linux/mm/userfaultfd.c

795 lines
20 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/userfaultfd.c
*
* Copyright (C) 2015 Red Hat, Inc.
*/
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/userfaultfd_k.h>
#include <linux/mmu_notifier.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <asm/tlbflush.h>
mm/mprotect: use mmu_gather Patch series "mm/mprotect: avoid unnecessary TLB flushes", v6. This patchset is intended to remove unnecessary TLB flushes during mprotect() syscalls. Once this patch-set make it through, similar and further optimizations for MADV_COLD and userfaultfd would be possible. Basically, there are 3 optimizations in this patch-set: 1. Use TLB batching infrastructure to batch flushes across VMAs and do better/fewer flushes. This would also be handy for later userfaultfd enhancements. 2. Avoid unnecessary TLB flushes. This optimization is the one that provides most of the performance benefits. Unlike previous versions, we now only avoid flushes that would not result in spurious page-faults. 3. Avoiding TLB flushes on change_huge_pmd() that are only needed to prevent the A/D bits from changing. Andrew asked for some benchmark numbers. I do not have an easy determinate macrobenchmark in which it is easy to show benefit. I therefore ran a microbenchmark: a loop that does the following on anonymous memory, just as a sanity check to see that time is saved by avoiding TLB flushes. The loop goes: mprotect(p, PAGE_SIZE, PROT_READ) mprotect(p, PAGE_SIZE, PROT_READ|PROT_WRITE) *p = 0; // make the page writable The test was run in KVM guest with 1 or 2 threads (the second thread was busy-looping). I measured the time (cycles) of each operation: 1 thread 2 threads mmots +patch mmots +patch PROT_READ 3494 2725 (-22%) 8630 7788 (-10%) PROT_READ|WRITE 3952 2724 (-31%) 9075 2865 (-68%) [ mmots = v5.17-rc6-mmots-2022-03-06-20-38 ] The exact numbers are really meaningless, but the benefit is clear. There are 2 interesting results though. (1) PROT_READ is cheaper, while one can expect it not to be affected. This is presumably due to TLB miss that is saved (2) Without memory access (*p = 0), the speedup of the patch is even greater. In that scenario mprotect(PROT_READ) also avoids the TLB flush. As a result both operations on the patched kernel take roughly ~1500 cycles (with either 1 or 2 threads), whereas on mmotm their cost is as high as presented in the table. This patch (of 3): change_pXX_range() currently does not use mmu_gather, but instead implements its own deferred TLB flushes scheme. This both complicates the code, as developers need to be aware of different invalidation schemes, and prevents opportunities to avoid TLB flushes or perform them in finer granularity. The use of mmu_gather for modified PTEs has benefits in various scenarios even if pages are not released. For instance, if only a single page needs to be flushed out of a range of many pages, only that page would be flushed. If a THP page is flushed, on x86 a single TLB invlpg instruction can be used instead of 512 instructions (or a full TLB flush, which would Linux would actually use by default). mprotect() over multiple VMAs requires a single flush. Use mmu_gather in change_pXX_range(). As the pages are not released, only record the flushed range using tlb_flush_pXX_range(). Handle THP similarly and get rid of flush_cache_range() which becomes redundant since tlb_start_vma() calls it when needed. Link: https://lkml.kernel.org/r/20220401180821.1986781-1-namit@vmware.com Link: https://lkml.kernel.org/r/20220401180821.1986781-2-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Xu <peterx@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Nick Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 01:20:50 +00:00
#include <asm/tlb.h>
#include "internal.h"
static __always_inline
struct vm_area_struct *find_dst_vma(struct mm_struct *dst_mm,
unsigned long dst_start,
unsigned long len)
{
/*
* Make sure that the dst range is both valid and fully within a
* single existing vma.
*/
struct vm_area_struct *dst_vma;
dst_vma = find_vma(dst_mm, dst_start);
if (!dst_vma)
return NULL;
if (dst_start < dst_vma->vm_start ||
dst_start + len > dst_vma->vm_end)
return NULL;
/*
* Check the vma is registered in uffd, this is required to
* enforce the VM_MAYWRITE check done at uffd registration
* time.
*/
if (!dst_vma->vm_userfaultfd_ctx.ctx)
return NULL;
return dst_vma;
}
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
/*
* Install PTEs, to map dst_addr (within dst_vma) to page.
*
userfaultfd/shmem: modify shmem_mfill_atomic_pte to use install_pte() In a previous commit, we added the mfill_atomic_install_pte() helper. This helper does the job of setting up PTEs for an existing page, to map it into a given VMA. It deals with both the anon and shmem cases, as well as the shared and private cases. In other words, shmem_mfill_atomic_pte() duplicates a case it already handles. So, expose it, and let shmem_mfill_atomic_pte() use it directly, to reduce code duplication. This requires that we refactor shmem_mfill_atomic_pte() a bit: Instead of doing accounting (shmem_recalc_inode() et al) part-way through the PTE setup, do it afterward. This frees up mfill_atomic_install_pte() from having to care about this accounting, and means we don't need to e.g. shmem_uncharge() in the error path. A side effect is this switches shmem_mfill_atomic_pte() to use lru_cache_add_inactive_or_unevictable() instead of just lru_cache_add(). This wrapper does some extra accounting in an exceptional case, if appropriate, so it's actually the more correct thing to use. Link: https://lkml.kernel.org/r/20210503180737.2487560-7-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:31 +00:00
* This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
* and anon, and for both shared and private VMAs.
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
*/
userfaultfd/shmem: modify shmem_mfill_atomic_pte to use install_pte() In a previous commit, we added the mfill_atomic_install_pte() helper. This helper does the job of setting up PTEs for an existing page, to map it into a given VMA. It deals with both the anon and shmem cases, as well as the shared and private cases. In other words, shmem_mfill_atomic_pte() duplicates a case it already handles. So, expose it, and let shmem_mfill_atomic_pte() use it directly, to reduce code duplication. This requires that we refactor shmem_mfill_atomic_pte() a bit: Instead of doing accounting (shmem_recalc_inode() et al) part-way through the PTE setup, do it afterward. This frees up mfill_atomic_install_pte() from having to care about this accounting, and means we don't need to e.g. shmem_uncharge() in the error path. A side effect is this switches shmem_mfill_atomic_pte() to use lru_cache_add_inactive_or_unevictable() instead of just lru_cache_add(). This wrapper does some extra accounting in an exceptional case, if appropriate, so it's actually the more correct thing to use. Link: https://lkml.kernel.org/r/20210503180737.2487560-7-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:31 +00:00
int mfill_atomic_install_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr, struct page *page,
bool newly_allocated, bool wp_copy)
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
{
int ret;
pte_t _dst_pte, *dst_pte;
bool writable = dst_vma->vm_flags & VM_WRITE;
bool vm_shared = dst_vma->vm_flags & VM_SHARED;
bool page_in_cache = page_mapping(page);
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
spinlock_t *ptl;
struct folio *folio;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
struct inode *inode;
pgoff_t offset, max_off;
_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
mm/shmem: unconditionally set pte dirty in mfill_atomic_install_pte Patch series "mm: A few cleanup patches around zap, shmem and uffd", v4. IMHO all of them are very nice cleanups to existing code already, they're all small and self-contained. They'll be needed by uffd-wp coming series. This patch (of 4): It was conditionally done previously, as there's one shmem special case that we use SetPageDirty() instead. However that's not necessary and it should be easier and cleaner to do it unconditionally in mfill_atomic_install_pte(). The most recent discussion about this is here, where Hugh explained the history of SetPageDirty() and why it's possible that it's not required at all: https://lore.kernel.org/lkml/alpine.LSU.2.11.2104121657050.1097@eggly.anvils/ Currently mfill_atomic_install_pte() has three callers: 1. shmem_mfill_atomic_pte 2. mcopy_atomic_pte 3. mcontinue_atomic_pte After the change: case (1) should have its SetPageDirty replaced by the dirty bit on pte (so we unify them together, finally), case (2) should have no functional change at all as it has page_in_cache==false, case (3) may add a dirty bit to the pte. However since case (3) is UFFDIO_CONTINUE for shmem, it's merely 100% sure the page is dirty after all because UFFDIO_CONTINUE normally requires another process to modify the page cache and kick the faulted thread, so should not make a real difference either. This should make it much easier to follow on which case will set dirty for uffd, as we'll simply set it all now for all uffd related ioctls. Meanwhile, no special handling of SetPageDirty() if there's no need. Link: https://lkml.kernel.org/r/20210915181456.10739-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210915181456.10739-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Axel Rasmussen <axelrasmussen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 20:38:24 +00:00
_dst_pte = pte_mkdirty(_dst_pte);
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
if (page_in_cache && !vm_shared)
writable = false;
if (writable)
_dst_pte = pte_mkwrite(_dst_pte);
mm/uffd: always wr-protect pte in pte|pmd_mkuffd_wp() This patch is a cleanup to always wr-protect pte/pmd in mkuffd_wp paths. The reasons I still think this patch is worthwhile, are: (1) It is a cleanup already; diffstat tells. (2) It just feels natural after I thought about this, if the pte is uffd protected, let's remove the write bit no matter what it was. (2) Since x86 is the only arch that supports uffd-wp, it also redefines pte|pmd_mkuffd_wp() in that it should always contain removals of write bits. It means any future arch that want to implement uffd-wp should naturally follow this rule too. It's good to make it a default, even if with vm_page_prot changes on VM_UFFD_WP. (3) It covers more than vm_page_prot. So no chance of any potential future "accident" (like pte_mkdirty() sparc64 or loongarch, even though it just got its pte_mkdirty fixed <1 month ago). It'll be fairly clear when reading the code too that we don't worry anything before a pte_mkuffd_wp() on uncertainty of the write bit. We may call pte_wrprotect() one more time in some paths (e.g. thp split), but that should be fully local bitop instruction so the overhead should be negligible. Although this patch should logically also fix all the known issues on uffd-wp too recently on page migration (not for numa hint recovery - that may need another explcit pte_wrprotect), but this is not the plan for that fix. So no fixes, and stable doesn't need this. Link: https://lkml.kernel.org/r/20221214201533.1774616-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ives van Hoorne <ives@codesandbox.io> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-14 20:15:33 +00:00
if (wp_copy)
_dst_pte = pte_mkuffd_wp(_dst_pte);
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
if (vma_is_shmem(dst_vma)) {
/* serialize against truncate with the page table lock */
inode = dst_vma->vm_file->f_inode;
offset = linear_page_index(dst_vma, dst_addr);
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
ret = -EFAULT;
if (unlikely(offset >= max_off))
goto out_unlock;
}
ret = -EEXIST;
/*
* We allow to overwrite a pte marker: consider when both MISSING|WP
* registered, we firstly wr-protect a none pte which has no page cache
* page backing it, then access the page.
