count;
bool same_page;
bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
u64 ino_size;
ret = btrfs_wait_ordered_range(inode, offset, len);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
ret = find_first_non_hole(inode, &offset, &len);
if (ret < 0)
goto out_only_mutex;
if (ret && !len) {
/* Already in a large hole */
ret = 0;
goto out_only_mutex;
}
btrfs: Use right extent length when inserting overlap extent map. When current btrfs finds that a new extent map is going to be insereted but failed with -EEXIST, it will try again to insert the extent map but with the length of sectorsize. This is OK if we don't enable 'no-holes' feature since all extent space is continuous, we will not go into the not found->insert routine. But if we enable 'no-holes' feature, it will make things out of control. e.g. in 4K sectorsize, we pass the following args to btrfs_get_extent(): btrfs_get_extent() args: start: 27874 len 4100 28672 27874 28672 27874+4100 32768 |-----------------------| |---------hole--------------------|---------data----------| 1) not found and insert Since no extent map containing the range, btrfs_get_extent() will go into the not_found and insert routine, which will try to insert the extent map (27874, 27847 + 4100). 2) first overlap But it overlaps with (28672, 32768) extent, so -EEXIST will be returned by add_extent_mapping(). 3) retry but still overlap After catching the -EEXIST, then btrfs_get_extent() will try insert it again but with 4K length, which still overlaps, so -EEXIST will be returned. This makes the following patch fail to punch hole. d77815461f047e561f77a07754ae923ade597d4e btrfs: Avoid trucating page or punching hole in a already existed hole. This patch will use the right length, which is the (exsisting->start - em->start) to insert, making the above patch works in 'no-holes' mode. Also, some small code style problems in above patch is fixed too. Reported-by: Filipe David Manana <fdmanana@gmail.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Filipe David Manana <fdmanana@suse.com> Tested-by: Filipe David Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-08-08 05:06:20 +00:00
lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
lockend = round_down(offset + len,
BTRFS_I(inode)->root->sectorsize) - 1;
same_page = ((offset >> PAGE_CACHE_SHIFT) ==
((offset + len - 1) >> PAGE_CACHE_SHIFT));
/*
* We needn't truncate any page which is beyond the end of the file
* because we are sure there is no data there.
*/
/*
* Only do this if we are in the same page and we aren't doing the
* entire page.
*/
if (same_page && len < PAGE_CACHE_SIZE) {
2014-02-15 15:55:58 +00:00
if (offset < ino_size)
ret = btrfs_truncate_page(inode, offset, len, 0);
goto out_only_mutex;
}
/* zero back part of the first page */
2014-02-15 15:55:58 +00:00
if (offset < ino_size) {
ret = btrfs_truncate_page(inode, offset, 0, 0);
if (ret) {
mutex_unlock(&inode->i_mutex);
return ret;
}
}
/* Check the aligned pages after the first unaligned page,
* if offset != orig_start, which means the first unaligned page
* including serveral following pages are already in holes,
* the extra check can be skipped */
if (offset == orig_start) {
/* after truncate page, check hole again */
len = offset + len - lockstart;
offset = lockstart;
ret = find_first_non_hole(inode, &offset, &len);
if (ret < 0)
goto out_only_mutex;
if (ret && !len) {
ret = 0;
goto out_only_mutex;
}
lockstart = offset;
}
/* Check the tail unaligned part is in a hole */
tail_start = lockend + 1;
tail_len = offset + len - tail_start;
if (tail_len) {
ret = find_first_non_hole(inode, &tail_start, &tail_len);
if (unlikely(ret < 0))
goto out_only_mutex;
if (!ret) {
/* zero the front end of the last page */
if (tail_start + tail_len < ino_size) {
ret = btrfs_truncate_page(inode,
tail_start + tail_len, 0, 1);
if (ret)
goto out_only_mutex;
btrfs: Use right extent length when inserting overlap extent map. When current btrfs finds that a new extent map is going to be insereted but failed with -EEXIST, it will try again to insert the extent map but with the length of sectorsize. This is OK if we don't enable 'no-holes' feature since all extent space is continuous, we will not go into the not found->insert routine. But if we enable 'no-holes' feature, it will make things out of control. e.g. in 4K sectorsize, we pass the following args to btrfs_get_extent(): btrfs_get_extent() args: start: 27874 len 4100 28672 27874 28672 27874+4100 32768 |-----------------------| |---------hole--------------------|---------data----------| 1) not found and insert Since no extent map containing the range, btrfs_get_extent() will go into the not_found and insert routine, which will try to insert the extent map (27874, 27847 + 4100). 