linux/net/bluetooth/hci_event.c

3880 lines
89 KiB
C
Raw Normal View History

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
/* Bluetooth HCI event handling. */
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/mgmt.h>
#include <net/bluetooth/a2mp.h>
#include <net/bluetooth/amp.h>
/* Handle HCI Event packets */
static void hci_cc_inquiry_cancel(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status) {
hci_dev_lock(hdev);
mgmt_stop_discovery_failed(hdev, status);
hci_dev_unlock(hdev);
return;
}
clear_bit(HCI_INQUIRY, &hdev->flags);
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
hci_dev_unlock(hdev);
hci_req_cmd_complete(hdev, HCI_OP_INQUIRY, status);
hci_conn_check_pending(hdev);
}
static void hci_cc_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
set_bit(HCI_PERIODIC_INQ, &hdev->dev_flags);
}
static void hci_cc_exit_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
clear_bit(HCI_PERIODIC_INQ, &hdev->dev_flags);
hci_conn_check_pending(hdev);
}
static void hci_cc_remote_name_req_cancel(struct hci_dev *hdev,
struct sk_buff *skb)
{
BT_DBG("%s", hdev->name);
}
static void hci_cc_role_discovery(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_role_discovery *rp = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
if (conn) {
if (rp->role)
conn->link_mode &= ~HCI_LM_MASTER;
else
conn->link_mode |= HCI_LM_MASTER;
}
hci_dev_unlock(hdev);
}
static void hci_cc_read_link_policy(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_link_policy *rp = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
if (conn)
conn->link_policy = __le16_to_cpu(rp->policy);
hci_dev_unlock(hdev);
}
static void hci_cc_write_link_policy(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_write_link_policy *rp = (void *) skb->data;
struct hci_conn *conn;
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY);
if (!sent)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle));
if (conn)
conn->link_policy = get_unaligned_le16(sent + 2);
hci_dev_unlock(hdev);
}
static void hci_cc_read_def_link_policy(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_def_link_policy *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hdev->link_policy = __le16_to_cpu(rp->policy);
}
static void hci_cc_write_def_link_policy(struct hci_dev *hdev,
struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY);
if (!sent)
return;
if (!status)
hdev->link_policy = get_unaligned_le16(sent);
}
static void hci_cc_reset(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
clear_bit(HCI_RESET, &hdev->flags);
/* Reset all non-persistent flags */
hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
hdev->discovery.state = DISCOVERY_STOPPED;
hdev->inq_tx_power = HCI_TX_POWER_INVALID;
hdev->adv_tx_power = HCI_TX_POWER_INVALID;
memset(hdev->adv_data, 0, sizeof(hdev->adv_data));
hdev->adv_data_len = 0;
}
static void hci_cc_write_local_name(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME);
if (!sent)
return;
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_set_local_name_complete(hdev, sent, status);
else if (!status)
memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH);
hci_dev_unlock(hdev);
}
static void hci_cc_read_local_name(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_local_name *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
if (test_bit(HCI_SETUP, &hdev->dev_flags))
memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH);
}
static void hci_cc_write_auth_enable(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE);
if (!sent)
return;
if (!status) {
__u8 param = *((__u8 *) sent);
if (param == AUTH_ENABLED)
set_bit(HCI_AUTH, &hdev->flags);
else
clear_bit(HCI_AUTH, &hdev->flags);
}
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_auth_enable_complete(hdev, status);
}
static void hci_cc_write_encrypt_mode(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE);
if (!sent)
return;
if (!status) {
__u8 param = *((__u8 *) sent);
if (param)
set_bit(HCI_ENCRYPT, &hdev->flags);
else
clear_bit(HCI_ENCRYPT, &hdev->flags);
}
}
static void hci_cc_write_scan_enable(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 param, status = *((__u8 *) skb->data);
int old_pscan, old_iscan;
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE);
if (!sent)
return;
param = *((__u8 *) sent);
hci_dev_lock(hdev);
if (status) {
mgmt_write_scan_failed(hdev, param, status);
hdev->discov_timeout = 0;
goto done;
}
old_pscan = test_and_clear_bit(HCI_PSCAN, &hdev->flags);
old_iscan = test_and_clear_bit(HCI_ISCAN, &hdev->flags);
if (param & SCAN_INQUIRY) {
set_bit(HCI_ISCAN, &hdev->flags);
if (!old_iscan)
mgmt_discoverable(hdev, 1);
if (hdev->discov_timeout > 0) {
int to = msecs_to_jiffies(hdev->discov_timeout * 1000);
queue_delayed_work(hdev->workqueue, &hdev->discov_off,
to);
}
} else if (old_iscan)
mgmt_discoverable(hdev, 0);
if (param & SCAN_PAGE) {
set_bit(HCI_PSCAN, &hdev->flags);
if (!old_pscan)
mgmt_connectable(hdev, 1);
} else if (old_pscan)
mgmt_connectable(hdev, 0);
done:
hci_dev_unlock(hdev);
}
static void hci_cc_read_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_class_of_dev *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
memcpy(hdev->dev_class, rp->dev_class, 3);
BT_DBG("%s class 0x%.2x%.2x%.2x", hdev->name,
hdev->dev_class[2], hdev->dev_class[1], hdev->dev_class[0]);
}
static void hci_cc_write_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV);
if (!sent)
return;
hci_dev_lock(hdev);
if (status == 0)
memcpy(hdev->dev_class, sent, 3);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_set_class_of_dev_complete(hdev, sent, status);
hci_dev_unlock(hdev);
}
static void hci_cc_read_voice_setting(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_voice_setting *rp = (void *) skb->data;
__u16 setting;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
setting = __le16_to_cpu(rp->voice_setting);
if (hdev->voice_setting == setting)
return;
hdev->voice_setting = setting;
BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting);
if (hdev->notify)
hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING);
}
static void hci_cc_write_voice_setting(struct hci_dev *hdev,
struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
__u16 setting;
void *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING);
if (!sent)
return;
setting = get_unaligned_le16(sent);
if (hdev->voice_setting == setting)
return;
hdev->voice_setting = setting;
BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting);
if (hdev->notify)
hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING);
}
static void hci_cc_write_ssp_mode(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
struct hci_cp_write_ssp_mode *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE);
if (!sent)
return;
if (!status) {
if (sent->mode)
hdev->host_features[0] |= LMP_HOST_SSP;
else
hdev->host_features[0] &= ~LMP_HOST_SSP;
}
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_ssp_enable_complete(hdev, sent->mode, status);
else if (!status) {
if (sent->mode)
set_bit(HCI_SSP_ENABLED, &hdev->dev_flags);
else
clear_bit(HCI_SSP_ENABLED, &hdev->dev_flags);
}
}
static void hci_cc_read_local_version(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_local_version *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hdev->hci_ver = rp->hci_ver;
hdev->hci_rev = __le16_to_cpu(rp->hci_rev);
hdev->lmp_ver = rp->lmp_ver;
hdev->manufacturer = __le16_to_cpu(rp->manufacturer);
hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver);
BT_DBG("%s manufacturer 0x%4.4x hci ver %d:%d", hdev->name,
hdev->manufacturer, hdev->hci_ver, hdev->hci_rev);
}
static void hci_cc_read_local_commands(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_commands *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
memcpy(hdev->commands, rp->commands, sizeof(hdev->commands));
}
static void hci_cc_read_local_features(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_features *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
memcpy(hdev->features, rp->features, 8);
/* Adjust default settings according to features
* supported by device. */
if (hdev->features[0] & LMP_3SLOT)
hdev->pkt_type |= (HCI_DM3 | HCI_DH3);
if (hdev->features[0] & LMP_5SLOT)
hdev->pkt_type |= (HCI_DM5 | HCI_DH5);
if (hdev->features[1] & LMP_HV2) {
hdev->pkt_type |= (HCI_HV2);
hdev->esco_type |= (ESCO_HV2);
}
if (hdev->features[1] & LMP_HV3) {
hdev->pkt_type |= (HCI_HV3);
hdev->esco_type |= (ESCO_HV3);
}
if (lmp_esco_capable(hdev))
hdev->esco_type |= (ESCO_EV3);
if (hdev->features[4] & LMP_EV4)
hdev->esco_type |= (ESCO_EV4);
if (hdev->features[4] & LMP_EV5)
hdev->esco_type |= (ESCO_EV5);
if (hdev->features[5] & LMP_EDR_ESCO_2M)
hdev->esco_type |= (ESCO_2EV3);
if (hdev->features[5] & LMP_EDR_ESCO_3M)
hdev->esco_type |= (ESCO_3EV3);
if (hdev->features[5] & LMP_EDR_3S_ESCO)
hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5);
BT_DBG("%s features 0x%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x", hdev->name,
hdev->features[0], hdev->features[1],
hdev->features[2], hdev->features[3],
hdev->features[4], hdev->features[5],
hdev->features[6], hdev->features[7]);
}
static void hci_cc_read_local_ext_features(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_ext_features *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
switch (rp->page) {
case 0:
memcpy(hdev->features, rp->features, 8);
break;
case 1:
memcpy(hdev->host_features, rp->features, 8);
break;
}
}
static void hci_cc_read_flow_control_mode(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_flow_control_mode *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
hdev->flow_ctl_mode = rp->mode;
}
static void hci_cc_read_buffer_size(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_buffer_size *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu);
hdev->sco_mtu = rp->sco_mtu;
hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt);
hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt);
if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) {
hdev->sco_mtu = 64;
hdev->sco_pkts = 8;
}
hdev->acl_cnt = hdev->acl_pkts;