*/
if (!pte_none_mostly(*dst_pte))
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
goto out_unlock;
folio = page_folio(page);
mm/munlock: rmap call mlock_vma_page() munlock_vma_page() Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-15 02:26:39 +00:00
if (page_in_cache) {
/* Usually, cache pages are already added to LRU */
if (newly_allocated)
folio_add_lru(folio);
mm/munlock: rmap call mlock_vma_page() munlock_vma_page() Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-15 02:26:39 +00:00
page_add_file_rmap(page, dst_vma, false);
} else {
mm/rmap: drop "compound" parameter from page_add_new_anon_rmap() New anonymous pages are always mapped natively: only THP/khugepaged code maps a new compound anonymous page and passes "true". Otherwise, we're just dealing with simple, non-compound pages. Let's give the interface clearer semantics and document these. Remove the PageTransCompound() sanity check from page_add_new_anon_rmap(). Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 01:20:43 +00:00
page_add_new_anon_rmap(page, dst_vma, dst_addr);
folio_add_lru_vma(folio, dst_vma);
mm/munlock: rmap call mlock_vma_page() munlock_vma_page() Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-02-15 02:26:39 +00:00
}
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
/*
* Must happen after rmap, as mm_counter() checks mapping (via
* PageAnon()), which is set by __page_set_anon_rmap().
*/
inc_mm_counter(dst_mm, mm_counter(page));
set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
ret = 0;
out_unlock:
pte_unmap_unlock(dst_pte, ptl);
return ret;
}
static int mcopy_atomic_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
struct page **pagep,
bool wp_copy)
{
void *page_kaddr;
int ret;
struct page *page;
if (!*pagep) {
ret = -ENOMEM;
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, dst_vma, dst_addr);
if (!page)
goto out;
mm/userfaultfd: replace kmap/kmap_atomic() with kmap_local_page() kmap() and kmap_atomic() are being deprecated in favor of kmap_local_page() which is appropriate for any thread local context.[1] A recent locking bug report with userfaultfd showed that the conversion of the kmap_atomic()'s in those code flows requires care with regard to the prevention of deadlock.[2] git archaeology implied that the recursion may not be an actual bug.[3] However, depending on the implementation of the mmap_lock and the condition of the call there may still be a deadlock.[4] So this is not purely a lockdep issue. Considering a single threaded call stack there are 3 options. 1) Different mm's are in play (no issue) 2) Readlock implementation is recursive and same mm is in play (no issue) 3) Readlock implementation is _not_ recursive (issue) The mmap_lock is recursive so with a single thread there is no issue. However, Matthew pointed out a deadlock scenario when you consider additional process' and threads thusly. "The readlock implementation is only recursive if nobody else has taken a write lock. If you have a multithreaded process, one of the other threads can call mmap() and that will prevent recursion (due to fairness). Even if it's a different process that you're trying to acquire the mmap read lock on, you can still get into a deadly embrace. eg: process A thread 1 takes read lock on own mmap_lock process A thread 2 calls mmap, blocks taking write lock process B thread 1 takes page fault, read lock on own mmap lock process B thread 2 calls mmap, blocks taking write lock process A thread 1 blocks taking read lock on process B process B thread 1 blocks taking read lock on process A Now all four threads are blocked waiting for each other." Regardless using pagefault_disable() ensures that no matter what locking implementation is used a deadlock will not occur. Complete kmap conversion in userfaultfd by replacing the kmap() and kmap_atomic() calls with kmap_local_page(). When replacing the kmap_atomic() call ensure page faults continue to be disabled to support the correct fall back behavior and add a comment to inform future souls of the requirement. [1] https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com/ [2] https://lore.kernel.org/all/Y1Mh2S7fUGQ%2FiKFR@iweiny-desk3/ [3] https://lore.kernel.org/all/Y1MymJ%2FINb45AdaY@iweiny-desk3/ [4] https://lore.kernel.org/lkml/Y1bXBtGTCym77%2FoD@casper.infradead.org/ [ira.weiny@intel.com: v2] Link: https://lkml.kernel.org/r/20221025220136.2366143-1-ira.weiny@intel.com Link: https://lkml.kernel.org/r/20221024043452.1491677-1-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-24 04:34:52 +00:00
page_kaddr = kmap_local_page(page);
/*
* The read mmap_lock is held here. Despite the
* mmap_lock being read recursive a deadlock is still
* possible if a writer has taken a lock. For example:
*
* process A thread 1 takes read lock on own mmap_lock
* process A thread 2 calls mmap, blocks taking write lock
* process B thread 1 takes page fault, read lock on own mmap lock
* process B thread 2 calls mmap, blocks taking write lock
* process A thread 1 blocks taking read lock on process B
* process B thread 1 blocks taking read lock on process A
*
* Disable page faults to prevent potential deadlock
* and retry the copy outside the mmap_lock.
*/
pagefault_disable();
ret = copy_from_user(page_kaddr,
(const void __user *) src_addr,
PAGE_SIZE);
mm/userfaultfd: replace kmap/kmap_atomic() with kmap_local_page() kmap() and kmap_atomic() are being deprecated in favor of kmap_local_page() which is appropriate for any thread local context.[1] A recent locking bug report with userfaultfd showed that the conversion of the kmap_atomic()'s in those code flows requires care with regard to the prevention of deadlock.[2] git archaeology implied that the recursion may not be an actual bug.[3] However, depending on the implementation of the mmap_lock and the condition of the call there may still be a deadlock.[4] So this is not purely a lockdep issue. Considering a single threaded call stack there are 3 options. 1) Different mm's are in play (no issue) 2) Readlock implementation is recursive and same mm is in play (no issue) 3) Readlock implementation is _not_ recursive (issue) The mmap_lock is recursive so with a single thread there is no issue. However, Matthew pointed out a deadlock scenario when you consider additional process' and threads thusly. "The readlock implementation is only recursive if nobody else has taken a write lock. If you have a multithreaded process, one of the other threads can call mmap() and that will prevent recursion (due to fairness). Even if it's a different process that you're trying to acquire the mmap read lock on, you can still get into a deadly embrace. eg: process A thread 1 takes read lock on own mmap_lock process A thread 2 calls mmap, blocks taking write lock process B thread 1 takes page fault, read lock on own mmap lock process B thread 2 calls mmap, blocks taking write lock process A thread 1 blocks taking read lock on process B process B thread 1 blocks taking read lock on process A Now all four threads are blocked waiting for each other." Regardless using pagefault_disable() ensures that no matter what locking implementation is used a deadlock will not occur. Complete kmap conversion in userfaultfd by replacing the kmap() and kmap_atomic() calls with kmap_local_page(). When replacing the kmap_atomic() call ensure page faults continue to be disabled to support the correct fall back behavior and add a comment to inform future souls of the requirement. [1] https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com/ [2] https://lore.kernel.org/all/Y1Mh2S7fUGQ%2FiKFR@iweiny-desk3/ [3] https://lore.kernel.org/all/Y1MymJ%2FINb45AdaY@iweiny-desk3/ [4] https://lore.kernel.org/lkml/Y1bXBtGTCym77%2FoD@casper.infradead.org/ [ira.weiny@intel.com: v2] Link: https://lkml.kernel.org/r/20221025220136.2366143-1-ira.weiny@intel.com Link: https://lkml.kernel.org/r/20221024043452.1491677-1-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-24 04:34:52 +00:00
pagefault_enable();
kunmap_local(page_kaddr);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