2) first overlap But it overlaps with (28672, 32768) extent, so -EEXIST will be returned by add_extent_mapping(). 3) retry but still overlap After catching the -EEXIST, then btrfs_get_extent() will try insert it again but with 4K length, which still overlaps, so -EEXIST will be returned. This makes the following patch fail to punch hole. d77815461f047e561f77a07754ae923ade597d4e btrfs: Avoid trucating page or punching hole in a already existed hole. This patch will use the right length, which is the (exsisting->start - em->start) to insert, making the above patch works in 'no-holes' mode. Also, some small code style problems in above patch is fixed too. Reported-by: Filipe David Manana <fdmanana@gmail.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Filipe David Manana <fdmanana@suse.com> Tested-by: Filipe David Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-08-08 05:06:20 +00:00
}
}
}
if (lockend < lockstart) {
mutex_unlock(&inode->i_mutex);
return 0;
}
while (1) {
struct btrfs_ordered_extent *ordered;
truncate_pagecache_range(inode, lockstart, lockend);
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
0, &cached_state);
ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
/*
* We need to make sure we have no ordered extents in this range
* and nobody raced in and read a page in this range, if we did
* we need to try again.
*/
if ((!ordered ||
(ordered->file_offset + ordered->len <= lockstart ||
ordered->file_offset > lockend)) &&
!btrfs_page_exists_in_range(inode, lockstart, lockend)) {
if (ordered)
btrfs_put_ordered_extent(ordered);
break;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
lockend, &cached_state, GFP_NOFS);
ret = btrfs_wait_ordered_range(inode, lockstart,
lockend - lockstart + 1);
if (ret) {
mutex_unlock(&inode->i_mutex);
return ret;
}
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
if (!rsv) {
ret = -ENOMEM;
goto out_free;
}
rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
rsv->failfast = 1;
/*
* 1 - update the inode
* 1 - removing the extents in the range
* 1 - adding the hole extent if no_holes isn't set
*/
rsv_count = no_holes ? 2 : 3;
trans = btrfs_start_transaction(root, rsv_count);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
goto out_free;
}
ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
min_size);
BUG_ON(ret);
trans->block_rsv = rsv;
cur_offset = lockstart;
len = lockend - cur_offset;
while (cur_offset < lockend) {
ret = __btrfs_drop_extents(trans, root, inode, path,
cur_offset, lockend + 1,
Btrfs: faster file extent item replace operations When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-01-07 11:42:27 +00:00
&drop_end, 1, 0, 0, NULL);
if (ret != -ENOSPC)
break;
trans->block_rsv = &root->fs_info->trans_block_rsv;
2014-02-15 15:55:58 +00:00
if (cur_offset < ino_size) {
ret = fill_holes(trans, inode, path, cur_offset,
drop_end);
if (ret) {
err = ret;
break;
}
}
cur_offset = drop_end;
ret = btrfs_update_inode(trans, root, inode);
if (ret) {
err = ret;
break;
}
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root);
trans = btrfs_start_transaction(root, rsv_count);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
break;
}
ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
rsv, min_size);
BUG_ON(ret); /* shouldn't happen */
trans->block_rsv = rsv;
ret = find_first_non_hole(inode, &cur_offset, &len);
if (unlikely(ret < 0))
break;
if (ret && !len) {
ret = 0;
break;
}
}
if (ret) {
err = ret;
goto out_trans;
}
trans->block_rsv = &root->fs_info->trans_block_rsv;
Btrfs: fix leaf corruption caused by ENOSPC while hole punching While running a stress test with multiple threads writing to the same btrfs file system, I ended up with a situation where a leaf was corrupted in that it had 2 file extent item keys that had the same exact key. I was able to detect this quickly thanks to the following patch which triggers an assertion as soon as a leaf is marked dirty if there are duplicated keys or out of order keys: Btrfs: check if items are ordered when a leaf is marked dirty (https://patchwork.kernel.org/patch/3955431/) Basically while running the test, I got the following in dmesg: [28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]() (...) [28877.415917] Call Trace: [28877.415922] [<ffffffff816f1189>] dump_stack+0x4e/0x68 [28877.415926] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0 [28877.415929] [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20 [28877.415944] [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs] [28877.415949] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [28877.415962] [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs] [28877.415972] [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs] [28877.415984] [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs] (...) [29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24 [29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778 (...) [29854.132637] item 23 key (3486 108 667648) itemoff 2694 itemsize 53 [29854.132638] extent data disk bytenr 14574411776 nr 286720 [29854.132639] extent data offset 0 nr 286720 ram 286720 [29854.132640] item 24 key (3486 108 954368) itemoff 2641 itemsize 53 [29854.132641] extent data disk bytenr 0 nr 0 [29854.132643] extent data offset 0 nr 0 ram 0 [29854.132644] item 25 key (3486 108 954368) itemoff 2588 itemsize 53 [29854.132645] extent data disk bytenr 8699670528 nr 77824 [29854.132646] extent data offset 0 nr 77824 ram 77824 [29854.132647] item 26 key (3486 108 1146880) itemoff 2535 itemsize 53 [29854.132648] extent data disk bytenr 8699670528 nr 77824 [29854.132649] extent data offset 0 nr 77824 ram 77824 (...) [29854.132707] kernel BUG at fs/btrfs/ctree.h:3901! (...) [29854.132771] Call Trace: [29854.132779] [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs] [29854.132791] [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs] [29854.132794] [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0 [29854.132797] [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10 [29854.132800] [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0 [29854.132810] [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs] [29854.132820] [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs] [29854.132830] [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs] (...) So this is caused by getting an -ENOSPC error while punching a file hole, more specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one or more file extent items due to lack of enough free space. When this happens, in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction block reservation object to root->fs_info->trans_block_rsv, end our transaction and start a new transaction basically - and, we keep increasing our current offset (cur_offset) as long as it's smaller than the end of the target range (lockend) - this makes use leave the loop with cur_offset == drop_end which in turn makes us call fill_holes() for inserting a file extent item that represents a 0 bytes range hole (and this insertion succeeds, as in the meanwhile more space became available). This 0 bytes file hole extent item is a problem because any subsequent caller of __btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a start file offset that is equal to the offset of the hole, will not remove this extent item due to the following conditional in the while loop of __btrfs_drop_extents: if (extent_end <= search_start) { path->slots[0]++; goto next_slot; } This later makes the call to setup_items_for_insert() (at the very end of __btrfs_drop_extents), insert a new file extent item with the same offset as the 0 bytes file hole extent item that follows it. Needless is to say that this causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook), where we perform leaf sanity checks or in subsequent operations that manipulate file extent items, as in the fallocate call as shown by the dmesg trace above. Without my other patch to perform the leaf sanity checks once a leaf is marked as dirty (if the integrity checker is enabled), it would have been much harder to debug this issue. This change might fix a few similar issues reported by users in the mailing list regarding assertion failures in btrfs_set_item_key_safe calls performed by __btrfs_drop_extents, such as the following report: http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938 Asking fill_holes() to create a 0 bytes wide file hole item also produced the first warning in the trace above, as we passed a range to btrfs_drop_extent_cache that has an end smaller (by -1) than its start. On 3.14 kernels this issue manifests itself through leaf corruption, as we get duplicated file extent item keys in a leaf when calling setup_items_for_insert(), but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(), instead we have callers of __btrfs_drop_extents(), namely the functions inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling btrfs_insert_empty_item() to insert the new file extent item, which would fail with error -EEXIST, instead of inserting a duplicated key - which is still a serious issue as it would make all similar file extent item replace operations keep failing if they target the same file range. Cc: stable@vger.kernel.org Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-04-29 12:18:40 +00:00
/*
* Don't insert file hole extent item if it's for a range beyond eof
* (because it's useless) or if it represents a 0 bytes range (when
* cur_offset == drop_end).
