linux/fs/bcachefs/recovery.c

1003 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "buckets.h"
#include "dirent.h"
#include "ec.h"
#include "error.h"
#include "fsck.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "quota.h"
#include "recovery.h"
#include "replicas.h"
#include "super-io.h"
#include <linux/sort.h>
#include <linux/stat.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
/* sort and dedup all keys in the journal: */
static void journal_entries_free(struct list_head *list)
{
while (!list_empty(list)) {
struct journal_replay *i =
list_first_entry(list, struct journal_replay, list);
list_del(&i->list);
kvpfree(i, offsetof(struct journal_replay, j) +
vstruct_bytes(&i->j));
}
}
static int journal_sort_key_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return cmp_int(l->btree_id, r->btree_id) ?:
bkey_cmp(l->pos, r->pos) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
static int journal_sort_seq_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->btree_id, r->btree_id) ?:
bkey_cmp(l->pos, r->pos);
}
static void journal_keys_sift(struct journal_keys *keys, struct journal_key *i)
{
while (i + 1 < keys->d + keys->nr &&
journal_sort_key_cmp(i, i + 1) > 0) {
swap(i[0], i[1]);
i++;
}
}
static void journal_keys_free(struct journal_keys *keys)
{
struct journal_key *i;
for_each_journal_key(*keys, i)
if (i->allocated)
kfree(i->k);
kvfree(keys->d);
keys->d = NULL;
keys->nr = 0;
}
static struct journal_keys journal_keys_sort(struct list_head *journal_entries)
{
struct journal_replay *p;
struct jset_entry *entry;
struct bkey_i *k, *_n;
struct journal_keys keys = { NULL }, keys_deduped = { NULL };
struct journal_key *i;
size_t nr_keys = 0;
list_for_each_entry(p, journal_entries, list)
for_each_jset_key(k, _n, entry, &p->j)
nr_keys++;
keys.journal_seq_base = keys_deduped.journal_seq_base =
le64_to_cpu(list_first_entry(journal_entries,
struct journal_replay,
list)->j.seq);
keys.d = kvmalloc(sizeof(keys.d[0]) * nr_keys, GFP_KERNEL);
if (!keys.d)
goto err;
keys_deduped.d = kvmalloc(sizeof(keys.d[0]) * nr_keys * 2, GFP_KERNEL);
if (!keys_deduped.d)
goto err;
list_for_each_entry(p, journal_entries, list)
for_each_jset_key(k, _n, entry, &p->j)
keys.d[keys.nr++] = (struct journal_key) {
.btree_id = entry->btree_id,
.pos = bkey_start_pos(&k->k),
.k = k,
.journal_seq = le64_to_cpu(p->j.seq) -
keys.journal_seq_base,
.journal_offset = k->_data - p->j._data,
};
sort(keys.d, nr_keys, sizeof(keys.d[0]), journal_sort_key_cmp, NULL);
i = keys.d;
while (i < keys.d + keys.nr) {
if (i + 1 < keys.d + keys.nr &&
i[0].btree_id == i[1].btree_id &&
!bkey_cmp(i[0].pos, i[1].pos)) {
if (bkey_cmp(i[0].k->k.p, i[1].k->k.p) <= 0) {
i++;
} else {
bch2_cut_front(i[1].k->k.p, i[0].k);
i[0].pos = i[1].k->k.p;
journal_keys_sift(&keys, i);
}
continue;
}
if (i + 1 < keys.d + keys.nr &&
i[0].btree_id == i[1].btree_id &&
bkey_cmp(i[0].k->k.p, bkey_start_pos(&i[1].k->k)) > 0) {
if ((cmp_int(i[0].journal_seq, i[1].journal_seq) ?:
cmp_int(i[0].journal_offset, i[1].journal_offset)) < 0) {
if (bkey_cmp(i[0].k->k.p, i[1].k->k.p) <= 0) {
bch2_cut_back(bkey_start_pos(&i[1].k->k), &i[0].k->k);
} else {
struct bkey_i *split =
kmalloc(bkey_bytes(i[0].k), GFP_KERNEL);
if (!split)
goto err;
bkey_copy(split, i[0].k);
bch2_cut_back(bkey_start_pos(&i[1].k->k), &split->k);
keys_deduped.d[keys_deduped.nr++] = (struct journal_key) {
.btree_id = i[0].btree_id,
.allocated = true,
.pos = bkey_start_pos(&split->k),
.k = split,
.journal_seq = i[0].journal_seq,
.journal_offset = i[0].journal_offset,
};
bch2_cut_front(i[1].k->k.p, i[0].k);