userfaultfd: use ENOENT instead of EFAULT if the atomic copy user fails Patch series "userfaultfd shmem updates". Jann found two bugs in the userfaultfd shmem MAP_SHARED backend: the lack of the VM_MAYWRITE check and the lack of i_size checks. Then looking into the above we also fixed the MAP_PRIVATE case. Hugh by source review also found a data loss source if UFFDIO_COPY is used on shmem MAP_SHARED PROT_READ mappings (the production usages incidentally run with PROT_READ|PROT_WRITE, so the data loss couldn't happen in those production usages like with QEMU). The whole patchset is marked for stable. We verified QEMU postcopy live migration with guest running on shmem MAP_PRIVATE run as well as before after the fix of shmem MAP_PRIVATE. Regardless if it's shmem or hugetlbfs or MAP_PRIVATE or MAP_SHARED, QEMU unconditionally invokes a punch hole if the guest mapping is filebacked and a MADV_DONTNEED too (needed to get rid of the MAP_PRIVATE COWs and for the anon backend). This patch (of 5): We internally used EFAULT to communicate with the caller, switch to ENOENT, so EFAULT can be used as a non internal retval. Link: http://lkml.kernel.org/r/20181126173452.26955-2-aarcange@redhat.com Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: <stable@vger.kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:25 +00:00
ret = -ENOENT;
*pagep = page;
/* don't free the page */
goto out;
}
flush_dcache_page(page);
} else {
page = *pagep;
*pagep = NULL;
}
/*
* The memory barrier inside __SetPageUptodate makes sure that
* preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
__SetPageUptodate(page);
ret = -ENOMEM;
if (mem_cgroup_charge(page_folio(page), dst_mm, GFP_KERNEL))
goto out_release;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
page, true, wp_copy);
if (ret)
goto out_release;
out:
return ret;
out_release:
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
goto out;
}
static int mfill_zeropage_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr)
{
pte_t _dst_pte, *dst_pte;
spinlock_t *ptl;
int ret;
pgoff_t offset, max_off;
struct inode *inode;
_dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
dst_vma->vm_page_prot));
dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
if (dst_vma->vm_file) {
/* the shmem MAP_PRIVATE case requires checking the i_size */
inode = dst_vma->vm_file->f_inode;
offset = linear_page_index(dst_vma, dst_addr);
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
ret = -EFAULT;
if (unlikely(offset >= max_off))
goto out_unlock;
}
ret = -EEXIST;
if (!pte_none(*dst_pte))
goto out_unlock;
set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
ret = 0;
out_unlock:
pte_unmap_unlock(dst_pte, ptl);
return ret;
}
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
/* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
static int mcontinue_atomic_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
bool wp_copy)
{
struct inode *inode = file_inode(dst_vma->vm_file);
pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
struct folio *folio;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
struct page *page;
int ret;
ret = shmem_get_folio(inode, pgoff, &folio, SGP_NOALLOC);
/* Our caller expects us to return -EFAULT if we failed to find folio */
if (ret == -ENOENT)
ret = -EFAULT;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
if (ret)
goto out;
if (!folio) {
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
ret = -EFAULT;
goto out;
}
page = folio_file_page(folio, pgoff);
mm: shmem: don't truncate page if memory failure happens The current behavior of memory failure is to truncate the page cache regardless of dirty or clean. If the page is dirty the later access will get the obsolete data from disk without any notification to the users. This may cause silent data loss. It is even worse for shmem since shmem is in-memory filesystem, truncating page cache means discarding data blocks. The later read would return all zero. The right approach is to keep the corrupted page in page cache, any later access would return error for syscalls or SIGBUS for page fault, until the file is truncated, hole punched or removed. The regular storage backed filesystems would be more complicated so this patch is focused on shmem. This also unblock the support for soft offlining shmem THP. [akpm@linux-foundation.org: coding style fixes] [arnd@arndb.de: fix uninitialized variable use in me_pagecache_clean()] Link: https://lkml.kernel.org/r/20211022064748.4173718-1-arnd@kernel.org [Fix invalid pointer dereference in shmem_read_mapping_page_gfp() with a slight different implementation from what Ajay Garg <ajaygargnsit@gmail.com> and Muchun Song <songmuchun@bytedance.com> proposed and reworked the error handling of shmem_write_begin() suggested by Linus] Link: https://lore.kernel.org/linux-mm/20211111084617.6746-1-ajaygargnsit@gmail.com/ Link: https://lkml.kernel.org/r/20211020210755.23964-6-shy828301@gmail.com Link: https://lkml.kernel.org/r/20211116193247.21102-1-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ajay Garg <ajaygargnsit@gmail.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Andy Lavr <andy.lavr@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:05:19 +00:00
if (PageHWPoison(page)) {
ret = -EIO;
goto out_release;
}
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
page, false, wp_copy);
if (ret)
goto out_release;
folio_unlock(folio);
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
ret = 0;
out:
return ret;
out_release:
folio_unlock(folio);
folio_put(folio);
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
goto out;
}
static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pgd = pgd_offset(mm, address);
p4d = p4d_alloc(mm, pgd, address);
if (!p4d)
return NULL;
pud = pud_alloc(mm, p4d, address);
if (!pud)
return NULL;
/*
* Note that we didn't run this because the pmd was
* missing, the *pmd may be already established and in
* turn it may also be a trans_huge_pmd.
*/
return pmd_alloc(mm, pud, address);
}
#ifdef CONFIG_HUGETLB_PAGE
/*
* __mcopy_atomic processing for HUGETLB vmas. Note that this routine is
* called with mmap_lock held, it will release mmap_lock before returning.
*/
static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
struct vm_area_struct *dst_vma,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
enum mcopy_atomic_mode mode,
bool wp_copy)
{
int vm_shared = dst_vma->vm_flags & VM_SHARED;
ssize_t err;
pte_t *dst_pte;
unsigned long src_addr, dst_addr;
long copied;
struct page *page;
unsigned long vma_hpagesize;
pgoff_t idx;
u32 hash;
struct address_space *mapping;
/*
* There is no default zero huge page for all huge page sizes as
* supported by hugetlb. A PMD_SIZE huge pages may exist as used
* by THP. Since we can not reliably insert a zero page, this
* feature is not supported.
*/
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
if (mode == MCOPY_ATOMIC_ZEROPAGE) {
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
return -EINVAL;
}
src_addr = src_start;
dst_addr = dst_start;
copied = 0;
page = NULL;
vma_hpagesize = vma_kernel_pagesize(dst_vma);
/*
* Validate alignment based on huge page size
*/
err = -EINVAL;
if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
goto out_unlock;
retry:
/*
* On routine entry dst_vma is set. If we had to drop mmap_lock and
* retry, dst_vma will be set to NULL and we must lookup again.
*/
if (!dst_vma) {
err = -ENOENT;
dst_vma = find_dst_vma(dst_mm, dst_start, len);
if (!dst_vma || !is_vm_hugetlb_page(dst_vma))
goto out_unlock;
err = -EINVAL;
if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
goto out_unlock;
vm_shared = dst_vma->vm_flags & VM_SHARED;
}
/*
* If not shared, ensure the dst_vma has a anon_vma.
*/
err = -ENOMEM;
if (!vm_shared) {
if (unlikely(anon_vma_prepare(dst_vma)))
goto out_unlock;
}
while (src_addr < src_start + len) {
BUG_ON(dst_addr >= dst_start + len);
/*
hugetlb: use new vma_lock for pmd sharing synchronization The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:09 +00:00
* Serialize via vma_lock and hugetlb_fault_mutex.
* vma_lock ensures the dst_pte remains valid even
* in the case of shared pmds. fault mutex prevents
* races with other faulting threads.