hdev->sco_cnt = hdev->sco_pkts;
BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu,
hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts);
}
static void hci_cc_read_bd_addr(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_read_bd_addr *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
bacpy(&hdev->bdaddr, &rp->bdaddr);
}
static void hci_cc_read_page_scan_activity(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_page_scan_activity *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (test_bit(HCI_INIT, &hdev->flags) && !rp->status) {
hdev->page_scan_interval = __le16_to_cpu(rp->interval);
hdev->page_scan_window = __le16_to_cpu(rp->window);
}
}
static void hci_cc_write_page_scan_activity(struct hci_dev *hdev,
struct sk_buff *skb)
{
u8 status = *((u8 *) skb->data);
struct hci_cp_write_page_scan_activity *sent;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY);
if (!sent)
return;
hdev->page_scan_interval = __le16_to_cpu(sent->interval);
hdev->page_scan_window = __le16_to_cpu(sent->window);
}
static void hci_cc_read_page_scan_type(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_page_scan_type *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (test_bit(HCI_INIT, &hdev->flags) && !rp->status)
hdev->page_scan_type = rp->type;
}
static void hci_cc_write_page_scan_type(struct hci_dev *hdev,
struct sk_buff *skb)
{
u8 status = *((u8 *) skb->data);
u8 *type;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE);
if (type)
hdev->page_scan_type = *type;
}
static void hci_cc_read_data_block_size(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_data_block_size *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hdev->block_mtu = __le16_to_cpu(rp->max_acl_len);
hdev->block_len = __le16_to_cpu(rp->block_len);
hdev->num_blocks = __le16_to_cpu(rp->num_blocks);
hdev->block_cnt = hdev->num_blocks;
BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu,
hdev->block_cnt, hdev->block_len);
}
static void hci_cc_read_local_amp_info(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_amp_info *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
goto a2mp_rsp;
hdev->amp_status = rp->amp_status;
hdev->amp_total_bw = __le32_to_cpu(rp->total_bw);
hdev->amp_max_bw = __le32_to_cpu(rp->max_bw);
hdev->amp_min_latency = __le32_to_cpu(rp->min_latency);
hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu);
hdev->amp_type = rp->amp_type;
hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap);
hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size);
hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to);
hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to);
a2mp_rsp:
a2mp_send_getinfo_rsp(hdev);
}
static void hci_cc_read_local_amp_assoc(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_amp_assoc *rp = (void *) skb->data;
struct amp_assoc *assoc = &hdev->loc_assoc;
size_t rem_len, frag_len;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
goto a2mp_rsp;
frag_len = skb->len - sizeof(*rp);
rem_len = __le16_to_cpu(rp->rem_len);
if (rem_len > frag_len) {
BT_DBG("frag_len %zu rem_len %zu", frag_len, rem_len);
memcpy(assoc->data + assoc->offset, rp->frag, frag_len);
assoc->offset += frag_len;
/* Read other fragments */
amp_read_loc_assoc_frag(hdev, rp->phy_handle);
return;
}
memcpy(assoc->data + assoc->offset, rp->frag, rem_len);
assoc->len = assoc->offset + rem_len;
assoc->offset = 0;
a2mp_rsp:
/* Send A2MP Rsp when all fragments are received */
a2mp_send_getampassoc_rsp(hdev, rp->status);
a2mp_send_create_phy_link_req(hdev, rp->status);
}
static void hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_inq_rsp_tx_power *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
hdev->inq_tx_power = rp->tx_power;
}
static void hci_cc_pin_code_reply(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_pin_code_reply *rp = (void *) skb->data;
struct hci_cp_pin_code_reply *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status);
if (rp->status)
goto unlock;
cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY);
if (!cp)
goto unlock;
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
if (conn)
conn->pin_length = cp->pin_len;
unlock:
hci_dev_unlock(hdev);
}
static void hci_cc_pin_code_neg_reply(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_pin_code_neg_reply *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr,
rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_le_read_buffer_size(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_le_read_buffer_size *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (rp->status)
return;
hdev->le_mtu = __le16_to_cpu(rp->le_mtu);
hdev->le_pkts = rp->le_max_pkt;
hdev->le_cnt = hdev->le_pkts;
BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts);
}
static void hci_cc_le_read_local_features(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_le_read_local_features *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
memcpy(hdev->le_features, rp->features, 8);
}
static void hci_cc_le_read_adv_tx_power(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_le_read_adv_tx_power *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
hdev->adv_tx_power = rp->tx_power;
}
static void hci_cc_user_confirm_reply(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0,
rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_user_confirm_neg_reply(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr,
ACL_LINK, 0, rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_user_passkey_reply(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK,
0, rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_user_passkey_neg_reply(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_user_confirm_reply *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr,
ACL_LINK, 0, rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_read_local_oob_data_reply(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_read_local_oob_data *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
hci_dev_lock(hdev);
mgmt_read_local_oob_data_reply_complete(hdev, rp->hash,
rp->randomizer, rp->status);
hci_dev_unlock(hdev);
}
static void hci_cc_le_set_adv_enable(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 *sent, status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE);
if (!sent)
return;
hci_dev_lock(hdev);
if (!status) {
if (*sent)
set_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags);
else
clear_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags);
}
if (!test_bit(HCI_INIT, &hdev->flags)) {
struct hci_request req;
hci_req_init(&req, hdev);
hci_update_ad(&req);
hci_req_run(&req, NULL);
}
hci_dev_unlock(hdev);
}
static void hci_cc_le_set_scan_param(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status) {
hci_dev_lock(hdev);
mgmt_start_discovery_failed(hdev, status);
hci_dev_unlock(hdev);
return;
}
}
static void hci_cc_le_set_scan_enable(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_cp_le_set_scan_enable *cp;
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE);
if (!cp)
return;
switch (cp->enable) {
case LE_SCANNING_ENABLED:
if (status) {
hci_dev_lock(hdev);
mgmt_start_discovery_failed(hdev, status);
hci_dev_unlock(hdev);
return;
}
set_bit(HCI_LE_SCAN, &hdev->dev_flags);
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_FINDING);
hci_dev_unlock(hdev);
break;
case LE_SCANNING_DISABLED:
if (status) {
hci_dev_lock(hdev);
mgmt_stop_discovery_failed(hdev, status);
hci_dev_unlock(hdev);
return;
}
clear_bit(HCI_LE_SCAN, &hdev->dev_flags);
if (hdev->discovery.type == DISCOV_TYPE_INTERLEAVED &&
hdev->discovery.state == DISCOVERY_FINDING) {
mgmt_interleaved_discovery(hdev);
} else {
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
hci_dev_unlock(hdev);
}
break;
default:
BT_ERR("Used reserved LE_Scan_Enable param %d", cp->enable);
break;
}
}
static void hci_cc_le_read_white_list_size(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_le_read_white_list_size *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x size %u", hdev->name, rp->status, rp->size);
if (!rp->status)
hdev->le_white_list_size = rp->size;
}
static void hci_cc_le_read_supported_states(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_le_read_supported_states *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x", hdev->name, rp->status);
if (!rp->status)
memcpy(hdev->le_states, rp->le_states, 8);
}
static void hci_cc_write_le_host_supported(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_cp_write_le_host_supported *sent;
__u8 status = *((__u8 *) skb->data);
BT_DBG("%s status 0x%2.2x", hdev->name, status);
sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED);
if (!sent)
return;
if (!status) {
if (sent->le)
hdev->host_features[0] |= LMP_HOST_LE;
else
hdev->host_features[0] &= ~LMP_HOST_LE;
if (sent->simul)
hdev->host_features[0] |= LMP_HOST_LE_BREDR;
else
hdev->host_features[0] &= ~LMP_HOST_LE_BREDR;
}
if (test_bit(HCI_MGMT, &hdev->dev_flags) &&
!test_bit(HCI_INIT, &hdev->flags))
mgmt_le_enable_complete(hdev, sent->le, status);
}
static void hci_cc_write_remote_amp_assoc(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_rp_write_remote_amp_assoc *rp = (void *) skb->data;
BT_DBG("%s status 0x%2.2x phy_handle 0x%2.2x",
hdev->name, rp->status, rp->phy_handle);
if (rp->status)
return;
amp_write_rem_assoc_continue(hdev, rp->phy_handle);
}
static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status)
{
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status) {
hci_conn_check_pending(hdev);
hci_dev_lock(hdev);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_start_discovery_failed(hdev, status);
hci_dev_unlock(hdev);
return;
}
set_bit(HCI_INQUIRY, &hdev->flags);
hci_dev_lock(hdev);
hci_discovery_set_state(hdev, DISCOVERY_FINDING);
hci_dev_unlock(hdev);
}
static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_create_conn *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
BT_DBG("%s bdaddr %pMR hcon %p", hdev->name, &cp->bdaddr, conn);
if (status) {
if (conn && conn->state == BT_CONNECT) {
if (status != 0x0c || conn->attempt > 2) {
conn->state = BT_CLOSED;