*/
if (cur_offset < ino_size && cur_offset < drop_end) {
2014-02-15 15:55:58 +00:00
ret = fill_holes(trans, inode, path, cur_offset, drop_end);
if (ret) {
err = ret;
goto out_trans;
}
}
out_trans:
if (!trans)
goto out_free;
inode_inc_iversion(inode);
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
trans->block_rsv = &root->fs_info->trans_block_rsv;
ret = btrfs_update_inode(trans, root, inode);
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty(root);
out_free:
btrfs_free_path(path);
btrfs_free_block_rsv(root, rsv);
out:
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state, GFP_NOFS);
out_only_mutex:
mutex_unlock(&inode->i_mutex);
if (ret && !err)
err = ret;
return err;
}
static long btrfs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
struct extent_state *cached_state = NULL;
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 cur_offset;
u64 last_byte;
u64 alloc_start;
u64 alloc_end;
u64 alloc_hint = 0;
u64 locked_end;
struct extent_map *em;
int blocksize = BTRFS_I(inode)->root->sectorsize;
int ret;
alloc_start = round_down(offset, blocksize);
alloc_end = round_up(offset + len, blocksize);
/* Make sure we aren't being give some crap mode */
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_PUNCH_HOLE)
return btrfs_punch_hole(inode, offset, len);
/*
* Make sure we have enough space before we do the
* allocation.
*/
ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
if (ret)
return ret;
if (root->fs_info->quota_enabled) {
ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
if (ret)
goto out_reserve_fail;
}
mutex_lock(&inode->i_mutex);
ret = inode_newsize_ok(inode, alloc_end);
if (ret)
goto out;
if (alloc_start > inode->i_size) {
ret = btrfs_cont_expand(inode, i_size_read(inode),
alloc_start);
if (ret)
goto out;
} else {
/*
* If we are fallocating from the end of the file onward we
* need to zero out the end of the page if i_size lands in the
* middle of a page.
*/
ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
if (ret)
goto out;
}
/*
* wait for ordered IO before we have any locks. We'll loop again
* below with the locks held.
*/
ret = btrfs_wait_ordered_range(inode, alloc_start,
alloc_end - alloc_start);
if (ret)
goto out;
locked_end = alloc_end - 1;
while (1) {
struct btrfs_ordered_extent *ordered;
/* the extent lock is ordered inside the running
* transaction
*/
lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
locked_end, 0, &cached_state);
ordered = btrfs_lookup_first_ordered_extent(inode,
alloc_end - 1);
if (ordered &&
ordered->file_offset + ordered->len > alloc_start &&
ordered->file_offset < alloc_end) {
btrfs_put_ordered_extent(ordered);
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
alloc_start, locked_end,
&cached_state, GFP_NOFS);
/*
* we can't wait on the range with the transaction
* running or with the extent lock held
*/
ret = btrfs_wait_ordered_range(inode, alloc_start,
alloc_end - alloc_start);
if (ret)
goto out;
} else {
if (ordered)
btrfs_put_ordered_extent(ordered);
break;
}
}
cur_offset = alloc_start;
while (1) {
u64 actual_end;
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
alloc_end - cur_offset, 0);
if (IS_ERR_OR_NULL(em)) {
if (!em)
ret = -ENOMEM;
else
ret = PTR_ERR(em);
break;
}
last_byte = min(extent_map_end(em), alloc_end);
actual_end = min_t(u64, extent_map_end(em), offset + len);
last_byte = ALIGN(last_byte, blocksize);
if (em->block_start == EXTENT_MAP_HOLE ||
(cur_offset >= inode->i_size &&
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
last_byte - cur_offset,
1 << inode->i_blkbits,
offset + len,
&alloc_hint);
if (ret < 0) {
free_extent_map(em);
break;
}
} else if (actual_end > inode->i_size &&
!(mode & FALLOC_FL_KEEP_SIZE)) {
/*
* We didn't need to allocate any more space, but we
* still extended the size of the file so we need to
* update i_size.
