2006-09-30 18:52:18 +00:00
|
|
|
/* fs/ internal definitions
|
|
|
|
*
|
|
|
|
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
2006-08-31 10:55:23 +00:00
|
|
|
struct super_block;
|
2011-03-18 02:08:28 +00:00
|
|
|
struct file_system_type;
|
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
|
|
|
struct linux_binprm;
|
2009-03-29 23:00:13 +00:00
|
|
|
struct path;
|
2011-11-24 23:22:03 +00:00
|
|
|
struct mount;
|
2006-08-31 10:55:23 +00:00
|
|
|
|
2006-09-30 18:52:18 +00:00
|
|
|
/*
|
|
|
|
* block_dev.c
|
|
|
|
*/
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#ifdef CONFIG_BLOCK
|
2006-09-30 18:52:18 +00:00
|
|
|
extern void __init bdev_cache_init(void);
|
|
|
|
|
2009-04-27 14:43:51 +00:00
|
|
|
extern int __sync_blockdev(struct block_device *bdev, int wait);
|
|
|
|
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#else
|
2006-08-31 10:55:23 +00:00
|
|
|
static inline void bdev_cache_init(void)
|
|
|
|
{
|
|
|
|
}
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
|
2009-04-27 14:43:51 +00:00
|
|
|
static inline int __sync_blockdev(struct block_device *bdev, int wait)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
[PATCH] BLOCK: Make it possible to disable the block layer [try #6]
Make it possible to disable the block layer. Not all embedded devices require
it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
the block layer to be present.
This patch does the following:
(*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
support.
(*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
an item that uses the block layer. This includes:
(*) Block I/O tracing.
(*) Disk partition code.
(*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
(*) The SCSI layer. As far as I can tell, even SCSI chardevs use the
block layer to do scheduling. Some drivers that use SCSI facilities -
such as USB storage - end up disabled indirectly from this.
(*) Various block-based device drivers, such as IDE and the old CDROM
drivers.
(*) MTD blockdev handling and FTL.
(*) JFFS - which uses set_bdev_super(), something it could avoid doing by
taking a leaf out of JFFS2's book.
(*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
linux/elevator.h contingent on CONFIG_BLOCK being set. sector_div() is,
however, still used in places, and so is still available.
(*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
parts of linux/fs.h.
(*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
(*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
(*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
is not enabled.
(*) fs/no-block.c is created to hold out-of-line stubs and things that are
required when CONFIG_BLOCK is not set:
(*) Default blockdev file operations (to give error ENODEV on opening).
(*) Makes some /proc changes:
(*) /proc/devices does not list any blockdevs.
(*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
(*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
(*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
given command other than Q_SYNC or if a special device is specified.
(*) In init/do_mounts.c, no reference is made to the blockdev routines if
CONFIG_BLOCK is not defined. This does not prohibit NFS roots or JFFS2.
(*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
error ENOSYS by way of cond_syscall if so).
(*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
CONFIG_BLOCK is not set, since they can't then happen.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2006-09-30 18:45:40 +00:00
|
|
|
#endif
|
2006-08-29 18:06:07 +00:00
|
|
|
|
2014-10-09 22:26:55 +00:00
|
|
|
/*
|
|
|
|
* buffer.c
|
|
|
|
*/
|
|
|
|
extern void guard_bio_eod(int rw, struct bio *bio);
|
|
|
|
|
2006-09-30 18:52:18 +00:00
|
|
|
/*
|
|
|
|
* char_dev.c
|
|
|
|
*/
|
|
|
|
extern void __init chrdev_init(void);
|
|
|
|
|
2012-06-25 11:55:46 +00:00
|
|
|
/*
|
|
|
|
* namei.c
|
|
|
|
*/
|
|
|
|
extern int __inode_permission(struct inode *, int);