i[0].pos = i[1].k->k.p;
journal_keys_sift(&keys, i);
continue;
}
} else {
if (bkey_cmp(i[0].k->k.p, i[1].k->k.p) >= 0) {
i[1] = i[0];
i++;
continue;
} else {
bch2_cut_front(i[0].k->k.p, i[1].k);
i[1].pos = i[0].k->k.p;
journal_keys_sift(&keys, i + 1);
continue;
}
}
}
keys_deduped.d[keys_deduped.nr++] = *i++;
}
kvfree(keys.d);
return keys_deduped;
err:
journal_keys_free(&keys_deduped);
kvfree(keys.d);
return (struct journal_keys) { NULL };
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
{
BUG_ON(seq < j->replay_journal_seq);
BUG_ON(seq > j->replay_journal_seq_end);
while (j->replay_journal_seq < seq)
bch2_journal_pin_put(j, j->replay_journal_seq++);
}
static int bch2_extent_replay_key(struct bch_fs *c, struct bkey_i *k)
{
struct btree_trans trans;
struct btree_iter *iter, *split_iter;
/*
* We might cause compressed extents to be split, so we need to pass in
* a disk_reservation:
*/
struct disk_reservation disk_res =
bch2_disk_reservation_init(c, 0);
struct bkey_i *split;
bool split_compressed = false;
int ret;
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0);
retry:
bch2_trans_begin(&trans);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
bkey_start_pos(&k->k),
BTREE_ITER_INTENT);
do {
ret = bch2_btree_iter_traverse(iter);
if (ret)
goto err;
split_iter = bch2_trans_copy_iter(&trans, iter);
ret = PTR_ERR_OR_ZERO(split_iter);
if (ret)
goto err;
split = bch2_trans_kmalloc(&trans, bkey_bytes(&k->k));
ret = PTR_ERR_OR_ZERO(split);
if (ret)
goto err;
if (!split_compressed &&
bch2_extent_is_compressed(bkey_i_to_s_c(k)) &&
!bch2_extent_is_atomic(k, split_iter)) {
ret = bch2_disk_reservation_add(c, &disk_res,
k->k.size *
bch2_bkey_nr_dirty_ptrs(bkey_i_to_s_c(k)),
BCH_DISK_RESERVATION_NOFAIL);
BUG_ON(ret);
split_compressed = true;
}
bkey_copy(split, k);
bch2_cut_front(split_iter->pos, split);
bch2_extent_trim_atomic(split, split_iter);
bch2_trans_update(&trans, BTREE_INSERT_ENTRY(split_iter, split));
bch2_btree_iter_set_pos(iter, split->k.p);
} while (bkey_cmp(iter->pos, k->k.p) < 0);
if (split_compressed) {
ret = bch2_trans_mark_key(&trans, bkey_i_to_s_c(k),
-((s64) k->k.size),
BCH_BUCKET_MARK_OVERWRITE) ?:
bch2_trans_commit(&trans, &disk_res, NULL,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_NOMARK_OVERWRITES|
BTREE_INSERT_NO_CLEAR_REPLICAS);
} else {
ret = bch2_trans_commit(&trans, &disk_res, NULL,
BTREE_INSERT_ATOMIC|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_JOURNAL_REPLAY|
BTREE_INSERT_NOMARK);
}
if (ret)
goto err;
err:
if (ret == -EINTR)
goto retry;
bch2_disk_reservation_put(c, &disk_res);
return bch2_trans_exit(&trans) ?: ret;
}
static int bch2_journal_replay(struct bch_fs *c,
struct journal_keys keys)
{
struct journal *j = &c->journal;
struct journal_key *i;
int ret;
sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_seq_cmp, NULL);
for_each_journal_key(keys, i) {
replay_now_at(j, keys.journal_seq_base + i->journal_seq);
switch (i->btree_id) {
case BTREE_ID_ALLOC:
ret = bch2_alloc_replay_key(c, i->k);
break;
case BTREE_ID_EXTENTS:
ret = bch2_extent_replay_key(c, i->k);
break;
default:
ret = bch2_btree_insert(c, i->btree_id, i->k,
NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_JOURNAL_REPLAY|
BTREE_INSERT_NOMARK);
break;
}
if (ret) {
bch_err(c, "journal replay: error %d while replaying key",
ret);
return ret;
}
cond_resched();
}
replay_now_at(j, j->replay_journal_seq_end);
j->replay_journal_seq = 0;
bch2_journal_set_replay_done(j);
bch2_journal_flush_all_pins(j);
return bch2_journal_error(j);
}
static bool journal_empty(struct list_head *journal)
{