*/
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/ [2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/ [3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com [4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/ [5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:05 +00:00
idx = linear_page_index(dst_vma, dst_addr);
hugetlbfs: revert use i_mmap_rwsem for more pmd sharing synchronization Commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") added code to take i_mmap_rwsem in read mode for the duration of fault processing. However, this has been shown to cause performance/scaling issues. Revert the code and go back to only taking the semaphore in huge_pmd_share during the fault path. Keep the code that takes i_mmap_rwsem in write mode before calling try_to_unmap as this is required if huge_pmd_unshare is called. NOTE: Reverting this code does expose the following race condition. Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... ptl = huge_pte_lock(ptep) get/update pte set_pte_at(pte, ptep) It is unknown if the above race was ever experienced by a user. It was discovered via code inspection when initially addressed. In subsequent patches, a new synchronization mechanism will be added to coordinate pmd sharing and eliminate this race. Link: https://lkml.kernel.org/r/20220914221810.95771-3-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:03 +00:00
mapping = dst_vma->vm_file->f_mapping;
hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb: use new vma_lock for pmd sharing synchronization The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:09 +00:00
hugetlb_vma_lock_read(dst_vma);
err = -ENOMEM;
hugetlb: pass vma into huge_pte_alloc() and huge_pmd_share() Patch series "hugetlb: Disable huge pmd unshare for uffd-wp", v4. This series tries to disable huge pmd unshare of hugetlbfs backed memory for uffd-wp. Although uffd-wp of hugetlbfs is still during rfc stage, the idea of this series may be needed for multiple tasks (Axel's uffd minor fault series, and Mike's soft dirty series), so I picked it out from the larger series. This patch (of 4): It is a preparation work to be able to behave differently in the per architecture huge_pte_alloc() according to different VMA attributes. Pass it deeper into huge_pmd_share() so that we can avoid the find_vma() call. [peterx@redhat.com: build fix] Link: https://lkml.kernel.org/r/20210304164653.GB397383@xz-x1Link: https://lkml.kernel.org/r/20210218230633.15028-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210218230633.15028-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:33:00 +00:00
dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
if (!dst_pte) {
hugetlb: use new vma_lock for pmd sharing synchronization The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:09 +00:00
hugetlb_vma_unlock_read(dst_vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
goto out_unlock;
}
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
if (mode != MCOPY_ATOMIC_CONTINUE &&
!huge_pte_none_mostly(huge_ptep_get(dst_pte))) {
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
err = -EEXIST;
hugetlb: use new vma_lock for pmd sharing synchronization The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:09 +00:00
hugetlb_vma_unlock_read(dst_vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
goto out_unlock;
}
err = hugetlb_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma,
dst_addr, src_addr, mode, &page,
wp_copy);
hugetlb: use new vma_lock for pmd sharing synchronization The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-14 22:18:09 +00:00
hugetlb_vma_unlock_read(dst_vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
cond_resched();
userfaultfd: use ENOENT instead of EFAULT if the atomic copy user fails Patch series "userfaultfd shmem updates". Jann found two bugs in the userfaultfd shmem MAP_SHARED backend: the lack of the VM_MAYWRITE check and the lack of i_size checks. Then looking into the above we also fixed the MAP_PRIVATE case. Hugh by source review also found a data loss source if UFFDIO_COPY is used on shmem MAP_SHARED PROT_READ mappings (the production usages incidentally run with PROT_READ|PROT_WRITE, so the data loss couldn't happen in those production usages like with QEMU). The whole patchset is marked for stable. We verified QEMU postcopy live migration with guest running on shmem MAP_PRIVATE run as well as before after the fix of shmem MAP_PRIVATE. Regardless if it's shmem or hugetlbfs or MAP_PRIVATE or MAP_SHARED, QEMU unconditionally invokes a punch hole if the guest mapping is filebacked and a MADV_DONTNEED too (needed to get rid of the MAP_PRIVATE COWs and for the anon backend). This patch (of 5): We internally used EFAULT to communicate with the caller, switch to ENOENT, so EFAULT can be used as a non internal retval. Link: http://lkml.kernel.org/r/20181126173452.26955-2-aarcange@redhat.com Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: <stable@vger.kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:25 +00:00
if (unlikely(err == -ENOENT)) {
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
BUG_ON(!page);
err = copy_huge_page_from_user(page,
(const void __user *)src_addr,
vma_hpagesize / PAGE_SIZE,
true);
if (unlikely(err)) {
err = -EFAULT;
goto out;
}
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_lock(dst_mm);
dst_vma = NULL;
goto retry;
} else
BUG_ON(page);
if (!err) {
dst_addr += vma_hpagesize;
src_addr += vma_hpagesize;
copied += vma_hpagesize;
if (fatal_signal_pending(current))
err = -EINTR;
}
if (err)
break;
}
out_unlock:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
out:
mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY On UFFDIO_COPY, if we fail to copy the page contents while holding the hugetlb_fault_mutex, we will drop the mutex and return to the caller after allocating a page that consumed a reservation. In this case there may be a fault that double consumes the reservation. To handle this, we free the allocated page, fix the reservations, and allocate a temporary hugetlb page and return that to the caller. When the caller does the copy outside of the lock, we again check the cache, and allocate a page consuming the reservation, and copy over the contents. Test: Hacked the code locally such that resv_huge_pages underflows produce a warning and the copy_huge_page_from_user() always fails, then: ./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success ./tools/testing/selftests/vm/userfaultfd hugetlb 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success Both tests succeed and produce no warnings. After the test runs number of free/resv hugepages is correct. [yuehaibing@huawei.com: remove set but not used variable 'vm_alloc_shared'] Link: https://lkml.kernel.org/r/20210601141610.28332-1-yuehaibing@huawei.com [almasrymina@google.com: fix allocation error check and copy func name] Link: https://lkml.kernel.org/r/20210605010626.1459873-1-almasrymina@google.com Link: https://lkml.kernel.org/r/20210528005029.88088-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:48:19 +00:00
if (page)
put_page(page);
BUG_ON(copied < 0);
BUG_ON(err > 0);
BUG_ON(!copied && !err);
return copied ? copied : err;
}
#else /* !CONFIG_HUGETLB_PAGE */
/* fail at build time if gcc attempts to use this */
extern ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
struct vm_area_struct *dst_vma,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
enum mcopy_atomic_mode mode,
bool wp_copy);
#endif /* CONFIG_HUGETLB_PAGE */
static __always_inline ssize_t mfill_atomic_pte(struct mm_struct *dst_mm,
pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
struct page **page,
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
enum mcopy_atomic_mode mode,
bool wp_copy)
{
ssize_t err;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
if (mode == MCOPY_ATOMIC_CONTINUE) {
return mcontinue_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
wp_copy);
}
userfaultfd: shmem: allocate anonymous memory for MAP_PRIVATE shmem Userfaultfd did not create private memory when UFFDIO_COPY was invoked on a MAP_PRIVATE shmem mapping. Instead it wrote to the shmem file, even when that had not been opened for writing. Though, fortunately, that could only happen where there was a hole in the file. Fix the shmem-backed implementation of UFFDIO_COPY to create private memory for MAP_PRIVATE mappings. The hugetlbfs-backed implementation was already correct. This change is visible to userland, if userfaultfd has been used in unintended ways: so it introduces a small risk of incompatibility, but is necessary in order to respect file permissions. An app that uses UFFDIO_COPY for anything like postcopy live migration won't notice the difference, and in fact it'll run faster because there will be no copy-on-write and memory waste in the tmpfs pagecache anymore. Userfaults on MAP_PRIVATE shmem keep triggering only on file holes like before. The real zeropage can also be built on a MAP_PRIVATE shmem mapping through UFFDIO_ZEROPAGE and that's safe because the zeropage pte is never dirty, in turn even an mprotect upgrading the vma permission from PROT_READ to PROT_READ|PROT_WRITE won't make the zeropage pte writable. Link: http://lkml.kernel.org/r/20181126173452.26955-3-aarcange@redhat.com Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:28 +00:00
/*
* The normal page fault path for a shmem will invoke the
* fault, fill the hole in the file and COW it right away. The
* result generates plain anonymous memory. So when we are
* asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
* generate anonymous memory directly without actually filling
* the hole. For the MAP_PRIVATE case the robustness check
* only happens in the pagetable (to verify it's still none)
* and not in the radix tree.
*/
if (!(dst_vma->vm_flags & VM_SHARED)) {
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
if (mode == MCOPY_ATOMIC_NORMAL)
err = mcopy_atomic_pte(dst_mm, dst_pmd, dst_vma,
dst_addr, src_addr, page,
wp_copy);
else
err = mfill_zeropage_pte(dst_mm, dst_pmd,
dst_vma, dst_addr);
} else {