|
2013-09-08 18:03:27 +00:00
|
|
|
extern int user_path_mountpoint_at(int, const char __user *, unsigned int, struct path *);
|
|
|
|
extern int vfs_path_lookup(struct dentry *, struct vfsmount *,
|
|
|
|
const char *, unsigned int, struct path *);
|
2012-06-25 11:55:46 +00:00
|
|
|
|
2006-09-30 18:52:18 +00:00
|
|
|
/*
|
|
|
|
* namespace.c
|
|
|
|
*/
|
|
|
|
extern int copy_mount_options(const void __user *, unsigned long *);
|
2014-08-28 17:26:03 +00:00
|
|
|
extern char *copy_mount_string(const void __user *);
|
2008-03-22 19:48:17 +00:00
|
|
|
|
2011-03-21 14:28:58 +00:00
|
|
|
extern struct vfsmount *lookup_mnt(struct path *);
|
2011-01-17 06:35:23 +00:00
|
|
|
extern int finish_automount(struct vfsmount *, struct path *);
|
2008-03-22 19:48:17 +00:00
|
|
|
|
2011-11-21 11:11:31 +00:00
|
|
|
extern int sb_prepare_remount_readonly(struct super_block *);
|
2011-01-15 03:30:21 +00:00
|
|
|
|
2008-03-22 19:48:17 +00:00
|
|
|
extern void __init mnt_init(void);
|
2009-03-29 23:00:13 +00:00
|
|
|
|
2012-06-12 14:20:35 +00:00
|
|
|
extern int __mnt_want_write(struct vfsmount *);
|
|
|
|
extern int __mnt_want_write_file(struct file *);
|
|
|
|
extern void __mnt_drop_write(struct vfsmount *);
|
|
|
|
extern void __mnt_drop_write_file(struct file *);
|
2010-02-05 07:01:14 +00:00
|
|
|
|
2009-03-29 23:00:13 +00:00
|
|
|
/*
|
|
|
|
* fs_struct.c
|
|
|
|
*/
|
2013-03-02 04:51:07 +00:00
|
|
|
extern void chroot_fs_refs(const struct path *, const struct path *);
|
2009-04-26 10:25:56 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* file_table.c
|
|
|
|
*/
|
2009-12-04 20:47:36 +00:00
|
|
|
extern struct file *get_empty_filp(void);
|
2009-05-07 07:12:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* super.c
|
|
|
|
*/
|
|
|
|
extern int do_remount_sb(struct super_block *, int, void *, int);
|
2011-07-08 04:14:41 +00:00
|
|
|
extern bool grab_super_passive(struct super_block *sb);
|
2011-03-18 02:08:28 +00:00
|
|
|
extern struct dentry *mount_fs(struct file_system_type *,
|
|
|
|
int, const char *, void *);
|
2012-01-03 03:28:36 +00:00
|
|
|
extern struct super_block *user_get_super(dev_t);
|
2009-12-19 15:10:39 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* open.c
|
|
|
|
*/
|
2011-02-23 22:44:09 +00:00
|
|
|
struct open_flags {
|
|
|
|
int open_flag;
|
2011-11-21 19:59:34 +00:00
|
|
|
umode_t mode;
|
2011-02-23 22:44:09 +00:00
|
|
|
int acc_mode;
|
|
|
|
int intent;
|
2013-06-11 04:23:01 +00:00
|
|
|
int lookup_flags;
|
2011-02-23 22:44:09 +00:00
|
|
|
};
|
2012-10-10 20:43:10 +00:00
|
|
|
extern struct file *do_filp_open(int dfd, struct filename *pathname,
|
2013-06-11 04:23:01 +00:00
|
|
|
const struct open_flags *op);
|
2011-03-11 17:08:24 +00:00
|
|
|
extern struct file *do_file_open_root(struct dentry *, struct vfsmount *,
|
2013-06-11 04:23:01 +00:00
|
|
|
const char *, const struct open_flags *);
|
2010-10-24 15:13:10 +00:00
|
|
|
|
2011-01-29 13:13:26 +00:00
|
|
|
extern long do_handle_open(int mountdirfd,
|
|
|
|
struct file_handle __user *ufh, int open_flag);
|
2012-05-21 15:30:15 +00:00
|
|
|
extern int open_check_o_direct(struct file *f);
|
2011-01-29 13:13:26 +00:00
|
|
|
|
2010-10-24 15:13:10 +00:00
|
|
|
/*
|
|
|
|
* inode.c
|
|
|
|
*/
|
2011-03-22 11:23:40 +00:00
|
|
|
extern spinlock_t inode_sb_list_lock;
|
2013-08-28 00:18:05 +00:00
|
|
|
extern long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
|
|
|
|
int nid);
|
2012-11-27 00:29:51 +00:00
|
|
|
extern void inode_add_lru(struct inode *inode);
|
2011-03-22 11:23:40 +00:00
|
|
|
|
2011-03-22 11:23:41 +00:00
|
|
|
/*
|
|
|
|
* fs-writeback.c
|
|
|
|
*/
|
|
|
|
extern void inode_wb_list_del(struct inode *inode);
|
|
|
|
|
fs: bump inode and dentry counters to long
This series reworks our current object cache shrinking infrastructure in
two main ways:
* Noticing that a lot of users copy and paste their own version of LRU
lists for objects, we put some effort in providing a generic version.