return list_empty(journal) ||
journal_entry_empty(&list_last_entry(journal,
struct journal_replay, list)->j);
}
static int
verify_journal_entries_not_blacklisted_or_missing(struct bch_fs *c,
struct list_head *journal)
{
struct journal_replay *i =
list_last_entry(journal, struct journal_replay, list);
u64 start_seq = le64_to_cpu(i->j.last_seq);
u64 end_seq = le64_to_cpu(i->j.seq);
u64 seq = start_seq;
int ret = 0;
list_for_each_entry(i, journal, list) {
fsck_err_on(seq != le64_to_cpu(i->j.seq), c,
"journal entries %llu-%llu missing! (replaying %llu-%llu)",
seq, le64_to_cpu(i->j.seq) - 1,
start_seq, end_seq);
seq = le64_to_cpu(i->j.seq);
fsck_err_on(bch2_journal_seq_is_blacklisted(c, seq, false), c,
"found blacklisted journal entry %llu", seq);
do {
seq++;
} while (bch2_journal_seq_is_blacklisted(c, seq, false));
}
fsck_err:
return ret;
}
/* journal replay early: */
static int journal_replay_entry_early(struct bch_fs *c,
struct jset_entry *entry)
{
int ret = 0;
switch (entry->type) {
case BCH_JSET_ENTRY_btree_root: {
struct btree_root *r = &c->btree_roots[entry->btree_id];
if (entry->u64s) {
r->level = entry->level;
bkey_copy(&r->key, &entry->start[0]);
r->error = 0;
} else {
r->error = -EIO;
}
r->alive = true;
break;
}
case BCH_JSET_ENTRY_usage: {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
switch (entry->btree_id) {
case FS_USAGE_RESERVED:
if (entry->level < BCH_REPLICAS_MAX)
c->usage_base->persistent_reserved[entry->level] =
le64_to_cpu(u->v);
break;
case FS_USAGE_INODES:
c->usage_base->nr_inodes = le64_to_cpu(u->v);
break;
case FS_USAGE_KEY_VERSION:
atomic64_set(&c->key_version,
le64_to_cpu(u->v));
break;
}
break;
}
case BCH_JSET_ENTRY_data_usage: {
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
ret = bch2_replicas_set_usage(c, &u->r,
le64_to_cpu(u->v));
break;
}
case BCH_JSET_ENTRY_blacklist: {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->seq),
le64_to_cpu(bl_entry->seq) + 1);
break;
}
case BCH_JSET_ENTRY_blacklist_v2: {
struct jset_entry_blacklist_v2 *bl_entry =
container_of(entry, struct jset_entry_blacklist_v2, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->start),
le64_to_cpu(bl_entry->end) + 1);
break;
}
}
return ret;
}
static int journal_replay_early(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct list_head *journal)
{
struct jset_entry *entry;
int ret;
if (clean) {
c->bucket_clock[READ].hand = le16_to_cpu(clean->read_clock);
c->bucket_clock[WRITE].hand = le16_to_cpu(clean->write_clock);
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
} else {
struct journal_replay *i =
list_last_entry(journal, struct journal_replay, list);
c->bucket_clock[READ].hand = le16_to_cpu(i->j.read_clock);
c->bucket_clock[WRITE].hand = le16_to_cpu(i->j.write_clock);
list_for_each_entry(i, journal, list)
vstruct_for_each(&i->j, entry) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
}
bch2_fs_usage_initialize(c);
return 0;
}
/* sb clean section: */
static struct bkey_i *btree_root_find(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry, *start, *end;
if (clean) {
start = clean->start;
end = vstruct_end(&clean->field);
} else {
start = j->start;
end = vstruct_last(j);
}
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root &&
entry->btree_id == id)
goto found;
return NULL;
found:
if (!entry->u64s)
return ERR_PTR(-EINVAL);
k = entry->start;
*level = entry->level;
return k;
}
static int verify_superblock_clean(struct bch_fs *c,
struct bch_sb_field_clean **cleanp,
struct jset *j)
{
unsigned i;
struct bch_sb_field_clean *clean = *cleanp;
int ret = 0;