*/
inode->i_ctime = CURRENT_TIME;
i_size_write(inode, actual_end);
btrfs_ordered_update_i_size(inode, actual_end, NULL);
}
free_extent_map(em);
cur_offset = last_byte;
if (cur_offset >= alloc_end) {
ret = 0;
break;
}
}
unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
&cached_state, GFP_NOFS);
out:
mutex_unlock(&inode->i_mutex);
if (root->fs_info->quota_enabled)
btrfs_qgroup_free(root, alloc_end - alloc_start);
out_reserve_fail:
/* Let go of our reservation. */
btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
return ret;
}
static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_map *em = NULL;
struct extent_state *cached_state = NULL;
Btrfs: fix up bounds checking in lseek An user reported this, it is because that lseek's SEEK_SET/SEEK_CUR/SEEK_END allow a negative value for @offset, but btrfs's SEEK_DATA/SEEK_HOLE don't prepare for that and convert the negative @offset into unsigned type, so we get (end < start) warning. [ 1269.835374] ------------[ cut here ]------------ [ 1269.836809] WARNING: CPU: 0 PID: 1241 at fs/btrfs/extent_io.c:430 insert_state+0x11d/0x140() [ 1269.838816] BTRFS: end < start 4094 18446744073709551615 [ 1269.840334] CPU: 0 PID: 1241 Comm: a.out Tainted: G W 3.16.0+ #306 [ 1269.858229] Call Trace: [ 1269.858612] [<ffffffff81801a69>] dump_stack+0x4e/0x68 [ 1269.858952] [<ffffffff8107894c>] warn_slowpath_common+0x8c/0xc0 [ 1269.859416] [<ffffffff81078a36>] warn_slowpath_fmt+0x46/0x50 [ 1269.859929] [<ffffffff813b0fbd>] insert_state+0x11d/0x140 [ 1269.860409] [<ffffffff813b1396>] __set_extent_bit+0x3b6/0x4e0 [ 1269.860805] [<ffffffff813b21c7>] lock_extent_bits+0x87/0x200 [ 1269.861697] [<ffffffff813a5b28>] btrfs_file_llseek+0x148/0x2a0 [ 1269.862168] [<ffffffff811f201e>] SyS_lseek+0xae/0xc0 [ 1269.862620] [<ffffffff8180b212>] system_call_fastpath+0x16/0x1b [ 1269.862970] ---[ end trace 4d33ea885832054b ]--- This assumes that btrfs starts finding DATA/HOLE from the beginning of file if the assigned @offset is negative. Also we add alignment for lock_extent_bits 's range. Reported-by: Toralf Förster <toralf.foerster@gmx.de> Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-16 09:49:30 +00:00
u64 lockstart;
u64 lockend;
u64 start;
u64 len;
int ret = 0;
Btrfs: fix up bounds checking in lseek An user reported this, it is because that lseek's SEEK_SET/SEEK_CUR/SEEK_END allow a negative value for @offset, but btrfs's SEEK_DATA/SEEK_HOLE don't prepare for that and convert the negative @offset into unsigned type, so we get (end < start) warning. [ 1269.835374] ------------[ cut here ]------------ [ 1269.836809] WARNING: CPU: 0 PID: 1241 at fs/btrfs/extent_io.c:430 insert_state+0x11d/0x140() [ 1269.838816] BTRFS: end < start 4094 18446744073709551615 [ 1269.840334] CPU: 0 PID: 1241 Comm: a.out Tainted: G W 3.16.0+ #306 [ 1269.858229] Call Trace: [ 1269.858612] [<ffffffff81801a69>] dump_stack+0x4e/0x68 [ 1269.858952] [<ffffffff8107894c>] warn_slowpath_common+0x8c/0xc0 [ 1269.859416] [<ffffffff81078a36>] warn_slowpath_fmt+0x46/0x50 [ 1269.859929] [<ffffffff813b0fbd>] insert_state+0x11d/0x140 [ 1269.860409] [<ffffffff813b1396>] __set_extent_bit+0x3b6/0x4e0 [ 1269.860805] [<ffffffff813b21c7>] lock_extent_bits+0x87/0x200 [ 1269.861697] [<ffffffff813a5b28>] btrfs_file_llseek+0x148/0x2a0 [ 1269.862168] [<ffffffff811f201e>] SyS_lseek+0xae/0xc0 [ 1269.862620] [<ffffffff8180b212>] system_call_fastpath+0x16/0x1b [ 1269.862970] ---[ end trace 4d33ea885832054b ]--- This assumes that btrfs starts finding DATA/HOLE from the beginning of file if the assigned @offset is negative. Also we add alignment for lock_extent_bits 's range. Reported-by: Toralf Förster <toralf.foerster@gmx.de> Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-16 09:49:30 +00:00
if (inode->i_size == 0)
return -ENXIO;
/*
* *offset can be negative, in this case we start finding DATA/HOLE from
* the very start of the file.