It is modeled after the filesystem users: dentries, inodes, and xfs
(for various tasks), but we expect that other users could benefit in
the near future with little or no modification. Let us know if you
have any issues.
* The underlying list_lru being proposed automatically and
transparently keeps the elements in per-node lists, and is able to
manipulate the node lists individually. Given this infrastructure, we
are able to modify the up-to-now hammer called shrink_slab to proceed
with node-reclaim instead of always searching memory from all over like
it has been doing.
Per-node lru lists are also expected to lead to less contention in the lru
locks on multi-node scans, since we are now no longer fighting for a
global lock. The locks usually disappear from the profilers with this
change.
Although we have no official benchmarks for this version - be our guest to
independently evaluate this - earlier versions of this series were
performance tested (details at
http://permalink.gmane.org/gmane.linux.kernel.mm/100537) yielding no
visible performance regressions while yielding a better qualitative
behavior in NUMA machines.
With this infrastructure in place, we can use the list_lru entry point to
provide memcg isolation and per-memcg targeted reclaim. Historically,
those two pieces of work have been posted together. This version presents
only the infrastructure work, deferring the memcg work for a later time,
so we can focus on getting this part tested. You can see more about the
history of such work at http://lwn.net/Articles/552769/
Dave Chinner (18):
dcache: convert dentry_stat.nr_unused to per-cpu counters
dentry: move to per-sb LRU locks
dcache: remove dentries from LRU before putting on dispose list
mm: new shrinker API
shrinker: convert superblock shrinkers to new API
list: add a new LRU list type
inode: convert inode lru list to generic lru list code.
dcache: convert to use new lru list infrastructure
list_lru: per-node list infrastructure
shrinker: add node awareness
fs: convert inode and dentry shrinking to be node aware
xfs: convert buftarg LRU to generic code
xfs: rework buffer dispose list tracking
xfs: convert dquot cache lru to list_lru
fs: convert fs shrinkers to new scan/count API
drivers: convert shrinkers to new count/scan API
shrinker: convert remaining shrinkers to count/scan API
shrinker: Kill old ->shrink API.
Glauber Costa (7):
fs: bump inode and dentry counters to long
super: fix calculation of shrinkable objects for small numbers
list_lru: per-node API
vmscan: per-node deferred work
i915: bail out earlier when shrinker cannot acquire mutex
hugepage: convert huge zero page shrinker to new shrinker API
list_lru: dynamically adjust node arrays
This patch:
There are situations in very large machines in which we can have a large
quantity of dirty inodes, unused dentries, etc. This is particularly true
when umounting a filesystem, where eventually since every live object will
eventually be discarded.
Dave Chinner reported a problem with this while experimenting with the
shrinker revamp patchset. So we believe it is time for a change. This
patch just moves int to longs. Machines where it matters should have a
big long anyway.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:17:53 +00:00
|
|
|
extern long get_nr_dirty_inodes(void);
|
2010-10-29 09:49:13 +00:00
|
|
|
extern void evict_inodes(struct super_block *);
|
2011-02-24 06:25:47 +00:00
|
|
|
extern int invalidate_inodes(struct super_block *, bool);
|
2011-07-07 19:03:58 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* dcache.c
|
|
|
|
*/
|
|
|
|
extern struct dentry *__d_alloc(struct super_block *, const struct qstr *);
|
2013-09-05 12:39:11 +00:00
|
|
|
extern int d_set_mounted(struct dentry *dentry);
|
2013-08-28 00:18:05 +00:00
|
|
|
extern long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
|
|
|
|
int nid);
|
2013-03-20 17:19:30 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* read_write.c
|
|
|
|
*/
|
2013-06-19 11:26:04 +00:00
|
|
|
extern int rw_verify_area(int, struct file *, const loff_t *, size_t);
|
2013-03-12 13:58:10 +00:00
|
|
|
|
2013-06-20 14:58:36 +00:00
|
|
|
/*
|
|
|
|
* splice.c
|
|
|
|
*/
|
|
|
|
extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
|
|
|
|
loff_t *opos, size_t len, unsigned int flags);
|
|
|
|
|
2013-03-12 13:58:10 +00:00
|
|
|
/*
|
|
|
|
* pipe.c
|
|
|
|
*/
|
|
|
|
extern const struct file_operations pipefifo_fops;
|
2014-05-21 22:22:52 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* fs_pin.c
|
|
|
|
*/
|
|
|
|
extern void sb_pin_kill(struct super_block *sb);
|
|
|
|
extern void mnt_pin_kill(struct mount *m);
|