if (!c->sb.clean || !j)
return 0;
if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
le64_to_cpu(clean->journal_seq),
le64_to_cpu(j->seq))) {
kfree(clean);
*cleanp = NULL;
return 0;
}
mustfix_fsck_err_on(j->read_clock != clean->read_clock, c,
"superblock read clock doesn't match journal after clean shutdown");
mustfix_fsck_err_on(j->write_clock != clean->write_clock, c,
"superblock read clock doesn't match journal after clean shutdown");
for (i = 0; i < BTREE_ID_NR; i++) {
struct bkey_i *k1, *k2;
unsigned l1 = 0, l2 = 0;
k1 = btree_root_find(c, clean, NULL, i, &l1);
k2 = btree_root_find(c, NULL, j, i, &l2);
if (!k1 && !k2)
continue;
mustfix_fsck_err_on(!k1 || !k2 ||
IS_ERR(k1) ||
IS_ERR(k2) ||
k1->k.u64s != k2->k.u64s ||
memcmp(k1, k2, bkey_bytes(k1)) ||
l1 != l2, c,
"superblock btree root doesn't match journal after clean shutdown");
}
fsck_err:
return ret;
}
static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *clean, *sb_clean;
int ret;
mutex_lock(&c->sb_lock);
sb_clean = bch2_sb_get_clean(c->disk_sb.sb);
if (fsck_err_on(!sb_clean, c,
"superblock marked clean but clean section not present")) {
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
mutex_unlock(&c->sb_lock);
return NULL;
}
clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
GFP_KERNEL);
if (!clean) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(-ENOMEM);
}
if (le16_to_cpu(c->disk_sb.sb->version) <
bcachefs_metadata_version_bkey_renumber)
bch2_sb_clean_renumber(clean, READ);
mutex_unlock(&c->sb_lock);
return clean;
fsck_err:
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
static int read_btree_roots(struct bch_fs *c)
{
unsigned i;
int ret = 0;
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = &c->btree_roots[i];
if (!r->alive)
continue;
if (i == BTREE_ID_ALLOC &&
test_reconstruct_alloc(c)) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO);
continue;
}
if (r->error) {
__fsck_err(c, i == BTREE_ID_ALLOC
? FSCK_CAN_IGNORE : 0,
"invalid btree root %s",
bch2_btree_ids[i]);
if (i == BTREE_ID_ALLOC)
c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO);
}
ret = bch2_btree_root_read(c, i, &r->key, r->level);
if (ret) {
__fsck_err(c, i == BTREE_ID_ALLOC
? FSCK_CAN_IGNORE : 0,
"error reading btree root %s",
bch2_btree_ids[i]);
if (i == BTREE_ID_ALLOC)
c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO);
}
}
for (i = 0; i < BTREE_ID_NR; i++)
if (!c->btree_roots[i].b)
bch2_btree_root_alloc(c, i);
fsck_err:
return ret;
}
int bch2_fs_recovery(struct bch_fs *c)
{
const char *err = "cannot allocate memory";
struct bch_sb_field_clean *clean = NULL;
u64 journal_seq;
LIST_HEAD(journal_entries);
struct journal_keys journal_keys = { NULL };
bool wrote = false, write_sb = false;
int ret;
if (c->sb.clean)
clean = read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
if (c->sb.clean)
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
if (!c->replicas.entries) {
bch_info(c, "building replicas info");
set_bit(BCH_FS_REBUILD_REPLICAS, &c->flags);
}
if (!c->sb.clean || c->opts.fsck) {
struct jset *j;
ret = bch2_journal_read(c, &journal_entries);
if (ret)
goto err;
if (mustfix_fsck_err_on(c->sb.clean && !journal_empty(&journal_entries), c,
"filesystem marked clean but journal not empty")) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_FEAT_ALLOC_INFO);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
}
if (!c->sb.clean && list_empty(&journal_entries)) {
bch_err(c, "no journal entries found");
ret = BCH_FSCK_REPAIR_IMPOSSIBLE;
goto err;
}
journal_keys = journal_keys_sort(&journal_entries);
if (!journal_keys.d) {