*/
start = max_t(loff_t, 0, *offset);
lockstart = round_down(start, root->sectorsize);
lockend = round_up(i_size_read(inode), root->sectorsize);
if (lockend <= lockstart)
lockend = lockstart + root->sectorsize;
lockend--;
len = lockend - lockstart + 1;
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
&cached_state);
while (start < inode->i_size) {
em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
em = NULL;
break;
}
if (whence == SEEK_HOLE &&
(em->block_start == EXTENT_MAP_HOLE ||
test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
break;
else if (whence == SEEK_DATA &&
(em->block_start != EXTENT_MAP_HOLE &&
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
break;
start = em->start + em->len;
free_extent_map(em);
em = NULL;
cond_resched();
}
free_extent_map(em);
if (!ret) {
if (whence == SEEK_DATA && start >= inode->i_size)
ret = -ENXIO;
else
*offset = min_t(loff_t, start, inode->i_size);
}
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
&cached_state, GFP_NOFS);
return ret;
}
static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
int ret;
mutex_lock(&inode->i_mutex);
switch (whence) {
case SEEK_END:
case SEEK_CUR:
offset = generic_file_llseek(file, offset, whence);
goto out;
case SEEK_DATA:
case SEEK_HOLE:
if (offset >= i_size_read(inode)) {
mutex_unlock(&inode->i_mutex);
return -ENXIO;
}
ret = find_desired_extent(inode, &offset, whence);
if (ret) {
mutex_unlock(&inode->i_mutex);
return ret;
}
}
offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
out:
mutex_unlock(&inode->i_mutex);
return offset;
}
const struct file_operations btrfs_file_operations = {
.llseek = btrfs_file_llseek,
.read = new_sync_read,
.write = new_sync_write,
.read_iter = generic_file_read_iter,
.splice_read = generic_file_splice_read,
.write_iter = btrfs_file_write_iter,
.mmap = btrfs_file_mmap,
.open = generic_file_open,
.release = btrfs_release_file,
.fsync = btrfs_sync_file,
.fallocate = btrfs_fallocate,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_ioctl,
#endif
};
void btrfs_auto_defrag_exit(void)
{
if (btrfs_inode_defrag_cachep)
kmem_cache_destroy(btrfs_inode_defrag_cachep);
}
int btrfs_auto_defrag_init(void)
{
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
sizeof(struct inode_defrag), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!btrfs_inode_defrag_cachep)
return -ENOMEM;
return 0;
}
int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
{
int ret;
/*
* So with compression we will find and lock a dirty page and clear the
* first one as dirty, setup an async extent, and immediately return
* with the entire range locked but with nobody actually marked with
* writeback. So we can't just filemap_write_and_wait_range() and
* expect it to work since it will just kick off a thread to do the
* actual work. So we need to call filemap_fdatawrite_range _again_
* since it will wait on the page lock, which won't be unlocked until
* after the pages have been marked as writeback and so we're good to go
* from there. We have to do this otherwise we'll miss the ordered
* extents and that results in badness. Please Josef, do not think you
* know better and pull this out at some point in the future, it is
* right and you are wrong.
*/
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags))
ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
return ret;
}