hci_proto_connect_cfm(conn, status);
hci_conn_del(conn);
} else
conn->state = BT_CONNECT2;
}
} else {
if (!conn) {
conn = hci_conn_add(hdev, ACL_LINK, &cp->bdaddr);
if (conn) {
conn->out = true;
conn->link_mode |= HCI_LM_MASTER;
} else
BT_ERR("No memory for new connection");
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_add_sco *cp;
struct hci_conn *acl, *sco;
__u16 handle;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO);
if (!cp)
return;
handle = __le16_to_cpu(cp->handle);
BT_DBG("%s handle 0x%4.4x", hdev->name, handle);
hci_dev_lock(hdev);
acl = hci_conn_hash_lookup_handle(hdev, handle);
if (acl) {
sco = acl->link;
if (sco) {
sco->state = BT_CLOSED;
hci_proto_connect_cfm(sco, status);
hci_conn_del(sco);
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_auth_requested *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
if (conn->state == BT_CONFIG) {
hci_proto_connect_cfm(conn, status);
hci_conn_put(conn);
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_set_conn_encrypt *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
if (conn->state == BT_CONFIG) {
hci_proto_connect_cfm(conn, status);
hci_conn_put(conn);
}
}
hci_dev_unlock(hdev);
}
static int hci_outgoing_auth_needed(struct hci_dev *hdev,
struct hci_conn *conn)
{
if (conn->state != BT_CONFIG || !conn->out)
return 0;
if (conn->pending_sec_level == BT_SECURITY_SDP)
return 0;
/* Only request authentication for SSP connections or non-SSP
* devices with sec_level HIGH or if MITM protection is requested */
if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) &&
conn->pending_sec_level != BT_SECURITY_HIGH)
return 0;
return 1;
}
static int hci_resolve_name(struct hci_dev *hdev,
struct inquiry_entry *e)
{
struct hci_cp_remote_name_req cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &e->data.bdaddr);
cp.pscan_rep_mode = e->data.pscan_rep_mode;
cp.pscan_mode = e->data.pscan_mode;
cp.clock_offset = e->data.clock_offset;
return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
}
static bool hci_resolve_next_name(struct hci_dev *hdev)
{
struct discovery_state *discov = &hdev->discovery;
struct inquiry_entry *e;
if (list_empty(&discov->resolve))
return false;
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED);
if (!e)
return false;
if (hci_resolve_name(hdev, e) == 0) {
e->name_state = NAME_PENDING;
return true;
}
return false;
}
static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn,
bdaddr_t *bdaddr, u8 *name, u8 name_len)
{
struct discovery_state *discov = &hdev->discovery;
struct inquiry_entry *e;
if (conn && !test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
mgmt_device_connected(hdev, bdaddr, ACL_LINK, 0x00, 0, name,
name_len, conn->dev_class);
if (discov->state == DISCOVERY_STOPPED)
return;
if (discov->state == DISCOVERY_STOPPING)
goto discov_complete;
if (discov->state != DISCOVERY_RESOLVING)
return;
e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING);
/* If the device was not found in a list of found devices names of which
* are pending. there is no need to continue resolving a next name as it
* will be done upon receiving another Remote Name Request Complete
* Event */
if (!e)
return;
list_del(&e->list);
if (name) {
e->name_state = NAME_KNOWN;
mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00,
e->data.rssi, name, name_len);
} else {
e->name_state = NAME_NOT_KNOWN;
}
if (hci_resolve_next_name(hdev))
return;
discov_complete:
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
}
static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_remote_name_req *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
/* If successful wait for the name req complete event before
* checking for the need to do authentication */
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0);
if (!conn)
goto unlock;
if (!hci_outgoing_auth_needed(hdev, conn))
goto unlock;
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
struct hci_cp_auth_requested cp;
cp.handle = __cpu_to_le16(conn->handle);
hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_read_remote_features *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
if (conn->state == BT_CONFIG) {
hci_proto_connect_cfm(conn, status);
hci_conn_put(conn);
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_read_remote_ext_features *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
if (conn->state == BT_CONFIG) {
hci_proto_connect_cfm(conn, status);
hci_conn_put(conn);
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_setup_sync_conn *cp;
struct hci_conn *acl, *sco;
__u16 handle;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN);
if (!cp)
return;
handle = __le16_to_cpu(cp->handle);
BT_DBG("%s handle 0x%4.4x", hdev->name, handle);
hci_dev_lock(hdev);
acl = hci_conn_hash_lookup_handle(hdev, handle);
if (acl) {
sco = acl->link;
if (sco) {
sco->state = BT_CLOSED;
hci_proto_connect_cfm(sco, status);
hci_conn_del(sco);
}
}
hci_dev_unlock(hdev);
}
static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_sniff_mode *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags);
if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
hci_sco_setup(conn, status);
}
hci_dev_unlock(hdev);
}
static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status)
{
struct hci_cp_exit_sniff_mode *cp;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn) {
clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags);
if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
hci_sco_setup(conn, status);
}
hci_dev_unlock(hdev);
}
static void hci_cs_disconnect(struct hci_dev *hdev, u8 status)
{
struct hci_cp_disconnect *cp;
struct hci_conn *conn;
if (!status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT);
if (!cp)
return;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle));
if (conn)
mgmt_disconnect_failed(hdev, &conn->dst, conn->type,
conn->dst_type, status);
hci_dev_unlock(hdev);
}
static void hci_cs_le_create_conn(struct hci_dev *hdev, __u8 status)
{
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status) {
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
if (!conn) {
hci_dev_unlock(hdev);
return;
}
BT_DBG("%s bdaddr %pMR conn %p", hdev->name, &conn->dst, conn);
conn->state = BT_CLOSED;
mgmt_connect_failed(hdev, &conn->dst, conn->type,
conn->dst_type, status);
hci_proto_connect_cfm(conn, status);
hci_conn_del(conn);
hci_dev_unlock(hdev);
}
}
static void hci_cs_create_phylink(struct hci_dev *hdev, u8 status)
{
struct hci_cp_create_phy_link *cp;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_PHY_LINK);
if (!cp)
return;
hci_dev_lock(hdev);
if (status) {
struct hci_conn *hcon;
hcon = hci_conn_hash_lookup_handle(hdev, cp->phy_handle);
if (hcon)
hci_conn_del(hcon);
} else {
amp_write_remote_assoc(hdev, cp->phy_handle);
}
hci_dev_unlock(hdev);
}
static void hci_cs_accept_phylink(struct hci_dev *hdev, u8 status)
{
struct hci_cp_accept_phy_link *cp;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
if (status)
return;
cp = hci_sent_cmd_data(hdev, HCI_OP_ACCEPT_PHY_LINK);
if (!cp)
return;
amp_write_remote_assoc(hdev, cp->phy_handle);
}
static void hci_inquiry_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
__u8 status = *((__u8 *) skb->data);
struct discovery_state *discov = &hdev->discovery;
struct inquiry_entry *e;
BT_DBG("%s status 0x%2.2x", hdev->name, status);
hci_req_cmd_complete(hdev, HCI_OP_INQUIRY, status);
hci_conn_check_pending(hdev);
if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags))
return;
if (!test_bit(HCI_MGMT, &hdev->dev_flags))
return;
hci_dev_lock(hdev);
if (discov->state != DISCOVERY_FINDING)
goto unlock;
if (list_empty(&discov->resolve)) {
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
goto unlock;
}
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED);
if (e && hci_resolve_name(hdev, e) == 0) {
e->name_state = NAME_PENDING;
hci_discovery_set_state(hdev, DISCOVERY_RESOLVING);
} else {
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_inquiry_result_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct inquiry_data data;
struct inquiry_info *info = (void *) (skb->data + 1);
int num_rsp = *((__u8 *) skb->data);
BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
if (!num_rsp)
return;
if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
return;
hci_dev_lock(hdev);
for (; num_rsp; num_rsp--, info++) {
bool name_known, ssp;
bacpy(&data.bdaddr, &info->bdaddr);
data.pscan_rep_mode = info->pscan_rep_mode;
data.pscan_period_mode = info->pscan_period_mode;
data.pscan_mode = info->pscan_mode;
memcpy(data.dev_class, info->dev_class, 3);
data.clock_offset = info->clock_offset;
data.rssi = 0x00;
data.ssp_mode = 0x00;
name_known = hci_inquiry_cache_update(hdev, &data, false, &ssp);
mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
info->dev_class, 0, !name_known, ssp, NULL,
0);
}
hci_dev_unlock(hdev);
}
static void hci_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_conn_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr);
if (!conn) {
if (ev->link_type != SCO_LINK)
goto unlock;
conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
conn->type = SCO_LINK;
}
if (!ev->status) {
conn->handle = __le16_to_cpu(ev->handle);
if (conn->type == ACL_LINK) {
conn->state = BT_CONFIG;
hci_conn_hold(conn);