ret = -ENOMEM;
goto err;
}
j = &list_last_entry(&journal_entries,
struct journal_replay, list)->j;
ret = verify_superblock_clean(c, &clean, j);
if (ret)
goto err;
journal_seq = le64_to_cpu(j->seq) + 1;
} else {
journal_seq = le64_to_cpu(clean->journal_seq) + 1;
}
ret = journal_replay_early(c, clean, &journal_entries);
if (ret)
goto err;
if (!c->sb.clean) {
ret = bch2_journal_seq_blacklist_add(c,
journal_seq,
journal_seq + 4);
if (ret) {
bch_err(c, "error creating new journal seq blacklist entry");
goto err;
}
journal_seq += 4;
}
ret = bch2_blacklist_table_initialize(c);
ret = verify_journal_entries_not_blacklisted_or_missing(c,
&journal_entries);
if (ret)
goto err;
ret = bch2_fs_journal_start(&c->journal, journal_seq,
&journal_entries);
if (ret)
goto err;
ret = read_btree_roots(c);
if (ret)
goto err;
bch_verbose(c, "starting alloc read");
err = "error reading allocation information";
ret = bch2_alloc_read(c, &journal_keys);
if (ret)
goto err;
bch_verbose(c, "alloc read done");
bch_verbose(c, "starting stripes_read");
err = "error reading stripes";
ret = bch2_stripes_read(c, &journal_keys);
if (ret)
goto err;
bch_verbose(c, "stripes_read done");
set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags);
if ((c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)) &&
!(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_METADATA))) {
/*
* interior btree node updates aren't consistent with the
* journal; after an unclean shutdown we have to walk all
* pointers to metadata:
*/
bch_info(c, "starting metadata mark and sweep");
err = "error in mark and sweep";
ret = bch2_gc(c, NULL, true, true);
if (ret)
goto err;
bch_verbose(c, "mark and sweep done");
}
if (c->opts.fsck ||
!(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)) ||
test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags)) {
bch_info(c, "starting mark and sweep");
err = "error in mark and sweep";
ret = bch2_gc(c, &journal_keys, true, false);
if (ret)
goto err;
bch_verbose(c, "mark and sweep done");
}
clear_bit(BCH_FS_REBUILD_REPLICAS, &c->flags);
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type && !c->sb.clean)
atomic64_add(1 << 16, &c->key_version);
if (c->opts.norecovery)
goto out;
bch_verbose(c, "starting journal replay");
err = "journal replay failed";
ret = bch2_journal_replay(c, journal_keys);
if (ret)
goto err;
bch_verbose(c, "journal replay done");
if (!c->opts.nochanges) {
/*
* note that even when filesystem was clean there might be work
* to do here, if we ran gc (because of fsck) which recalculated
* oldest_gen:
*/
bch_verbose(c, "writing allocation info");
err = "error writing out alloc info";
ret = bch2_stripes_write(c, BTREE_INSERT_LAZY_RW, &wrote) ?:
bch2_alloc_write(c, BTREE_INSERT_LAZY_RW, &wrote);
if (ret) {
bch_err(c, "error writing alloc info");
goto err;
}
bch_verbose(c, "alloc write done");
}
if (!c->sb.clean) {
if (!(c->sb.features & (1 << BCH_FEATURE_ATOMIC_NLINK))) {
bch_info(c, "checking inode link counts");
err = "error in recovery";
ret = bch2_fsck_inode_nlink(c);
if (ret)
goto err;
bch_verbose(c, "check inodes done");
} else {
bch_verbose(c, "checking for deleted inodes");
err = "error in recovery";
ret = bch2_fsck_walk_inodes_only(c);
if (ret)
goto err;
bch_verbose(c, "check inodes done");
}
}
if (c->opts.fsck) {
bch_info(c, "starting fsck");
err = "error in fsck";
ret = bch2_fsck_full(c);
if (ret)
goto err;
bch_verbose(c, "fsck done");
}
if (enabled_qtypes(c)) {
bch_verbose(c, "reading quotas");
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
bch_verbose(c, "quotas done");