userfaultfd/shmem: combine shmem_{mcopy_atomic,mfill_zeropage}_pte Patch series "userfaultfd: add minor fault handling for shmem", v6. Overview ======== See the series which added minor faults for hugetlbfs [3] for a detailed overview of minor fault handling in general. This series adds the same support for shmem-backed areas. This series is structured as follows: - Commits 1 and 2 are cleanups. - Commits 3 and 4 implement the new feature (minor fault handling for shmem). - Commit 5 advertises that the feature is now available since at this point it's fully implemented. - Commit 6 is a final cleanup, modifying an existing code path to re-use a new helper we've introduced. - Commits 7, 8, 9, 10 update the userfaultfd selftest to exercise the feature. Use Case ======== In some cases it is useful to have VM memory backed by tmpfs instead of hugetlbfs. So, this feature will be used to support the same VM live migration use case described in my original series. Additionally, Android folks (Lokesh Gidra <lokeshgidra@google.com>) hope to optimize the Android Runtime garbage collector using this feature: "The plan is to use userfaultfd for concurrently compacting the heap. With this feature, the heap can be shared-mapped at another location where the GC-thread(s) could continue the compaction operation without the need to invoke userfault ioctl(UFFDIO_COPY) each time. OTOH, if and when Java threads get faults on the heap, UFFDIO_CONTINUE can be used to resume execution. Furthermore, this feature enables updating references in the 'non-moving' portion of the heap efficiently. Without this feature, uneccessary page copying (ioctl(UFFDIO_COPY)) would be required." [1] https://lore.kernel.org/patchwork/cover/1388144/ [2] https://lore.kernel.org/patchwork/patch/1408161/ [3] https://lore.kernel.org/linux-fsdevel/20210301222728.176417-1-axelrasmussen@google.com/T/#t This patch (of 9): Previously, we did a dance where we had one calling path in userfaultfd.c (mfill_atomic_pte), but then we split it into two in shmem_fs.h (shmem_{mcopy_atomic,mfill_zeropage}_pte), and then rejoined into a single shared function in shmem.c (shmem_mfill_atomic_pte). This is all a bit overly complex. Just call the single combined shmem function directly, allowing us to clean up various branches, boilerplate, etc. While we're touching this function, two other small cleanup changes: - offset is equivalent to pgoff, so we can get rid of offset entirely. - Split two VM_BUG_ON cases into two statements. This means the line number reported when the BUG is hit specifies exactly which condition was true. Link: https://lkml.kernel.org/r/20210503180737.2487560-1-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20210503180737.2487560-3-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:17 +00:00
err = shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
dst_addr, src_addr,
mode != MCOPY_ATOMIC_NORMAL,
wp_copy, page);
}
return err;
}
static __always_inline ssize_t __mcopy_atomic(struct mm_struct *dst_mm,
unsigned long dst_start,
unsigned long src_start,
unsigned long len,
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
enum mcopy_atomic_mode mcopy_mode,
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
atomic_t *mmap_changing,
__u64 mode)
{
struct vm_area_struct *dst_vma;
ssize_t err;
pmd_t *dst_pmd;
unsigned long src_addr, dst_addr;
long copied;
struct page *page;
bool wp_copy;
/*
* Sanitize the command parameters:
*/
BUG_ON(dst_start & ~PAGE_MASK);
BUG_ON(len & ~PAGE_MASK);
/* Does the address range wrap, or is the span zero-sized? */
BUG_ON(src_start + len <= src_start);
BUG_ON(dst_start + len <= dst_start);
src_addr = src_start;
dst_addr = dst_start;
copied = 0;
page = NULL;
retry:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_lock(dst_mm);
userfaultfd: prevent non-cooperative events vs mcopy_atomic races If a process monitored with userfaultfd changes it's memory mappings or forks() at the same time as uffd monitor fills the process memory with UFFDIO_COPY, the actual creation of page table entries and copying of the data in mcopy_atomic may happen either before of after the memory mapping modifications and there is no way for the uffd monitor to maintain consistent view of the process memory layout. For instance, let's consider fork() running in parallel with userfaultfd_copy(): process | uffd monitor ---------------------------------+------------------------------ fork() | userfaultfd_copy() ... | ... dup_mmap() | down_read(mmap_sem) down_write(mmap_sem) | /* create PTEs, copy data */ dup_uffd() | up_read(mmap_sem) copy_page_range() | up_write(mmap_sem) | dup_uffd_complete() | /* notify monitor */ | If the userfaultfd_copy() takes the mmap_sem first, the new page(s) will be present by the time copy_page_range() is called and they will appear in the child's memory mappings. However, if the fork() is the first to take the mmap_sem, the new pages won't be mapped in the child's address space. If the pages are not present and child tries to access them, the monitor will get page fault notification and everything is fine. However, if the pages *are present*, the child can access them without uffd noticing. And if we copy them into child it'll see the wrong data. Since we are talking about background copy, we'd need to decide whether the pages should be copied or not regardless #PF notifications. Since userfaultfd monitor has no way to determine what was the order, let's disallow userfaultfd_copy in parallel with the non-cooperative events. In such case we return -EAGAIN and the uffd monitor can understand that userfaultfd_copy() clashed with a non-cooperative event and take an appropriate action. Link: http://lkml.kernel.org/r/1527061324-19949-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:09:25 +00:00
/*
* If memory mappings are changing because of non-cooperative
* operation (e.g. mremap) running in parallel, bail out and
* request the user to retry later
*/
err = -EAGAIN;
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
if (mmap_changing && atomic_read(mmap_changing))
userfaultfd: prevent non-cooperative events vs mcopy_atomic races If a process monitored with userfaultfd changes it's memory mappings or forks() at the same time as uffd monitor fills the process memory with UFFDIO_COPY, the actual creation of page table entries and copying of the data in mcopy_atomic may happen either before of after the memory mapping modifications and there is no way for the uffd monitor to maintain consistent view of the process memory layout. For instance, let's consider fork() running in parallel with userfaultfd_copy(): process | uffd monitor ---------------------------------+------------------------------ fork() | userfaultfd_copy() ... | ... dup_mmap() | down_read(mmap_sem) down_write(mmap_sem) | /* create PTEs, copy data */ dup_uffd() | up_read(mmap_sem) copy_page_range() | up_write(mmap_sem) | dup_uffd_complete() | /* notify monitor */ | If the userfaultfd_copy() takes the mmap_sem first, the new page(s) will be present by the time copy_page_range() is called and they will appear in the child's memory mappings. However, if the fork() is the first to take the mmap_sem, the new pages won't be mapped in the child's address space. If the pages are not present and child tries to access them, the monitor will get page fault notification and everything is fine. However, if the pages *are present*, the child can access them without uffd noticing. And if we copy them into child it'll see the wrong data. Since we are talking about background copy, we'd need to decide whether the pages should be copied or not regardless #PF notifications. Since userfaultfd monitor has no way to determine what was the order, let's disallow userfaultfd_copy in parallel with the non-cooperative events. In such case we return -EAGAIN and the uffd monitor can understand that userfaultfd_copy() clashed with a non-cooperative event and take an appropriate action. Link: http://lkml.kernel.org/r/1527061324-19949-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:09:25 +00:00
goto out_unlock;
/*
* Make sure the vma is not shared, that the dst range is
* both valid and fully within a single existing vma.
*/
err = -ENOENT;
dst_vma = find_dst_vma(dst_mm, dst_start, len);
if (!dst_vma)
goto out_unlock;
err = -EINVAL;
/*
* shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
* it will overwrite vm_ops, so vma_is_anonymous must return false.
*/
if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
dst_vma->vm_flags & VM_SHARED))
goto out_unlock;
/*
* validate 'mode' now that we know the dst_vma: don't allow
* a wrprotect copy if the userfaultfd didn't register as WP.
*/
wp_copy = mode & UFFDIO_COPY_MODE_WP;
if (wp_copy && !(dst_vma->vm_flags & VM_UFFD_WP))
goto out_unlock;
/*
* If this is a HUGETLB vma, pass off to appropriate routine
*/
if (is_vm_hugetlb_page(dst_vma))
return __mcopy_atomic_hugetlb(dst_mm, dst_vma, dst_start,
src_start, len, mcopy_mode,
wp_copy);
if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
goto out_unlock;
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
if (!vma_is_shmem(dst_vma) && mcopy_mode == MCOPY_ATOMIC_CONTINUE)
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
goto out_unlock;
/*
* Ensure the dst_vma has a anon_vma or this page
* would get a NULL anon_vma when moved in the
* dst_vma.
*/
err = -ENOMEM;
userfaultfd: shmem: allocate anonymous memory for MAP_PRIVATE shmem Userfaultfd did not create private memory when UFFDIO_COPY was invoked on a MAP_PRIVATE shmem mapping. Instead it wrote to the shmem file, even when that had not been opened for writing. Though, fortunately, that could only happen where there was a hole in the file. Fix the shmem-backed implementation of UFFDIO_COPY to create private memory for MAP_PRIVATE mappings. The hugetlbfs-backed implementation was already correct. This change is visible to userland, if userfaultfd has been used in unintended ways: so it introduces a small risk of incompatibility, but is necessary in order to respect file permissions. An app that uses UFFDIO_COPY for anything like postcopy live migration won't notice the difference, and in fact it'll run faster because there will be no copy-on-write and memory waste in the tmpfs pagecache anymore. Userfaults on MAP_PRIVATE shmem keep triggering only on file holes like before. The real zeropage can also be built on a MAP_PRIVATE shmem mapping through UFFDIO_ZEROPAGE and that's safe because the zeropage pte is never dirty, in turn even an mprotect upgrading the vma permission from PROT_READ to PROT_READ|PROT_WRITE won't make the zeropage pte writable. Link: http://lkml.kernel.org/r/20181126173452.26955-3-aarcange@redhat.com Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:28 +00:00
if (!(dst_vma->vm_flags & VM_SHARED) &&
unlikely(anon_vma_prepare(dst_vma)))
goto out_unlock;
while (src_addr < src_start + len) {
pmd_t dst_pmdval;
BUG_ON(dst_addr >= dst_start + len);
dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
if (unlikely(!dst_pmd)) {
err = -ENOMEM;
break;
}
dst_pmdval = pmdp_get_lockless(dst_pmd);
/*
* If the dst_pmd is mapped as THP don't
* override it and just be strict.