Bluetooth: Fix legacy pairing with some devices Some devices e.g. some Android based phones don't do SDP search before pairing and cancel legacy pairing when ACL is disconnected. PIN Code Request event which changes ACL timeout to HCI_PAIRING_TIMEOUT is only received after remote user entered PIN. In that case no L2CAP is connected so default HCI_DISCONN_TIMEOUT (2 seconds) is being used to timeout ACL connection. This results in problems with legacy pairing as remote user has only few seconds to enter PIN before ACL is disconnected. Increase disconnect timeout for incomming connection to HCI_PAIRING_TIMEOUT if SSP is disabled and no linkey exists. To avoid keeping ACL alive for too long after SDP search set ACL timeout back to HCI_DISCONN_TIMEOUT when L2CAP is connected. 2012-07-19 13:24:43.413521 < HCI Command: Create Connection (0x01|0x0005) plen 13 bdaddr 00:02:72:D6:6A:3F ptype 0xcc18 rswitch 0x01 clkoffset 0x0000 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 2012-07-19 13:24:43.425224 > HCI Event: Command Status (0x0f) plen 4 Create Connection (0x01|0x0005) status 0x00 ncmd 1 2012-07-19 13:24:43.885222 > HCI Event: Role Change (0x12) plen 8 status 0x00 bdaddr 00:02:72:D6:6A:3F role 0x01 Role: Slave 2012-07-19 13:24:44.054221 > HCI Event: Connect Complete (0x03) plen 11 status 0x00 handle 42 bdaddr 00:02:72:D6:6A:3F type ACL encrypt 0x00 2012-07-19 13:24:44.054313 < HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2 handle 42 2012-07-19 13:24:44.055176 > HCI Event: Page Scan Repetition Mode Change (0x20) plen 7 bdaddr 00:02:72:D6:6A:3F mode 0 2012-07-19 13:24:44.056217 > HCI Event: Max Slots Change (0x1b) plen 3 handle 42 slots 5 2012-07-19 13:24:44.059218 > HCI Event: Command Status (0x0f) plen 4 Read Remote Supported Features (0x01|0x001b) status 0x00 ncmd 0 2012-07-19 13:24:44.062192 > HCI Event: Command Status (0x0f) plen 4 Unknown (0x00|0x0000) status 0x00 ncmd 1 2012-07-19 13:24:44.067219 > HCI Event: Read Remote Supported Features (0x0b) plen 11 status 0x00 handle 42 Features: 0xbf 0xfe 0xcf 0xfe 0xdb 0xff 0x7b 0x87 2012-07-19 13:24:44.067248 < HCI Command: Read Remote Extended Features (0x01|0x001c) plen 3 handle 42 page 1 2012-07-19 13:24:44.071217 > HCI Event: Command Status (0x0f) plen 4 Read Remote Extended Features (0x01|0x001c) status 0x00 ncmd 1 2012-07-19 13:24:44.076218 > HCI Event: Read Remote Extended Features (0x23) plen 13 status 0x00 handle 42 page 1 max 1 Features: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 2012-07-19 13:24:44.076249 < HCI Command: Remote Name Request (0x01|0x0019) plen 10 bdaddr 00:02:72:D6:6A:3F mode 2 clkoffset 0x0000 2012-07-19 13:24:44.081218 > HCI Event: Command Status (0x0f) plen 4 Remote Name Request (0x01|0x0019) status 0x00 ncmd 1 2012-07-19 13:24:44.105214 > HCI Event: Remote Name Req Complete (0x07) plen 255 status 0x00 bdaddr 00:02:72:D6:6A:3F name 'uw000951-0' 2012-07-19 13:24:44.105284 < HCI Command: Authentication Requested (0x01|0x0011) plen 2 handle 42 2012-07-19 13:24:44.111207 > HCI Event: Command Status (0x0f) plen 4 Authentication Requested (0x01|0x0011) status 0x00 ncmd 1 2012-07-19 13:24:44.112220 > HCI Event: Link Key Request (0x17) plen 6 bdaddr 00:02:72:D6:6A:3F 2012-07-19 13:24:44.112249 < HCI Command: Link Key Request Negative Reply (0x01|0x000c) plen 6 bdaddr 00:02:72:D6:6A:3F 2012-07-19 13:24:44.115215 > HCI Event: Command Complete (0x0e) plen 10 Link Key Request Negative Reply (0x01|0x000c) ncmd 1 status 0x00 bdaddr 00:02:72:D6:6A:3F 2012-07-19 13:24:44.116215 > HCI Event: PIN Code Request (0x16) plen 6 bdaddr 00:02:72:D6:6A:3F 2012-07-19 13:24:48.099184 > HCI Event: Auth Complete (0x06) plen 3 status 0x13 handle 42 Error: Remote User Terminated Connection 2012-07-19 13:24:48.179182 > HCI Event: Disconn Complete (0x05) plen 4 status 0x00 handle 42 reason 0x13 Reason: Remote User Terminated Connection Cc: stable@vger.kernel.org Signed-off-by: Szymon Janc <szymon.janc@tieto.com> Acked-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2012-07-19 12:46:08 +00:00
if (!conn->out && !hci_conn_ssp_enabled(conn) &&
!hci_find_link_key(hdev, &ev->bdaddr))
conn->disc_timeout = HCI_PAIRING_TIMEOUT;
else
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
} else
conn->state = BT_CONNECTED;
hci_conn_hold_device(conn);
hci_conn_add_sysfs(conn);
if (test_bit(HCI_AUTH, &hdev->flags))
conn->link_mode |= HCI_LM_AUTH;
if (test_bit(HCI_ENCRYPT, &hdev->flags))
conn->link_mode |= HCI_LM_ENCRYPT;
/* Get remote features */
if (conn->type == ACL_LINK) {
struct hci_cp_read_remote_features cp;
cp.handle = ev->handle;
hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES,
sizeof(cp), &cp);
}
/* Set packet type for incoming connection */
if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) {
struct hci_cp_change_conn_ptype cp;
cp.handle = ev->handle;
cp.pkt_type = cpu_to_le16(conn->pkt_type);
hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp),
&cp);
}
} else {
conn->state = BT_CLOSED;
if (conn->type == ACL_LINK)
mgmt_connect_failed(hdev, &ev->bdaddr, conn->type,
conn->dst_type, ev->status);
}
if (conn->type == ACL_LINK)
hci_sco_setup(conn, ev->status);
if (ev->status) {
hci_proto_connect_cfm(conn, ev->status);
hci_conn_del(conn);
} else if (ev->link_type != ACL_LINK)
hci_proto_connect_cfm(conn, ev->status);
unlock:
hci_dev_unlock(hdev);
hci_conn_check_pending(hdev);
}
void hci_conn_accept(struct hci_conn *conn, int mask)
{
struct hci_dev *hdev = conn->hdev;
BT_DBG("conn %p", conn);
conn->state = BT_CONFIG;
if (!lmp_esco_capable(hdev)) {
struct hci_cp_accept_conn_req cp;
bacpy(&cp.bdaddr, &conn->dst);
if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER))
cp.role = 0x00; /* Become master */
else
cp.role = 0x01; /* Remain slave */
hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp);
} else /* lmp_esco_capable(hdev)) */ {
struct hci_cp_accept_sync_conn_req cp;
bacpy(&cp.bdaddr, &conn->dst);
cp.pkt_type = cpu_to_le16(conn->pkt_type);
cp.tx_bandwidth = __constant_cpu_to_le32(0x00001f40);
cp.rx_bandwidth = __constant_cpu_to_le32(0x00001f40);
cp.max_latency = __constant_cpu_to_le16(0xffff);
cp.content_format = cpu_to_le16(hdev->voice_setting);
cp.retrans_effort = 0xff;
hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ,
sizeof(cp), &cp);
}
}
static void hci_conn_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_conn_request *ev = (void *) skb->data;
int mask = hdev->link_mode;
__u8 flags = 0;
BT_DBG("%s bdaddr %pMR type 0x%x", hdev->name, &ev->bdaddr,
ev->link_type);
mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type,
&flags);
if ((mask & HCI_LM_ACCEPT) &&
!hci_blacklist_lookup(hdev, &ev->bdaddr)) {
/* Connection accepted */
struct inquiry_entry *ie;
struct hci_conn *conn;
hci_dev_lock(hdev);
ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
if (ie)
memcpy(ie->data.dev_class, ev->dev_class, 3);
conn = hci_conn_hash_lookup_ba(hdev, ev->link_type,
&ev->bdaddr);
if (!conn) {
conn = hci_conn_add(hdev, ev->link_type, &ev->bdaddr);
if (!conn) {
BT_ERR("No memory for new connection");
hci_dev_unlock(hdev);
return;
}
}
memcpy(conn->dev_class, ev->dev_class, 3);
hci_dev_unlock(hdev);
if (ev->link_type == ACL_LINK ||
(!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) {
struct hci_cp_accept_conn_req cp;
conn->state = BT_CONNECT;
bacpy(&cp.bdaddr, &ev->bdaddr);
if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER))
cp.role = 0x00; /* Become master */
else
cp.role = 0x01; /* Remain slave */
hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp),
&cp);
} else if (!(flags & HCI_PROTO_DEFER)) {
struct hci_cp_accept_sync_conn_req cp;
conn->state = BT_CONNECT;
bacpy(&cp.bdaddr, &ev->bdaddr);
cp.pkt_type = cpu_to_le16(conn->pkt_type);
cp.tx_bandwidth = __constant_cpu_to_le32(0x00001f40);
cp.rx_bandwidth = __constant_cpu_to_le32(0x00001f40);
cp.max_latency = __constant_cpu_to_le16(0xffff);
cp.content_format = cpu_to_le16(hdev->voice_setting);
cp.retrans_effort = 0xff;
hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ,
sizeof(cp), &cp);
} else {
conn->state = BT_CONNECT2;
hci_proto_connect_cfm(conn, 0);
hci_conn_put(conn);
}
} else {
/* Connection rejected */
struct hci_cp_reject_conn_req cp;
bacpy(&cp.bdaddr, &ev->bdaddr);
cp.reason = HCI_ERROR_REJ_BAD_ADDR;
hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp);
}
}
static u8 hci_to_mgmt_reason(u8 err)
{
switch (err) {
case HCI_ERROR_CONNECTION_TIMEOUT:
return MGMT_DEV_DISCONN_TIMEOUT;
case HCI_ERROR_REMOTE_USER_TERM:
case HCI_ERROR_REMOTE_LOW_RESOURCES:
case HCI_ERROR_REMOTE_POWER_OFF:
return MGMT_DEV_DISCONN_REMOTE;
case HCI_ERROR_LOCAL_HOST_TERM:
return MGMT_DEV_DISCONN_LOCAL_HOST;
default:
return MGMT_DEV_DISCONN_UNKNOWN;
}
}
static void hci_disconn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_disconn_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (!conn)
goto unlock;
if (ev->status == 0)
conn->state = BT_CLOSED;
if (test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags) &&
(conn->type == ACL_LINK || conn->type == LE_LINK)) {
if (ev->status) {
mgmt_disconnect_failed(hdev, &conn->dst, conn->type,
conn->dst_type, ev->status);
} else {
u8 reason = hci_to_mgmt_reason(ev->reason);
mgmt_device_disconnected(hdev, &conn->dst, conn->type,
conn->dst_type, reason);
}
}
if (ev->status == 0) {
if (conn->type == ACL_LINK && conn->flush_key)
hci_remove_link_key(hdev, &conn->dst);
hci_proto_disconn_cfm(conn, ev->reason);
hci_conn_del(conn);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_auth_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_auth_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (!conn)
goto unlock;
if (!ev->status) {
if (!hci_conn_ssp_enabled(conn) &&
test_bit(HCI_CONN_REAUTH_PEND, &conn->flags)) {
BT_INFO("re-auth of legacy device is not possible.");
} else {
conn->link_mode |= HCI_LM_AUTH;
conn->sec_level = conn->pending_sec_level;
}
} else {
mgmt_auth_failed(hdev, &conn->dst, conn->type, conn->dst_type,
ev->status);
}
clear_bit(HCI_CONN_AUTH_PEND, &conn->flags);
clear_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
if (conn->state == BT_CONFIG) {
if (!ev->status && hci_conn_ssp_enabled(conn)) {
struct hci_cp_set_conn_encrypt cp;
cp.handle = ev->handle;
cp.encrypt = 0x01;
hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
&cp);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
} else {
conn->state = BT_CONNECTED;
hci_proto_connect_cfm(conn, ev->status);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_conn_put(conn);
}
} else {
hci_auth_cfm(conn, ev->status);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_conn_hold(conn);
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
hci_conn_put(conn);
}
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
if (!ev->status) {
struct hci_cp_set_conn_encrypt cp;
cp.handle = ev->handle;
cp.encrypt = 0x01;
hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
&cp);
} else {
clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
hci_encrypt_cfm(conn, ev->status, 0x00);
}
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_remote_name_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_remote_name *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_conn_check_pending(hdev);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!test_bit(HCI_MGMT, &hdev->dev_flags))
goto check_auth;
if (ev->status == 0)
hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name,
strnlen(ev->name, HCI_MAX_NAME_LENGTH));
else
hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0);
check_auth:
if (!conn)
goto unlock;
if (!hci_outgoing_auth_needed(hdev, conn))
goto unlock;
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
struct hci_cp_auth_requested cp;
cp.handle = __cpu_to_le16(conn->handle);
hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_encrypt_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_encrypt_change *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn) {
if (!ev->status) {
if (ev->encrypt) {
/* Encryption implies authentication */
conn->link_mode |= HCI_LM_AUTH;
conn->link_mode |= HCI_LM_ENCRYPT;
conn->sec_level = conn->pending_sec_level;
} else
conn->link_mode &= ~HCI_LM_ENCRYPT;
}
clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
if (ev->status && conn->state == BT_CONNECTED) {
hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE);
hci_conn_put(conn);
goto unlock;
}
if (conn->state == BT_CONFIG) {
if (!ev->status)
conn->state = BT_CONNECTED;
hci_proto_connect_cfm(conn, ev->status);
hci_conn_put(conn);
} else
hci_encrypt_cfm(conn, ev->status, ev->encrypt);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_change_link_key_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_change_link_key_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn) {
if (!ev->status)
conn->link_mode |= HCI_LM_SECURE;
clear_bit(HCI_CONN_AUTH_PEND, &conn->flags);
hci_key_change_cfm(conn, ev->status);
}
hci_dev_unlock(hdev);
}
static void hci_remote_features_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_remote_features *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (!conn)
goto unlock;
if (!ev->status)
memcpy(conn->features, ev->features, 8);
if (conn->state != BT_CONFIG)
goto unlock;
if (!ev->status && lmp_ssp_capable(hdev) && lmp_ssp_capable(conn)) {
struct hci_cp_read_remote_ext_features cp;
cp.handle = ev->handle;
cp.page = 0x01;
hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES,
sizeof(cp), &cp);
goto unlock;
}
if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) {
struct hci_cp_remote_name_req cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.pscan_rep_mode = 0x02;
hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
} else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
mgmt_device_connected(hdev, &conn->dst, conn->type,
conn->dst_type, 0, NULL, 0,
conn->dev_class);
if (!hci_outgoing_auth_needed(hdev, conn)) {
conn->state = BT_CONNECTED;
hci_proto_connect_cfm(conn, ev->status);
hci_conn_put(conn);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_cmd_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_cmd_complete *ev = (void *) skb->data;
u8 status = skb->data[sizeof(*ev)];
__u16 opcode;
skb_pull(skb, sizeof(*ev));
opcode = __le16_to_cpu(ev->opcode);
switch (opcode) {
case HCI_OP_INQUIRY_CANCEL:
hci_cc_inquiry_cancel(hdev, skb);
break;
case HCI_OP_PERIODIC_INQ:
hci_cc_periodic_inq(hdev, skb);
break;
case HCI_OP_EXIT_PERIODIC_INQ:
hci_cc_exit_periodic_inq(hdev, skb);
break;
case HCI_OP_REMOTE_NAME_REQ_CANCEL:
hci_cc_remote_name_req_cancel(hdev, skb);
break;
case HCI_OP_ROLE_DISCOVERY:
hci_cc_role_discovery(hdev, skb);
break;
case HCI_OP_READ_LINK_POLICY:
hci_cc_read_link_policy(hdev, skb);
break;
case HCI_OP_WRITE_LINK_POLICY:
hci_cc_write_link_policy(hdev, skb);
break;
case HCI_OP_READ_DEF_LINK_POLICY:
hci_cc_read_def_link_policy(hdev, skb);
break;
case HCI_OP_WRITE_DEF_LINK_POLICY:
hci_cc_write_def_link_policy(hdev, skb);
break;
case HCI_OP_RESET:
hci_cc_reset(hdev, skb);
break;
case HCI_OP_WRITE_LOCAL_NAME:
hci_cc_write_local_name(hdev, skb);
break;
case HCI_OP_READ_LOCAL_NAME:
hci_cc_read_local_name(hdev, skb);
break;
case HCI_OP_WRITE_AUTH_ENABLE:
hci_cc_write_auth_enable(hdev, skb);
break;
case HCI_OP_WRITE_ENCRYPT_MODE:
hci_cc_write_encrypt_mode(hdev, skb);
break;
case HCI_OP_WRITE_SCAN_ENABLE:
hci_cc_write_scan_enable(hdev, skb);
break;
case HCI_OP_READ_CLASS_OF_DEV:
hci_cc_read_class_of_dev(hdev, skb);
break;
case HCI_OP_WRITE_CLASS_OF_DEV:
hci_cc_write_class_of_dev(hdev, skb);
break;
case HCI_OP_READ_VOICE_SETTING:
hci_cc_read_voice_setting(hdev, skb);
break;
case HCI_OP_WRITE_VOICE_SETTING:
hci_cc_write_voice_setting(hdev, skb);
break;
case HCI_OP_WRITE_SSP_MODE:
hci_cc_write_ssp_mode(hdev, skb);
break;
case HCI_OP_READ_LOCAL_VERSION:
hci_cc_read_local_version(hdev, skb);
break;
case HCI_OP_READ_LOCAL_COMMANDS:
hci_cc_read_local_commands(hdev, skb);
break;
case HCI_OP_READ_LOCAL_FEATURES:
hci_cc_read_local_features(hdev, skb);
break;
case HCI_OP_READ_LOCAL_EXT_FEATURES:
hci_cc_read_local_ext_features(hdev, skb);
break;
case HCI_OP_READ_BUFFER_SIZE:
hci_cc_read_buffer_size(hdev, skb);
break;
case HCI_OP_READ_BD_ADDR:
hci_cc_read_bd_addr(hdev, skb);
break;
case HCI_OP_READ_PAGE_SCAN_ACTIVITY:
hci_cc_read_page_scan_activity(hdev, skb);
break;
case HCI_OP_WRITE_PAGE_SCAN_ACTIVITY:
hci_cc_write_page_scan_activity(hdev, skb);
break;
case HCI_OP_READ_PAGE_SCAN_TYPE:
hci_cc_read_page_scan_type(hdev, skb);
break;
case HCI_OP_WRITE_PAGE_SCAN_TYPE:
hci_cc_write_page_scan_type(hdev, skb);
break;
case HCI_OP_READ_DATA_BLOCK_SIZE:
hci_cc_read_data_block_size(hdev, skb);
break;
case HCI_OP_READ_FLOW_CONTROL_MODE:
hci_cc_read_flow_control_mode(hdev, skb);
break;
case HCI_OP_READ_LOCAL_AMP_INFO:
hci_cc_read_local_amp_info(hdev, skb);
break;
case HCI_OP_READ_LOCAL_AMP_ASSOC:
hci_cc_read_local_amp_assoc(hdev, skb);
break;
case HCI_OP_READ_INQ_RSP_TX_POWER:
hci_cc_read_inq_rsp_tx_power(hdev, skb);
break;
case HCI_OP_PIN_CODE_REPLY:
hci_cc_pin_code_reply(hdev, skb);
break;
case HCI_OP_PIN_CODE_NEG_REPLY:
hci_cc_pin_code_neg_reply(hdev, skb);
break;
case HCI_OP_READ_LOCAL_OOB_DATA:
hci_cc_read_local_oob_data_reply(hdev, skb);
break;
case HCI_OP_LE_READ_BUFFER_SIZE:
hci_cc_le_read_buffer_size(hdev, skb);
break;
case HCI_OP_LE_READ_LOCAL_FEATURES:
hci_cc_le_read_local_features(hdev, skb);
break;
case HCI_OP_LE_READ_ADV_TX_POWER:
hci_cc_le_read_adv_tx_power(hdev, skb);
break;
case HCI_OP_USER_CONFIRM_REPLY:
hci_cc_user_confirm_reply(hdev, skb);
break;
case HCI_OP_USER_CONFIRM_NEG_REPLY:
hci_cc_user_confirm_neg_reply(hdev, skb);
break;
case HCI_OP_USER_PASSKEY_REPLY:
hci_cc_user_passkey_reply(hdev, skb);
break;
case HCI_OP_USER_PASSKEY_NEG_REPLY:
hci_cc_user_passkey_neg_reply(hdev, skb);
break;
case HCI_OP_LE_SET_SCAN_PARAM:
hci_cc_le_set_scan_param(hdev, skb);
break;
case HCI_OP_LE_SET_ADV_ENABLE:
hci_cc_le_set_adv_enable(hdev, skb);
break;
case HCI_OP_LE_SET_SCAN_ENABLE:
hci_cc_le_set_scan_enable(hdev, skb);
break;
case HCI_OP_LE_READ_WHITE_LIST_SIZE:
hci_cc_le_read_white_list_size(hdev, skb);
break;
case HCI_OP_LE_READ_SUPPORTED_STATES:
hci_cc_le_read_supported_states(hdev, skb);
break;
case HCI_OP_WRITE_LE_HOST_SUPPORTED:
hci_cc_write_le_host_supported(hdev, skb);
break;
case HCI_OP_WRITE_REMOTE_AMP_ASSOC:
hci_cc_write_remote_amp_assoc(hdev, skb);
break;
default:
BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
break;
}
if (opcode != HCI_OP_NOP)
del_timer(&hdev->cmd_timer);
hci_req_cmd_complete(hdev, opcode, status);
if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) {
atomic_set(&hdev->cmd_cnt, 1);
if (!skb_queue_empty(&hdev->cmd_q))
queue_work(hdev->workqueue, &hdev->cmd_work);
}
}
static void hci_cmd_status_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_cmd_status *ev = (void *) skb->data;
__u16 opcode;
skb_pull(skb, sizeof(*ev));
opcode = __le16_to_cpu(ev->opcode);
switch (opcode) {
case HCI_OP_INQUIRY:
hci_cs_inquiry(hdev, ev->status);
break;
case HCI_OP_CREATE_CONN:
hci_cs_create_conn(hdev, ev->status);
break;
case HCI_OP_ADD_SCO:
hci_cs_add_sco(hdev, ev->status);
break;
case HCI_OP_AUTH_REQUESTED:
hci_cs_auth_requested(hdev, ev->status);
break;
case HCI_OP_SET_CONN_ENCRYPT:
hci_cs_set_conn_encrypt(hdev, ev->status);
break;
case HCI_OP_REMOTE_NAME_REQ:
hci_cs_remote_name_req(hdev, ev->status);
break;
case HCI_OP_READ_REMOTE_FEATURES:
hci_cs_read_remote_features(hdev, ev->status);
break;
case HCI_OP_READ_REMOTE_EXT_FEATURES:
hci_cs_read_remote_ext_features(hdev, ev->status);
break;
case HCI_OP_SETUP_SYNC_CONN:
hci_cs_setup_sync_conn(hdev, ev->status);
break;
case HCI_OP_SNIFF_MODE:
hci_cs_sniff_mode(hdev, ev->status);
break;
case HCI_OP_EXIT_SNIFF_MODE:
hci_cs_exit_sniff_mode(hdev, ev->status);
break;
case HCI_OP_DISCONNECT:
hci_cs_disconnect(hdev, ev->status);
break;
case HCI_OP_LE_CREATE_CONN:
hci_cs_le_create_conn(hdev, ev->status);
break;
case HCI_OP_CREATE_PHY_LINK:
hci_cs_create_phylink(hdev, ev->status);
break;
case HCI_OP_ACCEPT_PHY_LINK:
hci_cs_accept_phylink(hdev, ev->status);
break;
default:
BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
break;
}
if (opcode != HCI_OP_NOP)
del_timer(&hdev->cmd_timer);
hci_req_cmd_status(hdev, opcode, ev->status);
if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) {
atomic_set(&hdev->cmd_cnt, 1);
if (!skb_queue_empty(&hdev->cmd_q))
queue_work(hdev->workqueue, &hdev->cmd_work);
}
}
static void hci_role_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_role_change *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (conn) {
if (!ev->status) {
if (ev->role)
conn->link_mode &= ~HCI_LM_MASTER;
else
conn->link_mode |= HCI_LM_MASTER;
}
clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags);
hci_role_switch_cfm(conn, ev->status, ev->role);
}
hci_dev_unlock(hdev);
}
static void hci_num_comp_pkts_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_num_comp_pkts *ev = (void *) skb->data;
int i;
if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) {
BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode);