}
mutex_lock(&c->sb_lock);
if (c->opts.version_upgrade) {
if (c->sb.version < bcachefs_metadata_version_new_versioning)
c->disk_sb.sb->version_min =
le16_to_cpu(bcachefs_metadata_version_min);
c->disk_sb.sb->version = le16_to_cpu(bcachefs_metadata_version_current);
write_sb = true;
}
if (!test_bit(BCH_FS_ERROR, &c->flags)) {
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_INFO;
write_sb = true;
}
if (c->opts.fsck &&
!test_bit(BCH_FS_ERROR, &c->flags)) {
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_ATOMIC_NLINK;
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
write_sb = true;
}
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (c->journal_seq_blacklist_table &&
c->journal_seq_blacklist_table->nr > 128)
queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
out:
ret = 0;
err:
fsck_err:
bch2_flush_fsck_errs(c);
journal_keys_free(&journal_keys);
journal_entries_free(&journal_entries);
kfree(clean);
if (ret)
bch_err(c, "Error in recovery: %s (%i)", err, ret);
else
bch_verbose(c, "ret %i", ret);
return ret;
}
int bch2_fs_initialize(struct bch_fs *c)
{
struct bch_inode_unpacked root_inode, lostfound_inode;
struct bkey_inode_buf packed_inode;
struct bch_hash_info root_hash_info;
struct qstr lostfound = QSTR("lost+found");
const char *err = "cannot allocate memory";
struct bch_dev *ca;
LIST_HEAD(journal);
unsigned i;
int ret;
bch_notice(c, "initializing new filesystem");
mutex_lock(&c->sb_lock);
for_each_online_member(ca, c, i)
bch2_mark_dev_superblock(c, ca, 0);
mutex_unlock(&c->sb_lock);
set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags);
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
for (i = 0; i < BTREE_ID_NR; i++)
bch2_btree_root_alloc(c, i);
err = "unable to allocate journal buckets";
for_each_online_member(ca, c, i) {
ret = bch2_dev_journal_alloc(ca);
if (ret) {
percpu_ref_put(&ca->io_ref);
goto err;
}
}
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_fs_journal_start(&c->journal, 1, &journal);
bch2_journal_set_replay_done(&c->journal);
err = "error going read write";
ret = __bch2_fs_read_write(c, true);
if (ret)
goto err;
bch2_inode_init(c, &root_inode, 0, 0,
S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0, NULL);
root_inode.bi_inum = BCACHEFS_ROOT_INO;
root_inode.bi_nlink++; /* lost+found */
bch2_inode_pack(&packed_inode, &root_inode);
err = "error creating root directory";
ret = bch2_btree_insert(c, BTREE_ID_INODES,
&packed_inode.inode.k_i,
NULL, NULL, 0);
if (ret)
goto err;
bch2_inode_init(c, &lostfound_inode, 0, 0,
S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0,
&root_inode);
lostfound_inode.bi_inum = BCACHEFS_ROOT_INO + 1;
bch2_inode_pack(&packed_inode, &lostfound_inode);
err = "error creating lost+found";
ret = bch2_btree_insert(c, BTREE_ID_INODES,
&packed_inode.inode.k_i,
NULL, NULL, 0);
if (ret)
goto err;
root_hash_info = bch2_hash_info_init(c, &root_inode);
ret = bch2_dirent_create(c, BCACHEFS_ROOT_INO, &root_hash_info, DT_DIR,
&lostfound, lostfound_inode.bi_inum, NULL,
BTREE_INSERT_NOFAIL);
if (ret)
goto err;
if (enabled_qtypes(c)) {
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
}
err = "error writing first journal entry";
ret = bch2_journal_meta(&c->journal);
if (ret)
goto err;
mutex_lock(&c->sb_lock);
c->disk_sb.sb->version = c->disk_sb.sb->version_min =
le16_to_cpu(bcachefs_metadata_version_current);
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_ATOMIC_NLINK;
SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
err:
pr_err("Error initializing new filesystem: %s (%i)", err, ret);
return ret;
}