*/
if (unlikely(pmd_trans_huge(dst_pmdval))) {
err = -EEXIST;
break;
}
if (unlikely(pmd_none(dst_pmdval)) &&
mm: treewide: remove unused address argument from pte_alloc functions Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 23:28:34 +00:00
unlikely(__pte_alloc(dst_mm, dst_pmd))) {
err = -ENOMEM;
break;
}
/* If an huge pmd materialized from under us fail */
if (unlikely(pmd_trans_huge(*dst_pmd))) {
err = -EFAULT;
break;
}
BUG_ON(pmd_none(*dst_pmd));
BUG_ON(pmd_trans_huge(*dst_pmd));
err = mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
userfaultfd/shmem: support UFFDIO_CONTINUE for shmem With this change, userspace can resolve a minor fault within a shmem-backed area with a UFFDIO_CONTINUE ioctl. The semantics for this match those for hugetlbfs - we look up the existing page in the page cache, and install a PTE for it. This commit introduces a new helper: mfill_atomic_install_pte. Why handle UFFDIO_CONTINUE for shmem in mm/userfaultfd.c, instead of in shmem.c? The existing userfault implementation only relies on shmem.c for VM_SHARED VMAs. However, minor fault handling / CONTINUE work just fine for !VM_SHARED VMAs as well. We'd prefer to handle CONTINUE for shmem in one place, regardless of shared/private (to reduce code duplication). Why add a new mfill_atomic_install_pte helper? A problem we have with continue is that shmem_mfill_atomic_pte() and mcopy_atomic_pte() are *close* to what we want, but not exactly. We do want to setup the PTEs in a CONTINUE operation, but we don't want to e.g. allocate a new page, charge it (e.g. to the shmem inode), manipulate various flags, etc. Also we have the problem stated above: shmem_mfill_atomic_pte() and mcopy_atomic_pte() both handle one-half of the problem (shared / private) continue cares about. So, introduce mcontinue_atomic_pte(), to handle all of the shmem continue cases. Introduce the helper so it doesn't duplicate code with mcopy_atomic_pte(). In a future commit, shmem_mfill_atomic_pte() will also be modified to use this new helper. However, since this is a bigger refactor, it seems most clear to do it as a separate change. Link: https://lkml.kernel.org/r/20210503180737.2487560-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:49:24 +00:00
src_addr, &page, mcopy_mode, wp_copy);
cond_resched();
userfaultfd: use ENOENT instead of EFAULT if the atomic copy user fails Patch series "userfaultfd shmem updates". Jann found two bugs in the userfaultfd shmem MAP_SHARED backend: the lack of the VM_MAYWRITE check and the lack of i_size checks. Then looking into the above we also fixed the MAP_PRIVATE case. Hugh by source review also found a data loss source if UFFDIO_COPY is used on shmem MAP_SHARED PROT_READ mappings (the production usages incidentally run with PROT_READ|PROT_WRITE, so the data loss couldn't happen in those production usages like with QEMU). The whole patchset is marked for stable. We verified QEMU postcopy live migration with guest running on shmem MAP_PRIVATE run as well as before after the fix of shmem MAP_PRIVATE. Regardless if it's shmem or hugetlbfs or MAP_PRIVATE or MAP_SHARED, QEMU unconditionally invokes a punch hole if the guest mapping is filebacked and a MADV_DONTNEED too (needed to get rid of the MAP_PRIVATE COWs and for the anon backend). This patch (of 5): We internally used EFAULT to communicate with the caller, switch to ENOENT, so EFAULT can be used as a non internal retval. Link: http://lkml.kernel.org/r/20181126173452.26955-2-aarcange@redhat.com Fixes: 4c27fe4c4c84 ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: <stable@vger.kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-30 22:09:25 +00:00
if (unlikely(err == -ENOENT)) {
void *page_kaddr;
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
BUG_ON(!page);
mm/userfaultfd: replace kmap/kmap_atomic() with kmap_local_page() kmap() and kmap_atomic() are being deprecated in favor of kmap_local_page() which is appropriate for any thread local context.[1] A recent locking bug report with userfaultfd showed that the conversion of the kmap_atomic()'s in those code flows requires care with regard to the prevention of deadlock.[2] git archaeology implied that the recursion may not be an actual bug.[3] However, depending on the implementation of the mmap_lock and the condition of the call there may still be a deadlock.[4] So this is not purely a lockdep issue. Considering a single threaded call stack there are 3 options. 1) Different mm's are in play (no issue) 2) Readlock implementation is recursive and same mm is in play (no issue) 3) Readlock implementation is _not_ recursive (issue) The mmap_lock is recursive so with a single thread there is no issue. However, Matthew pointed out a deadlock scenario when you consider additional process' and threads thusly. "The readlock implementation is only recursive if nobody else has taken a write lock. If you have a multithreaded process, one of the other threads can call mmap() and that will prevent recursion (due to fairness). Even if it's a different process that you're trying to acquire the mmap read lock on, you can still get into a deadly embrace. eg: process A thread 1 takes read lock on own mmap_lock process A thread 2 calls mmap, blocks taking write lock process B thread 1 takes page fault, read lock on own mmap lock process B thread 2 calls mmap, blocks taking write lock process A thread 1 blocks taking read lock on process B process B thread 1 blocks taking read lock on process A Now all four threads are blocked waiting for each other." Regardless using pagefault_disable() ensures that no matter what locking implementation is used a deadlock will not occur. Complete kmap conversion in userfaultfd by replacing the kmap() and kmap_atomic() calls with kmap_local_page(). When replacing the kmap_atomic() call ensure page faults continue to be disabled to support the correct fall back behavior and add a comment to inform future souls of the requirement. [1] https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com/ [2] https://lore.kernel.org/all/Y1Mh2S7fUGQ%2FiKFR@iweiny-desk3/ [3] https://lore.kernel.org/all/Y1MymJ%2FINb45AdaY@iweiny-desk3/ [4] https://lore.kernel.org/lkml/Y1bXBtGTCym77%2FoD@casper.infradead.org/ [ira.weiny@intel.com: v2] Link: https://lkml.kernel.org/r/20221025220136.2366143-1-ira.weiny@intel.com Link: https://lkml.kernel.org/r/20221024043452.1491677-1-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-24 04:34:52 +00:00
page_kaddr = kmap_local_page(page);
err = copy_from_user(page_kaddr,
(const void __user *) src_addr,
PAGE_SIZE);
mm/userfaultfd: replace kmap/kmap_atomic() with kmap_local_page() kmap() and kmap_atomic() are being deprecated in favor of kmap_local_page() which is appropriate for any thread local context.[1] A recent locking bug report with userfaultfd showed that the conversion of the kmap_atomic()'s in those code flows requires care with regard to the prevention of deadlock.[2] git archaeology implied that the recursion may not be an actual bug.[3] However, depending on the implementation of the mmap_lock and the condition of the call there may still be a deadlock.[4] So this is not purely a lockdep issue. Considering a single threaded call stack there are 3 options. 1) Different mm's are in play (no issue) 2) Readlock implementation is recursive and same mm is in play (no issue) 3) Readlock implementation is _not_ recursive (issue) The mmap_lock is recursive so with a single thread there is no issue. However, Matthew pointed out a deadlock scenario when you consider additional process' and threads thusly. "The readlock implementation is only recursive if nobody else has taken a write lock. If you have a multithreaded process, one of the other threads can call mmap() and that will prevent recursion (due to fairness). Even if it's a different process that you're trying to acquire the mmap read lock on, you can still get into a deadly embrace. eg: process A thread 1 takes read lock on own mmap_lock process A thread 2 calls mmap, blocks taking write lock process B thread 1 takes page fault, read lock on own mmap lock process B thread 2 calls mmap, blocks taking write lock process A thread 1 blocks taking read lock on process B process B thread 1 blocks taking read lock on process A Now all four threads are blocked waiting for each other." Regardless using pagefault_disable() ensures that no matter what locking implementation is used a deadlock will not occur. Complete kmap conversion in userfaultfd by replacing the kmap() and kmap_atomic() calls with kmap_local_page(). When replacing the kmap_atomic() call ensure page faults continue to be disabled to support the correct fall back behavior and add a comment to inform future souls of the requirement. [1] https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com/ [2] https://lore.kernel.org/all/Y1Mh2S7fUGQ%2FiKFR@iweiny-desk3/ [3] https://lore.kernel.org/all/Y1MymJ%2FINb45AdaY@iweiny-desk3/ [4] https://lore.kernel.org/lkml/Y1bXBtGTCym77%2FoD@casper.infradead.org/ [ira.weiny@intel.com: v2] Link: https://lkml.kernel.org/r/20221025220136.2366143-1-ira.weiny@intel.com Link: https://lkml.kernel.org/r/20221024043452.1491677-1-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-24 04:34:52 +00:00
kunmap_local(page_kaddr);
if (unlikely(err)) {
err = -EFAULT;
goto out;
}
flush_dcache_page(page);
goto retry;
} else
BUG_ON(page);
if (!err) {
dst_addr += PAGE_SIZE;
src_addr += PAGE_SIZE;
copied += PAGE_SIZE;
if (fatal_signal_pending(current))
err = -EINTR;
}
if (err)
break;
}
out_unlock:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
out:
if (page)
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
BUG_ON(copied < 0);
BUG_ON(err > 0);
BUG_ON(!copied && !err);
return copied ? copied : err;
}
ssize_t mcopy_atomic(struct mm_struct *dst_mm, unsigned long dst_start,
userfaultfd: prevent non-cooperative events vs mcopy_atomic races If a process monitored with userfaultfd changes it's memory mappings or forks() at the same time as uffd monitor fills the process memory with UFFDIO_COPY, the actual creation of page table entries and copying of the data in mcopy_atomic may happen either before of after the memory mapping modifications and there is no way for the uffd monitor to maintain consistent view of the process memory layout. For instance, let's consider fork() running in parallel with userfaultfd_copy(): process | uffd monitor ---------------------------------+------------------------------ fork() | userfaultfd_copy() ... | ... dup_mmap() | down_read(mmap_sem) down_write(mmap_sem) | /* create PTEs, copy data */ dup_uffd() | up_read(mmap_sem) copy_page_range() | up_write(mmap_sem) | dup_uffd_complete() | /* notify monitor */ | If the userfaultfd_copy() takes the mmap_sem first, the new page(s) will be present by the time copy_page_range() is called and they will appear in the child's memory mappings. However, if the fork() is the first to take the mmap_sem, the new pages won't be mapped in the child's address space. If the pages are not present and child tries to access them, the monitor will get page fault notification and everything is fine. However, if the pages *are present*, the child can access them without uffd noticing. And if we copy them into child it'll see the wrong data. Since we are talking about background copy, we'd need to decide whether the pages should be copied or not regardless #PF notifications. Since userfaultfd monitor has no way to determine what was the order, let's disallow userfaultfd_copy in parallel with the non-cooperative events. In such case we return -EAGAIN and the uffd monitor can understand that userfaultfd_copy() clashed with a non-cooperative event and take an appropriate action. Link: http://lkml.kernel.org/r/1527061324-19949-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:09:25 +00:00