return;
}
if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) +
ev->num_hndl * sizeof(struct hci_comp_pkts_info)) {
BT_DBG("%s bad parameters", hdev->name);
return;
}
BT_DBG("%s num_hndl %d", hdev->name, ev->num_hndl);
for (i = 0; i < ev->num_hndl; i++) {
struct hci_comp_pkts_info *info = &ev->handles[i];
struct hci_conn *conn;
__u16 handle, count;
handle = __le16_to_cpu(info->handle);
count = __le16_to_cpu(info->count);
conn = hci_conn_hash_lookup_handle(hdev, handle);
if (!conn)
continue;
conn->sent -= count;
switch (conn->type) {
case ACL_LINK:
hdev->acl_cnt += count;
if (hdev->acl_cnt > hdev->acl_pkts)
hdev->acl_cnt = hdev->acl_pkts;
break;
case LE_LINK:
if (hdev->le_pkts) {
hdev->le_cnt += count;
if (hdev->le_cnt > hdev->le_pkts)
hdev->le_cnt = hdev->le_pkts;
} else {
hdev->acl_cnt += count;
if (hdev->acl_cnt > hdev->acl_pkts)
hdev->acl_cnt = hdev->acl_pkts;
}
break;
case SCO_LINK:
hdev->sco_cnt += count;
if (hdev->sco_cnt > hdev->sco_pkts)
hdev->sco_cnt = hdev->sco_pkts;
break;
default:
BT_ERR("Unknown type %d conn %p", conn->type, conn);
break;
}
}
queue_work(hdev->workqueue, &hdev->tx_work);
}
static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev,
__u16 handle)
{
struct hci_chan *chan;
switch (hdev->dev_type) {
case HCI_BREDR:
return hci_conn_hash_lookup_handle(hdev, handle);
case HCI_AMP:
chan = hci_chan_lookup_handle(hdev, handle);
if (chan)
return chan->conn;
break;
default:
BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
break;
}
return NULL;
}
static void hci_num_comp_blocks_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_num_comp_blocks *ev = (void *) skb->data;
int i;
if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) {
BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode);
return;
}
if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) +
ev->num_hndl * sizeof(struct hci_comp_blocks_info)) {
BT_DBG("%s bad parameters", hdev->name);
return;
}
BT_DBG("%s num_blocks %d num_hndl %d", hdev->name, ev->num_blocks,
ev->num_hndl);
for (i = 0; i < ev->num_hndl; i++) {
struct hci_comp_blocks_info *info = &ev->handles[i];
struct hci_conn *conn = NULL;
__u16 handle, block_count;
handle = __le16_to_cpu(info->handle);
block_count = __le16_to_cpu(info->blocks);
conn = __hci_conn_lookup_handle(hdev, handle);
if (!conn)
continue;
conn->sent -= block_count;
switch (conn->type) {
case ACL_LINK:
case AMP_LINK:
hdev->block_cnt += block_count;
if (hdev->block_cnt > hdev->num_blocks)
hdev->block_cnt = hdev->num_blocks;
break;
default:
BT_ERR("Unknown type %d conn %p", conn->type, conn);
break;
}
}
queue_work(hdev->workqueue, &hdev->tx_work);
}
static void hci_mode_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_mode_change *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn) {
conn->mode = ev->mode;
conn->interval = __le16_to_cpu(ev->interval);
if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND,
&conn->flags)) {
if (conn->mode == HCI_CM_ACTIVE)
set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
else
clear_bit(HCI_CONN_POWER_SAVE, &conn->flags);
}
if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags))
hci_sco_setup(conn, ev->status);
}
hci_dev_unlock(hdev);
}
static void hci_pin_code_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
struct hci_ev_pin_code_req *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
if (conn->state == BT_CONNECTED) {
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_conn_hold(conn);
conn->disc_timeout = HCI_PAIRING_TIMEOUT;
hci_conn_put(conn);
}
if (!test_bit(HCI_PAIRABLE, &hdev->dev_flags))
hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY,
sizeof(ev->bdaddr), &ev->bdaddr);
else if (test_bit(HCI_MGMT, &hdev->dev_flags)) {
u8 secure;
if (conn->pending_sec_level == BT_SECURITY_HIGH)
secure = 1;
else
secure = 0;
mgmt_pin_code_request(hdev, &ev->bdaddr, secure);
}
unlock:
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_dev_unlock(hdev);
}
static void hci_link_key_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_link_key_req *ev = (void *) skb->data;
struct hci_cp_link_key_reply cp;
struct hci_conn *conn;
struct link_key *key;
BT_DBG("%s", hdev->name);
if (!test_bit(HCI_LINK_KEYS, &hdev->dev_flags))
return;
hci_dev_lock(hdev);
key = hci_find_link_key(hdev, &ev->bdaddr);
if (!key) {
BT_DBG("%s link key not found for %pMR", hdev->name,
&ev->bdaddr);
goto not_found;
}
BT_DBG("%s found key type %u for %pMR", hdev->name, key->type,
&ev->bdaddr);
if (!test_bit(HCI_DEBUG_KEYS, &hdev->dev_flags) &&
key->type == HCI_LK_DEBUG_COMBINATION) {
BT_DBG("%s ignoring debug key", hdev->name);
goto not_found;
}
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (conn) {
if (key->type == HCI_LK_UNAUTH_COMBINATION &&
conn->auth_type != 0xff && (conn->auth_type & 0x01)) {
BT_DBG("%s ignoring unauthenticated key", hdev->name);
goto not_found;
}
if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 &&
conn->pending_sec_level == BT_SECURITY_HIGH) {
BT_DBG("%s ignoring key unauthenticated for high security",
hdev->name);
goto not_found;
}
conn->key_type = key->type;
conn->pin_length = key->pin_len;
}
bacpy(&cp.bdaddr, &ev->bdaddr);
memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE);
hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp);
hci_dev_unlock(hdev);
return;
not_found:
hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr);
hci_dev_unlock(hdev);
}
static void hci_link_key_notify_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
struct hci_ev_link_key_notify *ev = (void *) skb->data;
struct hci_conn *conn;
u8 pin_len = 0;
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
BT_DBG("%s", hdev->name);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (conn) {
hci_conn_hold(conn);
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
pin_len = conn->pin_length;
if (ev->key_type != HCI_LK_CHANGED_COMBINATION)
conn->key_type = ev->key_type;
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_conn_put(conn);
}
if (test_bit(HCI_LINK_KEYS, &hdev->dev_flags))
hci_add_link_key(hdev, conn, 1, &ev->bdaddr, ev->link_key,
ev->key_type, pin_len);
Bluetooth: Add different pairing timeout for Legacy Pairing The Bluetooth stack uses a reference counting for all established ACL links and if no user (L2CAP connection) is present, the link will be terminated to save power. The problem part is the dedicated pairing when using Legacy Pairing (Bluetooth 2.0 and before). At that point no user is present and pairing attempts will be disconnected within 10 seconds or less. In previous kernel version this was not a problem since the disconnect timeout wasn't triggered on incoming connections for the first time. However this caused issues with broken host stacks that kept the connections around after dedicated pairing. When the support for Simple Pairing got added, the link establishment procedure needed to be changed and now causes issues when using Legacy Pairing When using Simple Pairing it is possible to do a proper reference counting of ACL link users. With Legacy Pairing this is not possible since the specification is unclear in some areas and too many broken Bluetooth devices have already been deployed. So instead of trying to deal with all the broken devices, a special pairing timeout will be introduced that increases the timeout to 60 seconds when pairing is triggered. If a broken devices now puts the stack into an unforeseen state, the worst that happens is the disconnect timeout triggers after 120 seconds instead of 4 seconds. This allows successful pairings with legacy and broken devices now. Based on a report by Johan Hedberg <johan.hedberg@nokia.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2009-04-26 18:01:22 +00:00
hci_dev_unlock(hdev);
}
static void hci_clock_offset_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_clock_offset *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn && !ev->status) {
struct inquiry_entry *ie;
ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
if (ie) {
ie->data.clock_offset = ev->clock_offset;
ie->timestamp = jiffies;
}
}
hci_dev_unlock(hdev);
}
static void hci_pkt_type_change_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_pkt_type_change *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn && !ev->status)
conn->pkt_type = __le16_to_cpu(ev->pkt_type);
hci_dev_unlock(hdev);
}
static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_pscan_rep_mode *ev = (void *) skb->data;
struct inquiry_entry *ie;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
if (ie) {
ie->data.pscan_rep_mode = ev->pscan_rep_mode;
ie->timestamp = jiffies;
}
hci_dev_unlock(hdev);
}
static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct inquiry_data data;
int num_rsp = *((__u8 *) skb->data);
bool name_known, ssp;
BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
if (!num_rsp)
return;
if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
return;
hci_dev_lock(hdev);
if ((skb->len - 1) / num_rsp != sizeof(struct inquiry_info_with_rssi)) {
struct inquiry_info_with_rssi_and_pscan_mode *info;
info = (void *) (skb->data + 1);
for (; num_rsp; num_rsp--, info++) {
bacpy(&data.bdaddr, &info->bdaddr);
data.pscan_rep_mode = info->pscan_rep_mode;
data.pscan_period_mode = info->pscan_period_mode;
data.pscan_mode = info->pscan_mode;
memcpy(data.dev_class, info->dev_class, 3);
data.clock_offset = info->clock_offset;
data.rssi = info->rssi;
data.ssp_mode = 0x00;
name_known = hci_inquiry_cache_update(hdev, &data,
false, &ssp);
mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
info->dev_class, info->rssi,
!name_known, ssp, NULL, 0);
}
} else {
struct inquiry_info_with_rssi *info = (void *) (skb->data + 1);
for (; num_rsp; num_rsp--, info++) {
bacpy(&data.bdaddr, &info->bdaddr);
data.pscan_rep_mode = info->pscan_rep_mode;
data.pscan_period_mode = info->pscan_period_mode;
data.pscan_mode = 0x00;
memcpy(data.dev_class, info->dev_class, 3);
data.clock_offset = info->clock_offset;
data.rssi = info->rssi;
data.ssp_mode = 0x00;
name_known = hci_inquiry_cache_update(hdev, &data,
false, &ssp);
mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
info->dev_class, info->rssi,
!name_known, ssp, NULL, 0);
}
}
hci_dev_unlock(hdev);
}
static void hci_remote_ext_features_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_remote_ext_features *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (!conn)
goto unlock;
if (!ev->status && ev->page == 0x01) {
struct inquiry_entry *ie;
ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
if (ie)
ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP);
if (ev->features[0] & LMP_HOST_SSP)
set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
}
if (conn->state != BT_CONFIG)
goto unlock;
if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) {
struct hci_cp_remote_name_req cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, &conn->dst);
cp.pscan_rep_mode = 0x02;
hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp);
} else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
mgmt_device_connected(hdev, &conn->dst, conn->type,
conn->dst_type, 0, NULL, 0,
conn->dev_class);
if (!hci_outgoing_auth_needed(hdev, conn)) {
conn->state = BT_CONNECTED;
hci_proto_connect_cfm(conn, ev->status);
hci_conn_put(conn);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_sync_conn_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_sync_conn_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr);
if (!conn) {
if (ev->link_type == ESCO_LINK)
goto unlock;
conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
conn->type = SCO_LINK;
}
switch (ev->status) {
case 0x00:
conn->handle = __le16_to_cpu(ev->handle);
conn->state = BT_CONNECTED;
hci_conn_hold_device(conn);
hci_conn_add_sysfs(conn);
break;
case 0x11: /* Unsupported Feature or Parameter Value */
case 0x1c: /* SCO interval rejected */
case 0x1a: /* Unsupported Remote Feature */
case 0x1f: /* Unspecified error */
if (conn->out && conn->attempt < 2) {
conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
(hdev->esco_type & EDR_ESCO_MASK);
hci_setup_sync(conn, conn->link->handle);
goto unlock;
}
/* fall through */
default:
conn->state = BT_CLOSED;
break;
}
hci_proto_connect_cfm(conn, ev->status);
if (ev->status)
hci_conn_del(conn);
unlock:
hci_dev_unlock(hdev);
}
static void hci_extended_inquiry_result_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct inquiry_data data;
struct extended_inquiry_info *info = (void *) (skb->data + 1);
int num_rsp = *((__u8 *) skb->data);
size_t eir_len;
BT_DBG("%s num_rsp %d", hdev->name, num_rsp);
if (!num_rsp)
return;
if (test_bit(HCI_PERIODIC_INQ, &hdev->dev_flags))
return;
hci_dev_lock(hdev);
for (; num_rsp; num_rsp--, info++) {
bool name_known, ssp;
bacpy(&data.bdaddr, &info->bdaddr);
data.pscan_rep_mode = info->pscan_rep_mode;
data.pscan_period_mode = info->pscan_period_mode;
data.pscan_mode = 0x00;
memcpy(data.dev_class, info->dev_class, 3);
data.clock_offset = info->clock_offset;
data.rssi = info->rssi;
data.ssp_mode = 0x01;
if (test_bit(HCI_MGMT, &hdev->dev_flags))
name_known = eir_has_data_type(info->data,
sizeof(info->data),
EIR_NAME_COMPLETE);
else
name_known = true;
name_known = hci_inquiry_cache_update(hdev, &data, name_known,
&ssp);
eir_len = eir_get_length(info->data, sizeof(info->data));
mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00,
info->dev_class, info->rssi, !name_known,
ssp, info->data, eir_len);
}
hci_dev_unlock(hdev);
}
static void hci_key_refresh_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_key_refresh_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x handle 0x%4.4x", hdev->name, ev->status,
__le16_to_cpu(ev->handle));
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (!conn)
goto unlock;
if (!ev->status)
conn->sec_level = conn->pending_sec_level;
clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
if (ev->status && conn->state == BT_CONNECTED) {
hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE);
hci_conn_put(conn);
goto unlock;
}
if (conn->state == BT_CONFIG) {
if (!ev->status)
conn->state = BT_CONNECTED;
hci_proto_connect_cfm(conn, ev->status);
hci_conn_put(conn);
} else {
hci_auth_cfm(conn, ev->status);
hci_conn_hold(conn);
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
hci_conn_put(conn);
}
unlock:
hci_dev_unlock(hdev);
}
static u8 hci_get_auth_req(struct hci_conn *conn)
{
/* If remote requests dedicated bonding follow that lead */
if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) {
/* If both remote and local IO capabilities allow MITM
* protection then require it, otherwise don't */
if (conn->remote_cap == 0x03 || conn->io_capability == 0x03)
return 0x02;
else
return 0x03;
}
/* If remote requests no-bonding follow that lead */
if (conn->remote_auth == 0x00 || conn->remote_auth == 0x01)
return conn->remote_auth | (conn->auth_type & 0x01);
return conn->auth_type;
}
static void hci_io_capa_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_io_capa_request *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
hci_conn_hold(conn);
if (!test_bit(HCI_MGMT, &hdev->dev_flags))
goto unlock;
if (test_bit(HCI_PAIRABLE, &hdev->dev_flags) ||
(conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) {
struct hci_cp_io_capability_reply cp;
bacpy(&cp.bdaddr, &ev->bdaddr);
/* Change the IO capability from KeyboardDisplay
* to DisplayYesNo as it is not supported by BT spec. */
cp.capability = (conn->io_capability == 0x04) ?
0x01 : conn->io_capability;
conn->auth_type = hci_get_auth_req(conn);
cp.authentication = conn->auth_type;
if (hci_find_remote_oob_data(hdev, &conn->dst) &&
(conn->out || test_bit(HCI_CONN_REMOTE_OOB, &conn->flags)))
cp.oob_data = 0x01;
else
cp.oob_data = 0x00;
hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY,
sizeof(cp), &cp);
} else {
struct hci_cp_io_capability_neg_reply cp;
bacpy(&cp.bdaddr, &ev->bdaddr);
cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED;
hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY,
sizeof(cp), &cp);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_io_capa_reply_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_io_capa_reply *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
conn->remote_cap = ev->capability;
conn->remote_auth = ev->authentication;
if (ev->oob_data)
set_bit(HCI_CONN_REMOTE_OOB, &conn->flags);
unlock:
hci_dev_unlock(hdev);
}
static void hci_user_confirm_request_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_user_confirm_req *ev = (void *) skb->data;
int loc_mitm, rem_mitm, confirm_hint = 0;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
if (!test_bit(HCI_MGMT, &hdev->dev_flags))
goto unlock;
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
loc_mitm = (conn->auth_type & 0x01);
rem_mitm = (conn->remote_auth & 0x01);
/* If we require MITM but the remote device can't provide that
* (it has NoInputNoOutput) then reject the confirmation
* request. The only exception is when we're dedicated bonding
* initiators (connect_cfm_cb set) since then we always have the MITM
* bit set. */
if (!conn->connect_cfm_cb && loc_mitm && conn->remote_cap == 0x03) {
BT_DBG("Rejecting request: remote device can't provide MITM");
hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY,
sizeof(ev->bdaddr), &ev->bdaddr);
goto unlock;
}
/* If no side requires MITM protection; auto-accept */
if ((!loc_mitm || conn->remote_cap == 0x03) &&
(!rem_mitm || conn->io_capability == 0x03)) {
/* If we're not the initiators request authorization to
* proceed from user space (mgmt_user_confirm with
* confirm_hint set to 1). */
if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
BT_DBG("Confirming auto-accept as acceptor");
confirm_hint = 1;
goto confirm;
}
BT_DBG("Auto-accept of user confirmation with %ums delay",
hdev->auto_accept_delay);
if (hdev->auto_accept_delay > 0) {
int delay = msecs_to_jiffies(hdev->auto_accept_delay);
mod_timer(&conn->auto_accept_timer, jiffies + delay);
goto unlock;
}
hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY,
sizeof(ev->bdaddr), &ev->bdaddr);
goto unlock;
}
confirm:
mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, ev->passkey,
confirm_hint);
unlock:
hci_dev_unlock(hdev);
}
static void hci_user_passkey_request_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_user_passkey_req *ev = (void *) skb->data;
BT_DBG("%s", hdev->name);
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0);
}
static void hci_user_passkey_notify_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_user_passkey_notify *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
return;
conn->passkey_notify = __le32_to_cpu(ev->passkey);
conn->passkey_entered = 0;
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_passkey_notify(hdev, &conn->dst, conn->type,
conn->dst_type, conn->passkey_notify,
conn->passkey_entered);
}
static void hci_keypress_notify_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_keypress_notify *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
return;
switch (ev->type) {
case HCI_KEYPRESS_STARTED:
conn->passkey_entered = 0;
return;
case HCI_KEYPRESS_ENTERED:
conn->passkey_entered++;
break;
case HCI_KEYPRESS_ERASED:
conn->passkey_entered--;
break;
case HCI_KEYPRESS_CLEARED:
conn->passkey_entered = 0;
break;
case HCI_KEYPRESS_COMPLETED:
return;
}
if (test_bit(HCI_MGMT, &hdev->dev_flags))
mgmt_user_passkey_notify(hdev, &conn->dst, conn->type,
conn->dst_type, conn->passkey_notify,
conn->passkey_entered);
}
static void hci_simple_pair_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_simple_pair_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr);
if (!conn)
goto unlock;
/* To avoid duplicate auth_failed events to user space we check
* the HCI_CONN_AUTH_PEND flag which will be set if we
* initiated the authentication. A traditional auth_complete
* event gets always produced as initiator and is also mapped to
* the mgmt_auth_failed event */
if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status)
mgmt_auth_failed(hdev, &conn->dst, conn->type, conn->dst_type,
ev->status);
hci_conn_put(conn);
unlock:
hci_dev_unlock(hdev);
}
static void hci_remote_host_features_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_remote_host_features *ev = (void *) skb->data;