unsigned long src_start, unsigned long len,
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
atomic_t *mmap_changing, __u64 mode)
{
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
return __mcopy_atomic(dst_mm, dst_start, src_start, len,
MCOPY_ATOMIC_NORMAL, mmap_changing, mode);
}
ssize_t mfill_zeropage(struct mm_struct *dst_mm, unsigned long start,
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
unsigned long len, atomic_t *mmap_changing)
{
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
return __mcopy_atomic(dst_mm, start, 0, len, MCOPY_ATOMIC_ZEROPAGE,
mmap_changing, 0);
}
ssize_t mcopy_continue(struct mm_struct *dst_mm, unsigned long start,
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
unsigned long len, atomic_t *mmap_changing)
userfaultfd: add UFFDIO_CONTINUE ioctl This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:49 +00:00
{
return __mcopy_atomic(dst_mm, start, 0, len, MCOPY_ATOMIC_CONTINUE,
mmap_changing, 0);
}
2020-04-07 03:06:09 +00:00
long uffd_wp_range(struct mm_struct *dst_mm, struct vm_area_struct *dst_vma,
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
unsigned long start, unsigned long len, bool enable_wp)
{
mm/userfaultfd: rely on vma->vm_page_prot in uffd_wp_range() Patch series "mm: uffd-wp + change_protection() cleanups". Cleanup page protection handling in uffd-wp when calling change_protection() and improve unprotecting uffd=wp in private mappings, trying to set PTEs writable again if possible just like we do during mprotect() when upgrading write permissions. Make the change_protection() interface harder to get wrong :) I consider both pages primarily cleanups, although patch #1 fixes a corner case with uffd-wp and softdirty tracking for shmem. @Peter, please let me know if we should flag patch #1 as pure cleanup -- I have no idea how important softdirty tracking on shmem is. This patch (of 2): uffd_wp_range() currently calculates page protection manually using vm_get_page_prot(). This will ignore any other reason for active writenotify: one mechanism applicable to shmem is softdirty tracking. For example, the following sequence 1) Write to mapped shmem page 2) Clear softdirty 3) Register uffd-wp covering the mapped page 4) Unregister uffd-wp covering the mapped page 5) Write to page again will not set the modified page softdirty, because uffd_wp_range() will ignore that writenotify is required for softdirty tracking and simply map the page writable again using change_protection(). Similarly, instead of unregistering, protecting followed by un-protecting the page using uffd-wp would result in the same situation. Now that we enable writenotify whenever enabling uffd-wp on a VMA, vma->vm_page_prot will already properly reflect our requirements: the default is to write-protect all PTEs. However, for shared mappings we would now not remap the PTEs writable if possible when unprotecting, just like for private mappings (COW). To compensate, set MM_CP_TRY_CHANGE_WRITABLE just like mprotect() does to try mapping individual PTEs writable. For private mappings, this change implies that we will now always try setting PTEs writable when un-protecting, just like when upgrading write permissions using mprotect(), which is an improvement. For shared mappings, we will only set PTEs writable if can_change_pte_writable()/can_change_pmd_writable() indicates that it's ok. For ordinary shmem, this will be the case when PTEs are dirty, which should usually be the case -- otherwise we could special-case shmem in can_change_pte_writable()/can_change_pmd_writable() easily, because shmem itself doesn't require writenotify. Note that hugetlb does not yet implement MM_CP_TRY_CHANGE_WRITABLE, so we won't try setting PTEs writable when unprotecting or when unregistering uffd-wp. This can be added later on top by implementing MM_CP_TRY_CHANGE_WRITABLE. While commit ffd05793963a ("userfaultfd: wp: support write protection for userfault vma range") introduced that code, it should only be applicable to uffd-wp on shared mappings -- shmem (hugetlb does not support softdirty tracking). I don't think this corner cases justifies to cc stable. Let's just handle it correctly and prepare for change_protection() cleanups. [david@redhat.com: o need for additional harmless checks if we're wr-protecting either way] Link: https://lkml.kernel.org/r/71412742-a71f-9c74-865f-773ad83db7a5@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-1-david@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-2-david@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-23 15:56:15 +00:00
unsigned int mm_cp_flags;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
struct mmu_gather tlb;
long ret;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
if (enable_wp)
mm/userfaultfd: rely on vma->vm_page_prot in uffd_wp_range() Patch series "mm: uffd-wp + change_protection() cleanups". Cleanup page protection handling in uffd-wp when calling change_protection() and improve unprotecting uffd=wp in private mappings, trying to set PTEs writable again if possible just like we do during mprotect() when upgrading write permissions. Make the change_protection() interface harder to get wrong :) I consider both pages primarily cleanups, although patch #1 fixes a corner case with uffd-wp and softdirty tracking for shmem. @Peter, please let me know if we should flag patch #1 as pure cleanup -- I have no idea how important softdirty tracking on shmem is. This patch (of 2): uffd_wp_range() currently calculates page protection manually using vm_get_page_prot(). This will ignore any other reason for active writenotify: one mechanism applicable to shmem is softdirty tracking. For example, the following sequence 1) Write to mapped shmem page 2) Clear softdirty 3) Register uffd-wp covering the mapped page 4) Unregister uffd-wp covering the mapped page 5) Write to page again will not set the modified page softdirty, because uffd_wp_range() will ignore that writenotify is required for softdirty tracking and simply map the page writable again using change_protection(). Similarly, instead of unregistering, protecting followed by un-protecting the page using uffd-wp would result in the same situation. Now that we enable writenotify whenever enabling uffd-wp on a VMA, vma->vm_page_prot will already properly reflect our requirements: the default is to write-protect all PTEs. However, for shared mappings we would now not remap the PTEs writable if possible when unprotecting, just like for private mappings (COW). To compensate, set MM_CP_TRY_CHANGE_WRITABLE just like mprotect() does to try mapping individual PTEs writable. For private mappings, this change implies that we will now always try setting PTEs writable when un-protecting, just like when upgrading write permissions using mprotect(), which is an improvement. For shared mappings, we will only set PTEs writable if can_change_pte_writable()/can_change_pmd_writable() indicates that it's ok. For ordinary shmem, this will be the case when PTEs are dirty, which should usually be the case -- otherwise we could special-case shmem in can_change_pte_writable()/can_change_pmd_writable() easily, because shmem itself doesn't require writenotify. Note that hugetlb does not yet implement MM_CP_TRY_CHANGE_WRITABLE, so we won't try setting PTEs writable when unprotecting or when unregistering uffd-wp. This can be added later on top by implementing MM_CP_TRY_CHANGE_WRITABLE. While commit ffd05793963a ("userfaultfd: wp: support write protection for userfault vma range") introduced that code, it should only be applicable to uffd-wp on shared mappings -- shmem (hugetlb does not support softdirty tracking). I don't think this corner cases justifies to cc stable. Let's just handle it correctly and prepare for change_protection() cleanups. [david@redhat.com: o need for additional harmless checks if we're wr-protecting either way] Link: https://lkml.kernel.org/r/71412742-a71f-9c74-865f-773ad83db7a5@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-1-david@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-2-david@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-23 15:56:15 +00:00
mm_cp_flags = MM_CP_UFFD_WP;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
else
mm/userfaultfd: rely on vma->vm_page_prot in uffd_wp_range() Patch series "mm: uffd-wp + change_protection() cleanups". Cleanup page protection handling in uffd-wp when calling change_protection() and improve unprotecting uffd=wp in private mappings, trying to set PTEs writable again if possible just like we do during mprotect() when upgrading write permissions. Make the change_protection() interface harder to get wrong :) I consider both pages primarily cleanups, although patch #1 fixes a corner case with uffd-wp and softdirty tracking for shmem. @Peter, please let me know if we should flag patch #1 as pure cleanup -- I have no idea how important softdirty tracking on shmem is. This patch (of 2): uffd_wp_range() currently calculates page protection manually using vm_get_page_prot(). This will ignore any other reason for active writenotify: one mechanism applicable to shmem is softdirty tracking. For example, the following sequence 1) Write to mapped shmem page 2) Clear softdirty 3) Register uffd-wp covering the mapped page 4) Unregister uffd-wp covering the mapped page 5) Write to page again will not set the modified page softdirty, because uffd_wp_range() will ignore that writenotify is required for softdirty tracking and simply map the page writable again using change_protection(). Similarly, instead of unregistering, protecting followed by un-protecting the page using uffd-wp would result in the same situation. Now that we enable writenotify whenever enabling uffd-wp on a VMA, vma->vm_page_prot will already properly reflect our requirements: the default is to write-protect all PTEs. However, for shared mappings we would now not remap the PTEs writable if possible when unprotecting, just like for private mappings (COW). To compensate, set MM_CP_TRY_CHANGE_WRITABLE just like mprotect() does to try mapping individual PTEs writable. For private mappings, this change implies that we will now always try setting PTEs writable when un-protecting, just like when upgrading write permissions using mprotect(), which is an improvement. For shared mappings, we will only set PTEs writable if can_change_pte_writable()/can_change_pmd_writable() indicates that it's ok. For ordinary shmem, this will be the case when PTEs are dirty, which should usually be the case -- otherwise we could special-case shmem in can_change_pte_writable()/can_change_pmd_writable() easily, because shmem itself doesn't require writenotify. Note that hugetlb does not yet implement MM_CP_TRY_CHANGE_WRITABLE, so we won't try setting PTEs writable when unprotecting or when unregistering uffd-wp. This can be added later on top by implementing MM_CP_TRY_CHANGE_WRITABLE. While commit ffd05793963a ("userfaultfd: wp: support write protection for userfault vma range") introduced that code, it should only be applicable to uffd-wp on shared mappings -- shmem (hugetlb does not support softdirty tracking). I don't think this corner cases justifies to cc stable. Let's just handle it correctly and prepare for change_protection() cleanups. [david@redhat.com: o need for additional harmless checks if we're wr-protecting either way] Link: https://lkml.kernel.org/r/71412742-a71f-9c74-865f-773ad83db7a5@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-1-david@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-2-david@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-23 15:56:15 +00:00
mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
mm/userfaultfd: rely on vma->vm_page_prot in uffd_wp_range() Patch series "mm: uffd-wp + change_protection() cleanups". Cleanup page protection handling in uffd-wp when calling change_protection() and improve unprotecting uffd=wp in private mappings, trying to set PTEs writable again if possible just like we do during mprotect() when upgrading write permissions. Make the change_protection() interface harder to get wrong :) I consider both pages primarily cleanups, although patch #1 fixes a corner case with uffd-wp and softdirty tracking for shmem. @Peter, please let me know if we should flag patch #1 as pure cleanup -- I have no idea how important softdirty tracking on shmem is. This patch (of 2): uffd_wp_range() currently calculates page protection manually using vm_get_page_prot(). This will ignore any other reason for active writenotify: one mechanism applicable to shmem is softdirty tracking. For example, the following sequence 1) Write to mapped shmem page 2) Clear softdirty 3) Register uffd-wp covering the mapped page 4) Unregister uffd-wp covering the mapped page 5) Write to page again will not set the modified page softdirty, because uffd_wp_range() will ignore that writenotify is required for softdirty tracking and simply map the page writable again using change_protection(). Similarly, instead of unregistering, protecting followed by un-protecting the page using uffd-wp would result in the same situation. Now that we enable writenotify whenever enabling uffd-wp on a VMA, vma->vm_page_prot will already properly reflect our requirements: the default is to write-protect all PTEs. However, for shared mappings we would now not remap the PTEs writable if possible when unprotecting, just like for private mappings (COW). To compensate, set MM_CP_TRY_CHANGE_WRITABLE just like mprotect() does to try mapping individual PTEs writable. For private mappings, this change implies that we will now always try setting PTEs writable when un-protecting, just like when upgrading write permissions using mprotect(), which is an improvement. For shared mappings, we will only set PTEs writable if can_change_pte_writable()/can_change_pmd_writable() indicates that it's ok. For ordinary shmem, this will be the case when PTEs are dirty, which should usually be the case -- otherwise we could special-case shmem in can_change_pte_writable()/can_change_pmd_writable() easily, because shmem itself doesn't require writenotify. Note that hugetlb does not yet implement MM_CP_TRY_CHANGE_WRITABLE, so we won't try setting PTEs writable when unprotecting or when unregistering uffd-wp. This can be added later on top by implementing MM_CP_TRY_CHANGE_WRITABLE. While commit ffd05793963a ("userfaultfd: wp: support write protection for userfault vma range") introduced that code, it should only be applicable to uffd-wp on shared mappings -- shmem (hugetlb does not support softdirty tracking). I don't think this corner cases justifies to cc stable. Let's just handle it correctly and prepare for change_protection() cleanups. [david@redhat.com: o need for additional harmless checks if we're wr-protecting either way] Link: https://lkml.kernel.org/r/71412742-a71f-9c74-865f-773ad83db7a5@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-1-david@redhat.com Link: https://lkml.kernel.org/r/20221223155616.297723-2-david@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-23 15:56:15 +00:00
/*
* vma->vm_page_prot already reflects that uffd-wp is enabled for this
* VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
* to be write-protected as default whenever protection changes.
* Try upgrading write permissions manually.
*/
if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
tlb_gather_mmu(&tlb, dst_mm);
ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
tlb_finish_mmu(&tlb);
return ret;
mm/uffd: reset write protection when unregister with wp-mode The motivation of this patch comes from a recent report and patchfix from David Hildenbrand on hugetlb shared handling of wr-protected page [1]. With the reproducer provided in commit message of [1], one can leverage the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect not only the attacker process, but also the whole system. The lazy-reset mechanism of uffd-wp was used to make unregister faster, meanwhile it has an assumption that any leftover pgtable entries should only affect the process on its own, so not only the user should be aware of anything it does, but also it should not affect outside of the process. But it seems that this is not true, and it can also be utilized to make some exploit easier. So far there's no clue showing that the lazy-reset is important to any userfaultfd users because normally the unregister will only happen once for a specific range of memory of the lifecycle of the process. Considering all above, what this patch proposes is to do explicit pte resets when unregister an uffd region with wr-protect mode enabled. It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false) right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll make the unregister slower. From that pov it's a very slight abi change, but hopefully nothing should break with this change either. Regarding to the change itself - core of uffd write [un]protect operation is moved into a separate function (uffd_wp_range()) and it is reused in the unregister code path. Note that the new function will not check for anything, e.g. ranges or memory types, because they should have been checked during the previous UFFDIO_REGISTER or it should have failed already. It also doesn't check mmap_changing because we're with mmap write lock held anyway. I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's the only issue reported so far and that's the commit David's reproducer will start working (v5.19+). But the whole idea actually applies to not only file memories but also anonymous. It's just that we don't need to fix anonymous prior to v5.19- because there's no known way to exploit. IOW, this patch can also fix the issue reported in [1] as the patch 2 does. [1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/ Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-11 20:13:40 +00:00
}
2020-04-07 03:06:09 +00:00
int mwriteprotect_range(struct mm_struct *dst_mm, unsigned long start,
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
unsigned long len, bool enable_wp,
atomic_t *mmap_changing)
2020-04-07 03:06:09 +00:00
{
struct vm_area_struct *dst_vma;
unsigned long page_mask;
long err;
2020-04-07 03:06:09 +00:00
/*
* Sanitize the command parameters:
*/
BUG_ON(start & ~PAGE_MASK);
BUG_ON(len & ~PAGE_MASK);
/* Does the address range wrap, or is the span zero-sized? */
BUG_ON(start + len <= start);
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_lock(dst_mm);
2020-04-07 03:06:09 +00:00
/*
* If memory mappings are changing because of non-cooperative
* operation (e.g. mremap) running in parallel, bail out and
* request the user to retry later
*/
err = -EAGAIN;
userfaultfd: change mmap_changing to atomic Patch series "userfaultfd: minor bug fixes". Three unrelated bug fixes. The first two addresses possible issues (not too theoretical ones), but I did not encounter them in practice. The third patch addresses a test bug that causes the test to fail on my system. It has been sent before as part of a bigger RFC. This patch (of 3): mmap_changing is currently a boolean variable, which is set and cleared without any lock that protects against concurrent modifications. mmap_changing is supposed to mark whether userfaultfd page-faults handling should be retried since mappings are undergoing a change. However, concurrent calls, for instance to madvise(MADV_DONTNEED), might cause mmap_changing to be false, although the remove event was still not read (hence acknowledged) by the user. Change mmap_changing to atomic_t and increase/decrease appropriately. Add a debug assertion to see whether mmap_changing is negative. Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races") Signed-off-by: Nadav Amit <namit@vmware.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Peter Xu <peterx@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:58:56 +00:00
if (mmap_changing && atomic_read(mmap_changing))
2020-04-07 03:06:09 +00:00
goto out_unlock;
err = -ENOENT;
dst_vma = find_dst_vma(dst_mm, start, len);
if (!dst_vma)
2020-04-07 03:06:09 +00:00
goto out_unlock;
if (!userfaultfd_wp(dst_vma))
goto out_unlock;
if (!vma_can_userfault(dst_vma, dst_vma->vm_flags))
2020-04-07 03:06:09 +00:00
goto out_unlock;
if (is_vm_hugetlb_page(dst_vma)) {
err = -EINVAL;
page_mask = vma_kernel_pagesize(dst_vma) - 1;
if ((start & page_mask) || (len & page_mask))
goto out_unlock;
}
err = uffd_wp_range(dst_mm, dst_vma, start, len, enable_wp);
/* Return 0 on success, <0 on failures */
if (err > 0)
err = 0;
2020-04-07 03:06:09 +00:00
out_unlock:
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:33:25 +00:00
mmap_read_unlock(dst_mm);
2020-04-07 03:06:09 +00:00
return err;
}