struct inquiry_entry *ie;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr);
if (ie)
ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP);
hci_dev_unlock(hdev);
}
static void hci_remote_oob_data_request_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_remote_oob_data_request *ev = (void *) skb->data;
struct oob_data *data;
BT_DBG("%s", hdev->name);
hci_dev_lock(hdev);
if (!test_bit(HCI_MGMT, &hdev->dev_flags))
goto unlock;
data = hci_find_remote_oob_data(hdev, &ev->bdaddr);
if (data) {
struct hci_cp_remote_oob_data_reply cp;
bacpy(&cp.bdaddr, &ev->bdaddr);
memcpy(cp.hash, data->hash, sizeof(cp.hash));
memcpy(cp.randomizer, data->randomizer, sizeof(cp.randomizer));
hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, sizeof(cp),
&cp);
} else {
struct hci_cp_remote_oob_data_neg_reply cp;
bacpy(&cp.bdaddr, &ev->bdaddr);
hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, sizeof(cp),
&cp);
}
unlock:
hci_dev_unlock(hdev);
}
static void hci_phy_link_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_phy_link_complete *ev = (void *) skb->data;
struct hci_conn *hcon, *bredr_hcon;
BT_DBG("%s handle 0x%2.2x status 0x%2.2x", hdev->name, ev->phy_handle,
ev->status);
hci_dev_lock(hdev);
hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
if (!hcon) {
hci_dev_unlock(hdev);
return;
}
if (ev->status) {
hci_conn_del(hcon);
hci_dev_unlock(hdev);
return;
}
bredr_hcon = hcon->amp_mgr->l2cap_conn->hcon;
hcon->state = BT_CONNECTED;
bacpy(&hcon->dst, &bredr_hcon->dst);
hci_conn_hold(hcon);
hcon->disc_timeout = HCI_DISCONN_TIMEOUT;
hci_conn_put(hcon);
hci_conn_hold_device(hcon);
hci_conn_add_sysfs(hcon);
amp_physical_cfm(bredr_hcon, hcon);
hci_dev_unlock(hdev);
}
static void hci_loglink_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_logical_link_complete *ev = (void *) skb->data;
struct hci_conn *hcon;
struct hci_chan *hchan;
struct amp_mgr *mgr;
BT_DBG("%s log_handle 0x%4.4x phy_handle 0x%2.2x status 0x%2.2x",
hdev->name, le16_to_cpu(ev->handle), ev->phy_handle,
ev->status);
hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
if (!hcon)
return;
/* Create AMP hchan */
hchan = hci_chan_create(hcon);
if (!hchan)
return;
hchan->handle = le16_to_cpu(ev->handle);
BT_DBG("hcon %p mgr %p hchan %p", hcon, hcon->amp_mgr, hchan);
mgr = hcon->amp_mgr;
if (mgr && mgr->bredr_chan) {
struct l2cap_chan *bredr_chan = mgr->bredr_chan;
l2cap_chan_lock(bredr_chan);
bredr_chan->conn->mtu = hdev->block_mtu;
l2cap_logical_cfm(bredr_chan, hchan, 0);
hci_conn_hold(hcon);
l2cap_chan_unlock(bredr_chan);
}
}
static void hci_disconn_loglink_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_disconn_logical_link_complete *ev = (void *) skb->data;
struct hci_chan *hchan;
BT_DBG("%s log handle 0x%4.4x status 0x%2.2x", hdev->name,
le16_to_cpu(ev->handle), ev->status);
if (ev->status)
return;
hci_dev_lock(hdev);
hchan = hci_chan_lookup_handle(hdev, le16_to_cpu(ev->handle));
if (!hchan)
goto unlock;
amp_destroy_logical_link(hchan, ev->reason);
unlock:
hci_dev_unlock(hdev);
}
static void hci_disconn_phylink_complete_evt(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct hci_ev_disconn_phy_link_complete *ev = (void *) skb->data;
struct hci_conn *hcon;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
if (ev->status)
return;
hci_dev_lock(hdev);
hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
if (hcon) {
hcon->state = BT_CLOSED;
hci_conn_del(hcon);
}
hci_dev_unlock(hdev);
}
static void hci_le_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_le_conn_complete *ev = (void *) skb->data;
struct hci_conn *conn;
BT_DBG("%s status 0x%2.2x", hdev->name, ev->status);
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
if (!conn) {
conn = hci_conn_add(hdev, LE_LINK, &ev->bdaddr);
if (!conn) {
BT_ERR("No memory for new connection");
goto unlock;
}
conn->dst_type = ev->bdaddr_type;
if (ev->role == LE_CONN_ROLE_MASTER) {
conn->out = true;
conn->link_mode |= HCI_LM_MASTER;
}
}
if (ev->status) {
mgmt_connect_failed(hdev, &conn->dst, conn->type,
conn->dst_type, ev->status);
hci_proto_connect_cfm(conn, ev->status);
conn->state = BT_CLOSED;
hci_conn_del(conn);
goto unlock;
}
if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags))
mgmt_device_connected(hdev, &ev->bdaddr, conn->type,
conn->dst_type, 0, NULL, 0, NULL);
conn->sec_level = BT_SECURITY_LOW;
conn->handle = __le16_to_cpu(ev->handle);
conn->state = BT_CONNECTED;
hci_conn_hold_device(conn);
hci_conn_add_sysfs(conn);
hci_proto_connect_cfm(conn, ev->status);
unlock:
hci_dev_unlock(hdev);
}
static void hci_le_adv_report_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
u8 num_reports = skb->data[0];
void *ptr = &skb->data[1];
s8 rssi;
while (num_reports--) {
struct hci_ev_le_advertising_info *ev = ptr;
rssi = ev->data[ev->length];
mgmt_device_found(hdev, &ev->bdaddr, LE_LINK, ev->bdaddr_type,
NULL, rssi, 0, 1, ev->data, ev->length);
ptr += sizeof(*ev) + ev->length + 1;
}
}
static void hci_le_ltk_request_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_le_ltk_req *ev = (void *) skb->data;
struct hci_cp_le_ltk_reply cp;
struct hci_cp_le_ltk_neg_reply neg;
struct hci_conn *conn;
struct smp_ltk *ltk;
BT_DBG("%s handle 0x%4.4x", hdev->name, __le16_to_cpu(ev->handle));
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle));
if (conn == NULL)
goto not_found;
ltk = hci_find_ltk(hdev, ev->ediv, ev->random);
if (ltk == NULL)
goto not_found;
memcpy(cp.ltk, ltk->val, sizeof(ltk->val));
cp.handle = cpu_to_le16(conn->handle);
if (ltk->authenticated)
conn->sec_level = BT_SECURITY_HIGH;
hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp);
if (ltk->type & HCI_SMP_STK) {
list_del(&ltk->list);
kfree(ltk);
}
hci_dev_unlock(hdev);
return;
not_found:
neg.handle = ev->handle;
hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg);
hci_dev_unlock(hdev);
}
static void hci_le_meta_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_le_meta *le_ev = (void *) skb->data;
skb_pull(skb, sizeof(*le_ev));
switch (le_ev->subevent) {
case HCI_EV_LE_CONN_COMPLETE:
hci_le_conn_complete_evt(hdev, skb);
break;
case HCI_EV_LE_ADVERTISING_REPORT:
hci_le_adv_report_evt(hdev, skb);
break;
case HCI_EV_LE_LTK_REQ:
hci_le_ltk_request_evt(hdev, skb);
break;
default:
break;
}
}
static void hci_chan_selected_evt(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_ev_channel_selected *ev = (void *) skb->data;
struct hci_conn *hcon;
BT_DBG("%s handle 0x%2.2x", hdev->name, ev->phy_handle);
skb_pull(skb, sizeof(*ev));
hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
if (!hcon)
return;
amp_read_loc_assoc_final_data(hdev, hcon);
}
void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_event_hdr *hdr = (void *) skb->data;
__u8 event = hdr->evt;
skb_pull(skb, HCI_EVENT_HDR_SIZE);
switch (event) {
case HCI_EV_INQUIRY_COMPLETE:
hci_inquiry_complete_evt(hdev, skb);
break;
case HCI_EV_INQUIRY_RESULT:
hci_inquiry_result_evt(hdev, skb);
break;
case HCI_EV_CONN_COMPLETE:
hci_conn_complete_evt(hdev, skb);
break;
case HCI_EV_CONN_REQUEST:
hci_conn_request_evt(hdev, skb);
break;
case HCI_EV_DISCONN_COMPLETE:
hci_disconn_complete_evt(hdev, skb);
break;
case HCI_EV_AUTH_COMPLETE:
hci_auth_complete_evt(hdev, skb);
break;
case HCI_EV_REMOTE_NAME:
hci_remote_name_evt(hdev, skb);
break;
case HCI_EV_ENCRYPT_CHANGE:
hci_encrypt_change_evt(hdev, skb);
break;
case HCI_EV_CHANGE_LINK_KEY_COMPLETE:
hci_change_link_key_complete_evt(hdev, skb);
break;
case HCI_EV_REMOTE_FEATURES:
hci_remote_features_evt(hdev, skb);
break;
case HCI_EV_CMD_COMPLETE:
hci_cmd_complete_evt(hdev, skb);
break;
case HCI_EV_CMD_STATUS:
hci_cmd_status_evt(hdev, skb);
break;
case HCI_EV_ROLE_CHANGE:
hci_role_change_evt(hdev, skb);
break;
case HCI_EV_NUM_COMP_PKTS:
hci_num_comp_pkts_evt(hdev, skb);
break;
case HCI_EV_MODE_CHANGE:
hci_mode_change_evt(hdev, skb);
break;
case HCI_EV_PIN_CODE_REQ:
hci_pin_code_request_evt(hdev, skb);
break;
case HCI_EV_LINK_KEY_REQ:
hci_link_key_request_evt(hdev, skb);
break;
case HCI_EV_LINK_KEY_NOTIFY:
hci_link_key_notify_evt(hdev, skb);
break;
case HCI_EV_CLOCK_OFFSET:
hci_clock_offset_evt(hdev, skb);
break;
case HCI_EV_PKT_TYPE_CHANGE:
hci_pkt_type_change_evt(hdev, skb);
break;
case HCI_EV_PSCAN_REP_MODE:
hci_pscan_rep_mode_evt(hdev, skb);
break;
case HCI_EV_INQUIRY_RESULT_WITH_RSSI:
hci_inquiry_result_with_rssi_evt(hdev, skb);
break;
case HCI_EV_REMOTE_EXT_FEATURES:
hci_remote_ext_features_evt(hdev, skb);
break;
case HCI_EV_SYNC_CONN_COMPLETE:
hci_sync_conn_complete_evt(hdev, skb);
break;
case HCI_EV_EXTENDED_INQUIRY_RESULT:
hci_extended_inquiry_result_evt(hdev, skb);
break;
case HCI_EV_KEY_REFRESH_COMPLETE:
hci_key_refresh_complete_evt(hdev, skb);
break;
case HCI_EV_IO_CAPA_REQUEST:
hci_io_capa_request_evt(hdev, skb);
break;
case HCI_EV_IO_CAPA_REPLY:
hci_io_capa_reply_evt(hdev, skb);
break;
case HCI_EV_USER_CONFIRM_REQUEST:
hci_user_confirm_request_evt(hdev, skb);
break;
case HCI_EV_USER_PASSKEY_REQUEST:
hci_user_passkey_request_evt(hdev, skb);
break;
case HCI_EV_USER_PASSKEY_NOTIFY:
hci_user_passkey_notify_evt(hdev, skb);
break;
case HCI_EV_KEYPRESS_NOTIFY:
hci_keypress_notify_evt(hdev, skb);
break;
case HCI_EV_SIMPLE_PAIR_COMPLETE:
hci_simple_pair_complete_evt(hdev, skb);
break;
case HCI_EV_REMOTE_HOST_FEATURES:
hci_remote_host_features_evt(hdev, skb);
break;
case HCI_EV_LE_META:
hci_le_meta_evt(hdev, skb);
break;
case HCI_EV_CHANNEL_SELECTED:
hci_chan_selected_evt(hdev, skb);
break;
case HCI_EV_REMOTE_OOB_DATA_REQUEST:
hci_remote_oob_data_request_evt(hdev, skb);
break;
case HCI_EV_PHY_LINK_COMPLETE:
hci_phy_link_complete_evt(hdev, skb);
break;
case HCI_EV_LOGICAL_LINK_COMPLETE:
hci_loglink_complete_evt(hdev, skb);
break;
case HCI_EV_DISCONN_LOGICAL_LINK_COMPLETE:
hci_disconn_loglink_complete_evt(hdev, skb);
break;
case HCI_EV_DISCONN_PHY_LINK_COMPLETE:
hci_disconn_phylink_complete_evt(hdev, skb);
break;
case HCI_EV_NUM_COMP_BLOCKS:
hci_num_comp_blocks_evt(hdev, skb);
break;
default:
BT_DBG("%s event 0x%2.2x", hdev->name, event);
break;
}
kfree_skb(skb);
hdev->stat.evt_rx++;
}